Supporting Information

Dietary cobalt oxide nanoparticles alleviate aging through activation of mitochondrial UPR in *Caenorhabditis elegans*

Wenshu Cong ^{1,2}, Yajie Wang ³, Chunhui Yuan ², Mei Xu ², Han Wang ², You Hu ², Xuyan Dai ⁴, Yuhua Weng ¹, Peter Timashev ⁵, Xing-Jie Liang ⁶, Yuanyu Huang ^{1,*}

¹ Advanced Research Institute of Multidisciplinary Science; School of Life Science; School of Medical Technology; Key Laboratory of Molecular Medicine and Biotherapy; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering; Beijing Institute of Technology, Beijing 100081, P. R. China.

² Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, P. R. China

³ Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China

⁴ Hunan Agricultural University, Changsha 410128, P. R.China

⁵ Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia

⁶CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China

* Corresponding author. E-mail: yyhuang@bit.edu.cn (Y.H.)

Figure S1. Biosafety assessment of Co₃O₄ NPs on *C. elegans*. Effects of Co₃O₄ NPs on worms were shown in body length (A) and egg-laying rate (B). Wild-type worms at L1 larva stage were treated with Co₃O₄ NPs with gradient doses (0.005-5 μ g ml⁻¹) for three days. Bars represent means \pm SD.

Figure S2. Representative pictures of mitochondrial ROS on nematode head (A) and cellular ROS (B) in Co₃O₄ NPs, CoCl₂ or mock-treated worms on adult day 1.

Figure S3. Influence of Co₃O₄ NPs on *hsp-6* (homologous gene of *hsp60*) expression. *mRNA* expression of *hsp-6* of worms on adult day 1 pretreated with Co₃O₄ NPs.

Figure S4. Influence of Co₃O₄ NPs on *hsf-1* and *hsp-4* expression. (A) Expression of *hsf-1* in worms on adult day 1 pretreated with Co_3O_4 NPs. (B) Expression of *hsp-4* in worms on adult day 1 pretreated with Co_3O_4 NPs..

Figure S5. The effect of Co₃O₄ NPs on mitochondrial abundance. (A) RT-qPCR analysis of changes in the expression of nuclear genes encoding mitochondrial proteins in wild-type worms on adulthood days 1 and 7 pretreated with Co₃O₄ NPs. (B) RT-qPCR analysis of mtDNA/nDNA ratio (*mtce.26/act-3*) in wild-type worms on adulthood days 1 and 7 pretreated with Co₃O₄ NPs.

Figure S6. Influence of Co₃O₄ NPs on oxygen consumption rate (OCR) compared to CoCl₂ and negative control. (A) Oxygen consumption curves of Co_3O_4 NPs, $CoCl_2$ treated worms or blank control in the presence FCCP and NaN₃ on adult day 4. Comparison of the basal oxygen consumption rate (B) and maximum oxygen consumption rate (C) in N₂ wildtype worms treated with Co₃O₄ NPs or CoCl₂ on adult day 4.

Figure S7. Basal oxygen consumption of N₂ wildtype worms treated with Co₃O₄ NPs or not on adult days 1, 4 and 7.

Figure S8. The average lifespan (%) of worms treated with Co₃O₄ NPs (from 0 to 0.5 μ g ml⁻¹).

Figure S9. (A) Lifespan curves of *C. elegans* treated with Co_3O_4 NPs in dead bacterial food pretreated with UV irradiation for 30 minutes. (B) OP50 bacteria in liquid LB treated with different concentrations of Co_3O_4 NPs did not show growth retardation.

Figure S10. Influence of Fe₂O₃ NPs, Prussian Blue NPs and Mn₃O₄ NPs on lifespan of *C. elegans*. (A) Lifespan curves of *C. elegans* treated with Fe₂O₃ NPs. (B) The average lifespan (%) of worms treated with Fe₂O₃ NPs (from 0 to 5 μ g ml⁻¹). (C) Lifespan curves of *C. elegans* treated with Prussian Blue NPs. (D) The average lifespan (%) of worms treated with Prussian Blue NPs (from 0 to 5 μ g ml⁻¹). (E) Lifespan curves of *C. elegans* treated with Mn₃O₄ NPs. (F) The average lifespan (%) of worms treated with Mn₃O₄ NPs (from 0 to 5 μ g ml⁻¹).

