Treatment strategies	Mechanisms of action	Refs	
		(Publication date)	
Free antibiotics	Interfering with metabolic processes	[1-3]	
	of bacteria	(2021, 2016, 2020)	
Antibiotic loaded NPs	Increasing antibiotic potency due to	[4]	
	improved pharmacokinetics	(2021)	
	The disruption of the bacterial cell		
Metal and metal oxide	membrane, denaturation of protein, and	[4]	
NPs	DNA damage and disruption of the	(2021)	
	respiratory chain		
Free AMPs	Physically destroying the lipid bilayers of	[5, 6]	
	bacteria	(2021, 2020)	
Self-assembling	Alleviating the pharmacokinetic defect of	[7]	
chimeric peptide NPs	peptide-based antibacterial drugs with the	(2022)	
with PEGylation	improved cytocompatibility		
Liposome with a	Synergism with significant improvement	[8]	
combined AMP and	of bacterial clearance	(2015)	
antibiotic			
Lipidic nanocapsules	Antimicrobial activity of phenolic,	[9, 10]	
encapsulating essential	aldehyde and alkene compounds in	(2016, 2016)	
oils	essential oils		

 Table S1. Treatment strategies directed at pathogenic bacteria in sepsis.

AMP: antimicrobial peptide; PEG: polyethylene glycol; NP: nanoparticle.

Treatment strategies	Mechanisms of action	Refs
		(Publication date)
AMPs	Binding to LPS and LP	[11]
		(2018)
Gas gangrene antitoxin	Neutralizing a-toxin secreted by C.	[12]
	perfringens	(2018)
Anti-endotoxin monoclonal	Binding to endotoxin	[13]
antibody		(2000)
J5 antiserum	Binding to LPS core	[14]
		(2000)
J5 immune plasma	Binding to LPS core	[14]
		(2000)
Intravenous	Nonspecifically neutralizing bacterial	[15]
immunoglobulins	toxins	(2013)
Polymyxin B fiber	Removing circulating endotoxin by	[16]
column	adsorption	(2017)
HDL like NPs	Scavenging and neutralizing LPS	[17]
		(2016)
Engineered liposomes	Sequestering bacterial toxins as decoy	[18]
		(2015)

 Table S2. Treatment strategies directed at toxins in sepsis.

AMP: antimicrobial peptide; HDL: High-density lipoprotein; LP: lipoprotein; LPS: lipopolysaccharide.

Treatment strategies	Mechanisms of action	Refs	
		(Publication date)	
CytoSorb	Nonspecifically eliminating many	[16]	
	proinflammatory cytokines	(2017)	
TLR4 Inhibitor	Inhibiting TLR4 signaling	[16]	
		(2017)	
APS loaded NPs	Inhibiting the activity of TLR4/NF-κB	[19]	
	pathway with improved pharmacokinetics	(2000)	
Anti-TNF monoclonal	Antibody-specific inactivation of	[20-22]	
antibody	circulating TNF	(2003, 2001, 2001)	
Soluble TNF receptors	Receptor-specific inactivation of	[20-22]	
	circulating TNF	(2003, 2001, 2001)	
IL-1 receptor	Receptor-specific inactivation of IL-1	[20-22]	
antagonists		(2003, 2001, 2001)	
PAF receptor antagonist	Receptor-specific inactivation of PAF	[20-22]	
		(2003, 2001, 2001)	
Bradykinin inhibitor	Inhibiting the kallikrein/kinin cascade	[20-22]	
		(2003, 2001, 2001)	
Ibuprofen	Inhibiting the production of prostaglandin	[21, 22]	
		(2001, 2001)	
Glucocorticoids	Inhibiting the synthesis of almost all	[23, 24]	
	proinflammatory cytokines	(2002, 2005)	
Cerium oxide NPs	Decreased transcriptional action	[25]	
	of ROS, iNOS, COX-2, and NF-ĸB	(2018)	
Curcumin-loaded solid	Suppressing NF-kB activation and	[26]	
lipid NPs	IkBa degradation levels	(2015)	
Bone marrow	Reprograming host macrophages to	[27]	
stromal cells	increase their IL-10 production	(2009)	

 Table S3. Treatment strategies directed at inflammatory cytokines in sepsis.

