Primer name		Forward Primer (5' to 3')			Reverse Primer (5' to 3')		
Mouse TNF-α		CTGAACTTCGGGGTGATCGG			GGCTTGTCACTCGAATTTTGAGA		
Mouse IL-1β		GAAATGCCACCTTTTGACAGTG			TGGATGCTCTCATCAGGACAG		
Mouse IL-6		CTGCAAGAGACTTCCATCCAG			AGTGGTATAGACAGGTCTGTTGG		
Mouse IL-17A		ATGCTGTTGCTGCTGCTGAG			GGAAGTCCTTGGCCTCAGTG		
Mouse IL-17F		GGAGGTAGCAGCTCGGAAGA			GGAGCGGTTCTGGAATTCAC		
Mouse GAPDH		AGGTCGGTGTGAACGGATTTG			TGTAGACCATGTAGTTGAGGTCA		
Human TNF-α		GGACACCATGAGCACTGAAAGC			TGCCACGATCAGGAAGGAGAAG		
Human IL-1β		CCACAGACCTTCCAGGAGAATG			GTGCAGTTCAGTGATCGTACAGG		
Human IL-6		AATTCGGTACATCCTCGACGGC			GCCAGTGCCTCTTTGCTGCTTT		
Human GAPDH		ATGGGGAAGGTGAAGGTCG			GGGGTCATTGATGGCAACAATA		
	Noi	rmal	Cu ²⁺ (0.15)	DSF((50)	Cu ²⁺ (0.15)+DSF(50)	
Heart				J.			
Liver		- Q					
Spleen							
Kidney						<u>100 µm</u>	

Table S1. Quantitative	PCR primer	sequences.
------------------------	------------	------------

Figure S1. The preliminary evaluation of biosafety. Histological examination of

major organs was detected using H&E staining (scale bar, $100 \ \mu m$) (n = 4).

Figure S2. Effect of disulfiram with Cu^{2+} on cell apoptosis and proliferation in colonic tissues. (A) Histological changes were detected using H&E staining (scale bar, 100 µm) (n=4). (B) Representative images for (TUNEL) staining (scale bar, 100 µm). (C) Assessment of the apoptotic cells in each group. (D) Representative immunostaining images for Ki67 (scale bar, 100 µm). (E) Ki67-positive cells analysis.

Data were presented as the mean \pm SD and represented 1 of at least 2 independent experiments with consistent results. One way ANOVA with Tukey's multiple comparisons test (C, E) was used to calculate statistical significance (*p< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001).

Figure S3. DSF+Cu²⁺ alleviated DSS-induced colitis in mice. (A) Mice were orally administered 2.5% DSS, Cu^{2+} , DSF, or DSF+ Cu^{2+} for 7 consecutive days. Mice were then sacrificed, and colons were collected. (A) Body weight change. (B) DAI score.

(C) Colon length. (D) Histological changes were detected using H&E staining (scale bar, 200 μ m). Data were presented as the mean \pm SD and represented 1 of at least 2 independent experiments with consistent results. One way ANOVA with Tukey's multiple comparisons test (A-D) was used to calculate statistical significance (*p< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001).

Figure S4. DSF+Cu²⁺ inhibited NF- κ B signaling and secretion of IL-1 β derived from NLRP3 inflammasomes. (A) THP-1 and BMDMs were pretreated with CuET for 4 h and left or stimulated with LPS for 24 h, mRNA levels of TNF- α , IL-1 β , and IL-6 in THP-1 and BMDMs were detected using qPCR assay. (B) THP-1 and BMDMs were pretreated with CuET for 4 h and left or stimulated with LPS for 24 h.

Immunoblot analyses of iNOS and COX2 in the whole-cell extracts were shown. (C) THP-1 and BMDMs were pretreated with CuET for 4 h and left or stimulated with LPS for 90 min. Immunoblot analyses of the indicated proteins and phosphorylated (p-) proteins in the whole-cell extracts of THP-1 and BMDMs. (D) LPS primed-THP-1 and LPS primed-BMDMs were treated with CuET (5 μ M and 10 μ M) for 4 h and stimulated with nigericin or ATP for another 1 h or 45 min. Immunoblot analyses of culture supernatants (SN) and lysates (LYS) were shown. Data were presented as the mean \pm SD and represented 1 of at least 2 independent experiments with consistent results. One way ANOVA with Tukey's multiple comparisons test (A) was used to determine statistical significance (*p< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001).

Figure S5. Mouse naive CD4⁺ T cells were polarized under indicated conditions in vitro for 4 days. Cells were either left untreated or treated with CuET under 1 μ M, 3 μ M, or 5 μ M. Flow cytometry was performed for the percentages of Th17 cells. Data were presented as the mean \pm SD and represented 1 of at least 2 independent experiments with consistent results. One way ANOVA with Tukey's multiple comparisons test was used to determine statistical significance (*p< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001).

Figure S6. $\alpha\beta$ T cells were critical in the pathological phenotype of DSS-induced colitis mice. WT and TCR $\beta^{-/-}$ mice were treated with DSS to induce colitis. (A) Body weight change. (B) DAI score. (C) Colon length. (D) Histological changes were detected using H&E staining (scale bar, 200 µm). (E) Percentage of CD4⁺ T cells in the spleen and colonic tissues. (F) Relative mRNA expression of TNF- α , IL-1 β , IL-6, IL-17A, and IL-17F in colonic tissues. Data were presented as the mean ± SD and

represented 1 of at least 2 independent experiments with consistent results. 2-tailed, unpaired Student's t test (A-D and F) was used to determine statistical significance (*p< 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.001).

Figure S7. Detection of transferred CD4⁺ T cells in the spleen. $TCR\beta^{-/-}$ mice were transferred naive CD4⁺ T cells, which were detected by flow cytometry on Days 2, 3, 4, 7, 11.

Figure S8. DSF+Cu²⁺ improved the intestinal microbiota of mice with DSS-

induced colitis. (A-D) Bar plots of the class (A), order (B), family (C), and species (D) taxonomic levels in Control, DSS, and DSF+Cu²⁺+DSS groups. Relative

abundance was plotted for each sample.

Figure S9. Viability measures of cells treated with CuET in vitro. (A) Peritoneal macrophages were treated with CuET at 0 μ M, 5 μ M, or 10 μ M (n=3). (B) J774A.1 cells were treated with CuET at 0 μ M, 5 μ M, or 10 μ M (n=3). (C) Mouse naive CD4⁺ T cells were polarized under indicated conditions in vitro for 4 days, and then the cells were treated with CuET at 0 μ M, 1 μ M, 3 μ M, or 5 μ M (n=4). Cell viability was measured by FACS using 7AAD/Annexin V kit.