Figure S11. Influence of Co₃O₄ NPs on Fe accumulation and MDA content in *C. elegans* A. *In vivo* Fe levels (μ g Fe per dry weight measured via ICP-MS) in worms treated with or without Co₃O₄ NPs on adult day 7. B. Malondialdehyde (MDA) content in worms treated with or without Co₃O₄ NPs on adult day 7.

Figure S12. Pharyngeal pumping in worms treated with Co₃O₄ NPs at different doses on adult day 6.

Figure S13. Pharyngeal pumping in worms treated with Co₃O₄ NPs or CoCl₂ at 0.05 μ g ml⁻¹ on adult day 9.

Figure S14. Co₃O₄ NPs' effect on pumping rate by quantifying the ratio of worms that are fast-, slow-pumpers. Typically, pharyngeal contractions were divided the following subgroups: <6 per minute (not pumping), 6-147 per minute (slow pumping), and >147 (fast pumping), respectively.

Figure S15. Supplementation of Co₃O₄ NPs does not extend lifespan in the *dev-1(fx0259)*

mutant (n.s. = not significant).

Figure S16. Effect of Co₃O₄ NPs on mitochondrial homeostasis in mammalian cells. (A) Mitochondrial morphology of cells treated with Co₃O₄ NPs, CoCl₂ or blank control by transmission electron microscopy. Mitochondrial in smaller size versus average was indicated by red arrows (B) Treatment with Co₃O₄ NPs decreases the ratio between mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), a common marker for mitochondrial abundance in HEK293t cells. (C) Effects of Co₃O₄ NPs on the transcription of mitochondrial-related genes in HEK293t cells. (D) Western blots pics of CLPP, MTCO1, SDHA and ATP5A in HEK293t cells treated with or without Co₃O₄ NPs. GAPDH served as a loading control. (E) Quantitative analysis on the ratio of mtDNA-encoded MTCO1 and nDNA-encoded MTCO1 proteins and nDNA-encoded SDHA in HEK293t cells treated with Co₃O₄ NPs. (G) Quantitative

analysis on the UPR^{mt} protease CLPP expression in HEK293t cells treated with Co₃O₄ NPs. (H) The mRNA expression level of *hsp60* in HEK293t cells treated with Co₃O₄ NPs. (I) Effect of Co₃O₄ NPs on D-galactose-induced cellular viability decline. HEK293t cells were pretreated with Co₃O₄ NPs at 0.05 μ g ml⁻¹ in DMEM medium, and then exposed to D-galactose (20 g L⁻¹) for 48 h. CCK8 assay was used to measure cellular viability. Bar graphs are expressed as mean±SEM. *P<0.05, **P<0.01, ***P<0.001. Scale bar=5 μ m.