APS: astragalus polysaccharide; COX-2: cyclooxygenase-2; IkBa: NF-kappa-B inhibitor alpha; IL: interleukin; iNOS: inducible nitric oxide synthase; NF-κB: nuclear factor kappa-B; NP: nanoparticle; PAF: platelet-activating factor; ROS: reactive oxygen species; TLR4: toll-like receptor 4; TNF: tumor necrosis factor.

Table S4. Some of transmembrane PRRs and corresponding PAMPs and DAMPsparticipating in the inflammation in sepsis.

PAMPs/DAMPs	TLRs	Roles in	
		inflammation	
Triacyl lipopeptide soluble factors	TLR1		
Lipoproteins	TLR2		
Matrix metalloproteinase 2	TLR2		
Peptidoglycan	TLR2		
mRNA	TLR3		
Fibrinogen	TLR4		
Envelope proteins	TLR4		
Heparan sulfate	TLR4		
Atypical LPS, LPS	TLR2 / TLR4	Producing	
Hsp60, hsp70,hsp72, hsp22	TLR2 / TLR4	proinflammatory	
Glycoprotein 96	TLR2 / TLR4	cytokines	
Hyaluronic acid	TLR2 / TLR4		
HMGB1	TLR2 / TLR4 / TLR5		
Di-acyllipopeptides from mycoplasm	TLR2 / TLR6		
Amyloid β	TLR2 / TLR6		
Oxidized LDL	TLR2 / TLR6		
CpG-containing DNA from bacteria, host			
DNA from dying cells, mitochondrial			
DNA (mtDNA),			
HMGB1-DNA complex	_		
Flagellin	TLR5 / TLR11		

Note: "___" represents no.

HMGB1: high-mobility group box 1; hsp: heat-shock protein; LDL: low-density lipoprotein; LPS: lipopolysaccharide; TLR: Toll-like receptor.

PAMPs	DAMPs	Intracellular	Roles in
		PRRs	inflammation
g-D-glutamyl-mesodiaminopimelic acid		NOD1	
(bacterial peptidoglycans)			
muramyl dipeptide (bacterial		NOD2	
peptidoglycans)			
Bacillus anthracis lethal toxin		NLRP1	
Staphylococcus aureus, Candida	Uricacid crystals,		
albicans, Saccharomyces cerevisiae,	extracelluar ATP,		
Listeria monocytogenes, Neisseria	HMGB1, hsp70,	NLRP3	Activating
gonorrhoeae, pore-forming toxins	hsp90		casp-1 causes
Listeria monocytogenes, Salmonella			pyroptosis
typhimurium, Shigella flexneri,			
Legionella pneumophila, Pseudomonas	_	NLRC4	
aeruginosa, Cytosolic flagellin			
Double-stranded DNA from		AIM2	
Francisella tularensis			
			Activating
Cytosolic LPS		Cytosolic LPS	casp-11 causes
		sensor	pyroptosis

Table S5. Some of cytoplasmic PRRs as well as corresponding PAMPs and DAMPs engaged in the inflammation in sepsis.

Note: "___" represents no.

ATP: adenosine triphosphate; hsp: heat-shock protein; LPS: lipopolysaccharide.

Supplemental References

1. Ulldemolins M, Bastida C, Llauradó-Serra M, Chantal Csajka C, Rodríguez A, Badia JR, et al. Once-daily 1 g ceftriaxone optimizes exposure in patients with septic shock and hypoalbuminemia receiving continuous veno-venous hemodiafiltration. Eur J Clin Pharmacol. 2021; 77: 1169-80.

2. Tsai D, Stewart P, Goud R, Gourley S, Hewagama S, Krishnaswamy S, et al. Optimising meropenem dosing in critically ill Australian Indigenous patients with severe sepsis. Int J Antimicrob Agents. 2016; 48: 542-6.

3. Masich AM, Kalaria SN, Gonzales JP, Heil EL, Tata AL, Claeys KC, et al. Vancomycin pharmacokinetics in obese patients with sepsis or septic shock. Pharmacotherapy. 2020; 40: 211-20.

