
Table S1. Treatment strategies directed at pathogenic bacteria in sepsis.

Treatment strategies Mechanisms of action Refs
(Publication date)

Free antibiotics Interfering with metabolic processes
of bacteria

[1-3]
(2021, 2016, 2020)

Antibiotic loaded NPs Increasing antibiotic potency due to
improved pharmacokinetics

[4]
(2021)

Metal and metal oxide
NPs

The disruption of the bacterial cell
membrane, denaturation of protein, and
DNA damage and disruption of the
respiratory chain

[4]
(2021)

Free AMPs Physically destroying the lipid bilayers of
bacteria

[5, 6]
(2021, 2020)

Self-assembling
chimeric peptide NPs
with PEGylation

Alleviating the pharmacokinetic defect of
peptide-based antibacterial drugs with the
improved cytocompatibility

[7]
(2022)

Liposome with a
combined AMP and

antibiotic

Synergism with significant improvement
of bacterial clearance

[8]
(2015)

Lipidic nanocapsules
encapsulating essential

oils

Antimicrobial activity of phenolic,
aldehyde and alkene compounds in
essential oils

[9, 10]
(2016, 2016）

AMP: antimicrobial peptide; PEG: polyethylene glycol; NP: nanoparticle.



Table S2. Treatment strategies directed at toxins in sepsis.

Treatment strategies Mechanisms of action Refs
(Publication date)

AMPs Binding to LPS and LP [11]
(2018)

Gas gangrene antitoxin Neutralizing a-toxin secreted by C.
perfringens

[12]
(2018)

Anti-endotoxin monoclonal
antibody

Binding to endotoxin [13]
(2000)

J5 antiserum Binding to LPS core [14]
(2000)

J5 immune plasma Binding to LPS core [14]
(2000)

Intravenous
immunoglobulins

Nonspecifically neutralizing bacterial
toxins

[15]
(2013)

Polymyxin B fiber
column

Removing circulating endotoxin by
adsorption

[16]
(2017)

HDL like NPs Scavenging and neutralizing LPS [17]
(2016)

Engineered liposomes Sequestering bacterial toxins as decoy [18]
(2015)

AMP: antimicrobial peptide; HDL: High-density lipoprotein; LP: lipoprotein; LPS: lipopolysaccharide.



Table S3. Treatment strategies directed at inflammatory cytokines in sepsis.

Treatment strategies Mechanisms of action Refs
(Publication date)

CytoSorb Nonspecifically eliminating many
proinflammatory cytokines

[16]
(2017)

TLR4 Inhibitor Inhibiting TLR4 signaling [16]
(2017)

APS loaded NPs Inhibiting the activity of TLR4/NF-κB
pathway with improved pharmacokinetics

[19]
(2000)

Anti-TNF monoclonal
antibody

Antibody-specific inactivation of
circulating TNF

[20-22]
(2003, 2001, 2001)

Soluble TNF receptors Receptor-specific inactivation of
circulating TNF

[20-22]
(2003, 2001, 2001)

IL-1 receptor
antagonists

Receptor-specific inactivation of IL-1 [20-22]
(2003, 2001, 2001)

PAF receptor antagonist Receptor-specific inactivation of PAF [20-22]
(2003, 2001, 2001)

Bradykinin inhibitor Inhibiting the kallikrein/kinin cascade [20-22]
(2003, 2001, 2001)

Ibuprofen Inhibiting the production of prostaglandin [21, 22]
(2001, 2001)

Glucocorticoids Inhibiting the synthesis of almost all
proinflammatory cytokines

[23, 24]
(2002, 2005)

Cerium oxide NPs Decreased transcriptional action
of ROS, iNOS, COX-2, and NF-κB

[25]
(2018)

Curcumin-loaded solid
lipid NPs

Suppressing NF-kB activation and
IkBa degradation levels

[26]
(2015)

Bone marrow
stromal cells

Reprograming host macrophages to
increase their IL-10 production

[27]
(2009)

APS: astragalus polysaccharide; COX-2: cyclooxygenase-2; IkBa: NF-kappa-B inhibitor alpha; IL: interleukin;

iNOS: inducible nitric oxide synthase; NF-κB: nuclear factor kappa-B; NP: nanoparticle; PAF: platelet-activating

factor; ROS: reactive oxygen species; TLR4: toll-like receptor 4; TNF: tumor necrosis factor.



Table S4. Some of transmembrane PRRs and corresponding PAMPs and DAMPs

participating in the inflammation in sepsis.

Note: “＿” represents no.

HMGB1: high-mobility group box 1; hsp: heat-shock protein; LDL: low-density lipoprotein; LPS:

lipopolysaccharide; TLR: Toll-like receptor.

PAMPs/DAMPs TLRs Roles in
inflammation

Triacyl lipopeptide soluble factors TLR1

Producing
proinflammatory

cytokines

Lipoproteins TLR2
Matrix metalloproteinase 2 TLR2

Peptidoglycan TLR2
mRNA TLR3

Fibrinogen TLR4
Envelope proteins TLR4
Heparan sulfate TLR4

Atypical LPS, LPS TLR2 / TLR4
Hsp60, hsp70,hsp72, hsp22 TLR2 / TLR4

Glycoprotein 96 TLR2 / TLR4
Hyaluronic acid TLR2 / TLR4

HMGB1 TLR2 / TLR4 / TLR5
Di-acyllipopeptides from mycoplasm TLR2 / TLR6

Amyloid β TLR2 / TLR6
Oxidized LDL TLR2 / TLR6

CpG-containing DNA from bacteria, host
DNA from dying cells, mitochondrial

DNA (mtDNA),

＿

HMGB1-DNA complex ＿

Flagellin TLR5 / TLR11



Table S5. Some of cytoplasmic PRRs as well as corresponding PAMPs and DAMPs

engaged in the inflammation in sepsis.

Note: “＿” represents no.

ATP: adenosine triphosphate; hsp: heat-shock protein; LPS: lipopolysaccharide.

PAMPs DAMPs Intracellular

PRRs

Roles in

inflammation

g-D-glutamyl-mesodiaminopimelic acid

(bacterial peptidoglycans)
＿ NOD1

Activating

casp-1 causes

pyroptosis

muramyl dipeptide (bacterial

peptidoglycans)

＿ NOD2

Bacillus anthracis lethal toxin NLRP1

Staphylococcus aureus, Candida

albicans, Saccharomyces cerevisiae,

Listeria monocytogenes, Neisseria

gonorrhoeae, pore-forming toxins

Uricacid crystals,

extracelluar ATP,

HMGB1, hsp70,

hsp90

NLRP3

Listeria monocytogenes, Salmonella

typhimurium, Shigella flexneri,

Legionella pneumophila, Pseudomonas

aeruginosa, Cytosolic flagellin
＿ NLRC4

Double-stranded DNA from

Francisella tularensis
＿ AIM2

Cytosolic LPS ＿ Cytosolic LPS

sensor

Activating

casp-11 causes

pyroptosis
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