Gene name	Sequence (5'-3')
<i>cts-1-</i> rv	GGTACAGGTTGCGATAGATGATAGC
cts-1-fw	CTCGACAACTTCCCAGATAACC
<i>cox-4</i> -rv	AGGTTGGCGGCAGTTCTGGG
<i>cox-4</i> -fw	GCCCCAATTCGCGCCAAGGA
hxk-1-rv	CTAGAGATGACGTCACACACTTCTC
<i>hxk-1-</i> fw	GTGCGACGAGTACTTTCTCAACTG
<i>fzo-1-</i> rv	AGTCGGCATTCCCCTGATTCCG
<i>fzo-1-</i> fw	TCTGCAGGTTGAAGGTTCAGAAGGC
opa-1-rv	CTTGGCCATCCATTCTGCCCA
opa-1-fw	TCGCGGCTAGAACGTGGTATGA
hsp-6-rv	AGCGATGATCTTATCTCCAGCGTCC
<i>hsp-6</i> -fw	AACCACCGTCAACAACGCCG
<i>pyc-1-</i> rv	GTGATCATACATCCTGGTCTACTGC
<i>pyc-1</i> -fw	TCCAACTACTCCTCTTGCTACTGAC
<i>ddp-1-</i> rv	AGTGCTCGACCATGAAGTTG
<i>ddp-1-</i> fw	AACAAGTGCACACGCTCA
<i>sucl-1-</i> rv	CAGCTGATCCTCCGATTTCT
<i>sucl-1-</i> fw	GTCGGATTCGGACAGACTTT
mrpl-47-rv	ACTCGTGGAGCTCCTCTTGA
mrpl-47-fw	CGACGACGATGCCTACGTGA
mrps-14-rv	TTGGACTCCACTGAGAGCTG

Table S1. Primers used in RT-qPCR

mrps-14-fw	CGATCATCCTCGTCTGATTC
coq-2-rv	CCGATGTTCTTCCTCGATTC
<i>coq-2</i> -fw	AGTCAAACTCATGGATGGGAA
<i>mfn-1-</i> rv	TGCAGGAACCTGGAATATGA
<i>mfn-1-</i> fw	GATCCAGCAAATAGGCGAAT
F17E5.2-rv	CCTTCATGAAATTCGGTGTG
<i>F17E5.2-</i> fw	TCGAACAAGGCTTCAAGCTA
<i>F58F12.1-</i> rv	TGATCAATGCTTCAGCAACTT
<i>F58F12.1-</i> fw	CTTGATGCTGCCCAAAGAG
D2030.4-rv	TTCAAGCAGTGGCTTCTTTG
<i>D2030.4-</i> fw	TGGAGCTTGGGATAAATGTG
tag-174-rv	TAGTGCTTCTCACGGTCAGC
<i>tag-174-</i> fw	TCGAGTACGCCTTCTTGAAC
cyc-2.1-rv	TTCTTGAGTCCAGCGAACAC
<i>cyc-2.1-</i> fw	CGCTGCTAACAAGAACAAGG
<i>act-1-</i> rv	GTAGCAGAGCTTCTCCTTGATGTC
act-1-fw	GCTGGACGTGATCTTACTGATTACC
act-3-rv	GGTGGTTCTCCGGAAAGAA
act-3-fw	TGCGACATTGATATCCGTAAGG
nd-1-rv	AAGCTTGTGCTAATCCCATAAATGT
<i>nd-1-</i> fw	AGCGTCATTTATTGGGAAGAAGAC
mtce.26-rv	CAGGGTGCCCCATTGTTCTT
mtce.26-fw	GGTTGTGGGGACTAGGTGAACA
<i>HK2-</i> rv	GGGAACACAAAAGACCTCTTCTGG
<i>HK2-</i> fw	GCCAGCCTCTCCTGATTTTAGTGT
<i>16s-</i> rv	TCGTTTGGTTTCGGGGGTTTC
<i>16s</i> -fw	CCGCAAGGGAAAGATGAAAGAC
Ndufa7-rv	GAGCTTGTGGCTAGGACCC
Ndufa7-fw	TGCAGCTACGCTACCAGGA
Ndufs5-rv	CCGAAGCAAACACTCTACGAAAT

Ndufs5-fw	TGCACATGGAATCGGTTATACTC
Ndufb4-rv	GAAGCAGGTACTCTCGTTTCAG
<i>Ndufb4</i> -fw	ATGTCGTTCCCAAAGTATAAGCC
Atp5e-rv	GGAGTATCGGATGTAGCTGAGT
<i>Atp5e-</i> fw	GTGGCCTACTGGAGACAGG
hsp60-rv	AGCCCGAGTGAGATGAGGAG
hsp60-fw	ATGCTTCGGTTACCCACAGTC