4. Pant A, Mackraj I, Govender T. Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology. J Biomed Sci. 2021; 28: 6.

5. Chai JW, Chen X, Ye TF, Zeng BS, Zeng QY, Wu JN, et al. Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties. ELife. 2021; 10: e64411.

6. Nagaoka I, Tamura H, Reich J. Therapeutic potential of cathelicidin peptide LL-37, an antimicrobial agent, in a murine sepsis model. Int J Mol Sci. 2020; 21: 5973.

7. Tan P, Tang Q, Xu SR, Zhang YC, Fu HY, Ma X. Designing self-assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections. Adv Sci. 2022; 9: e2105955.

8. Fan X, Fan J, Wang X, Wu P, Wu G. S-thanatin functionalized liposome potentially targeting on Klebsiella pneumoniae and its application in sepsis mouse model. Front Pharmacol. 2015; 6: 249.

9. Swamy MK, Akhtar MS, Sinniah UR. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evid Based Complement Alternat Med. 2016; 2016: 3012462.

10. Montagu A, Joly-Guillou ML, Guillet C, Bejaud J, Rossines E, Saulnier P. Demonstration of the interactions between aromatic compound-loaded lipid nanocapsules and Acinetobacter baumannii bacterial membrane. Int J Pharm. 2016; 506: 280-8.

11. Heinbockel L, Weindl G, Martinez-de-Tejada G, Correa W, Sanchez-Gomez S, Bárcena-Varela S, et al. Inhibition of lipopolysaccharide- and lipoprotein-induced inflammation by antitoxin peptide Pep19-2.5. Front Immunol. 2018; 9: 1704.

12. Hifumi T, Nakano D, Chiba J, Takahashi M, Yamamoto A, Fujisawa Y, et al. Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model. Toxicon. 2018; 141: 112-7.

13. Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, et al. E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: a randomized controlled trial. E5 Study Investigators. JAMA. 2000; 283: 1723-30.

14. Freeman BD, Natanson C. Anti-inflammatory therapies in sepsis and septic shock. Exp Opin Invest Drugs

2000; 9: 1651-63.

15. Alejandria MM, Lansang MAD, Dans LF, Mantaring III JB. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev. 2013; 2013: CD001090.

16. Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M, Moyano S. Sepsis: A review of advances in management. Adv Ther. 2017; 34: 2393-411.

17. Foit L, Thaxton CS. Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of infammatory mediators induced by lipopolysaccharide binding Toll-like receptor 4. Biomaterials. 2016; 100: 67-75.

18. Henry BD, Neill DR, Becker KA, Gore S, Bricio-Moreno L, Ziobro R, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat Biotechnol. 2015; 33: 81-8.

19. Xu X, Rui S, Chen C, Zhang G, Li Z, Wang J, et al. Protective effects of astragalus polysaccharide nanoparticles on septic cardiac dysfunction through inhibition of TLR4/NF-κB signaling pathway. Int J Biol Macromol. 2020; 153: 977-85.

20. Minneci P, Deans K, Natanson C, Eichacker PQ. Increasing the efficacy of anti-inflammatory agents used in the treatment of sepsis. Eur J Clin Microbiol Infect Dis. 2003; 22: 1-9.

21. Arndt P, Abraham E. Immunological therapy of sepsis: experimental therapies. Intensive Care Med. 2001; 27: 104-115.

22. van der Poll T. Immunotherapy of sepsis. Lancet Infect Dis. 2001; 1: 165-74.

23. Annane D, Sebille V, Charpentier C, Bollaert PE, Francois B, Korach J, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002; 288: 862-71.

24. Annane D. Glucocorticoids in the treatment of severe sepsis and septic shock. Curr Opin Crit Care 2005; 11: 449-53.

25. Chen G, Xu Y. Biosynthesis of cerium oxide nanoparticles and their effect on lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction in male Sprague Dawley rats. Mater Sci Eng C. 2018; 83: 148-53.

26. Wang J, Wang H, Zhu R, Liu Q, Fei J, Wang S. Anti-infammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1β transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials. 2015; 53: 475-83.

27. Németh K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009; 15: 42-9.