

Figure S2. *Hmgb1* knockdown reduces RLDC-induced fibrotic phenotype in renal tubular cells. BUMPT cells were transfected with 50 nM of HMGB1 siRNA1 (siH1-1), HMGB1 siRNA2 (siH1-2), or a negative control siRNA (siNC), and then subjected to 4 days of RLDC treatment or

- 23 control). (B) Densitometry of HMGB1 in immunoblots. (C) Representative immunoblots of FN and
- 24 GAPDH. (D) Densitometry of FN in immunoblots. (E) Immunofluorescence analysis of COL-1
- 25 (red) in BUMPT cells with Hoechst staining of their nuclei (blue). Scale bar = $50 \mu m$. (F)
- 26 Quantitative analysis of COL-1 staining. Quantitative data are expressed as mean \pm SEM. N = 5. *
- 27 P < 0.05 vs. the control group without RLDC treatment (Con). # P < 0.05 vs. RLDC/siNC group.

Figure S3. Anti-HMGB1 neutralizing antibody suppresses Il-1 β , Il-6 and Tnf- α expression in 29 post-RLDC mouse kidneys. Male C57BL/6 mice received a weekly injection of 8 mg/kg cisplatin 30 for four weeks. After the last injection, anti-HMGB1 antibody (Anti-HMGB1) or IgG isotype control 31 (IgG) were injected daily for one week until sample collection. (A) Representative immunoblots of 32 IL-1β, IL-6, TNF-α and GAPDH (loading control). (B) Densitometry of IL-1β, IL-6, TNF-α in 33 immunoblots. (C) Relative quantification of the levels of *Il-1* β , *Il-6*, and *Tnf-a* mRNAs by qRT-PCR. 34 35 The expression of the target genes was normalized to GAPDH mRNA and expressed as fold change compared to control kidneys (Con). N = 5. *P<0.05 vs. the control group (Con), #P < 0.05 vs. 36 RLDC/control isotype-treated group. 37

Figure S4. Hmgb1 knockdown decreases pro-inflammatory cytokines in RLDC-treated renal 40 tubular cells. BUMPT cells were transfected with 50 nM Hmgb1 siRNA (siH1-1, siH1-2), or 41 42 negative control siRNA (siNC), and then subjected to 4-day basic RLDC treatment. Control cells were left untreated (Con). (A) Representative immunoblots detecting IL-1 β , IL-6, TNF- α , and 43 GAPDH. (B) Quantitative analysis of IL-1 β , IL-6, and TNF- α immunoblots. (C) Relative 44 quantification of the levels of *Il-1\beta*, *Il-6*, and *Tnf-\alpha* mRNAs by qRT-PCR. The expression of the target 45 genes was normalized to GAPDH mRNA and expressed as fold change compared to control cultures 46 (Con). Data are expressed as mean \pm SEM. N = 4. *P<0.05 vs. the untreated cultures (Con); #P < 47 0.05 vs. RLDC/control siRNA-treated cultures. 48

50 Figure S5. Immunofluorescence co-staining of HMGB1 with CD68 in renal biopsies of CKD

51 **patients.** To further validate the expression of HMGB1 produced by macrophages in CKD patients,

52 we performed immunofluorescence co-staining of CD68 and HMGB1 using tissue samples from 3

control patients (normal kidney tissue adjacent to cancer) and 7 CKD patients with different etiologies, including IgA nephropathy (n = 2), and hypertensive nephropathy (n = 5). In CKD with multifocal tubular atrophy and interstitial fibrosis, HMGB1 expression was significantly increased in renal tubular cells and in some CD68+ macrophages. Arrows refers to CD68+ cells in the interstitium, and * refers to CD68+HMGB1+ cells. Scale bar = 50 μ m.

Gene	Forward (5'-3')	Reverse (5'-3')
<i>II-1β</i>	GAAATGCCACCTTTTGACAGTG	CTGGATGCTCTCATCAGGACA
<i>II-6</i>	TCCAGTTGCCTTCTTGGGAC	GTACTCCAGAAGACCAGAGG
Tnf-α	CAGGCGGTGCCTATGTCTC	CGATCACCCCGAAGTTCAGTAG
Hmgb1	GGGAGGAGCACAAGAAGAAGCA	GGGCGGTACTCAGAACAGAACA AG
Tlr2	GACGCTGGAGGTGTTGGATGTTAG	AAAGTGGTTGTCGCCTGCTTCC
Tlr4	CCGCTTTCACCTCTGCCTTCAC	TGCCGTTTCTTGTTCTTCCTCTG C
<i>Myd</i> 88	CGCCGCCTATCGCTGTTCTTG	TGCCTCCCAGTTCCTTTGTTTGT G
Gapdh	AGGTCGGTGTGAACGGATTTG	GGGGTCGTTGATGGCAACA

58 **Table S1. Primer sequences used for quantitative RT-PCR.**

59

60 **Table S2.** Demographic and clinical information of the CKD patients.

Number	Age	Gender	CKD	eGFR(ml/mi	Diagnosis	Tubular	Interstitial
			staging	n/1.73m ²)		atrophy (%)	fibrosis (%)
1	52	М	IIIa	48.7	IgA nephropathy	70	70
2	36	F	IIIa	45.5	IgA nephropathy	30	30
3	64	М	IIIb	32.3	Hypertensive	30	30
					nephropathy		
4	25	М	IIIa	46.1	Hypertensive	70	70
					nephropathy		
5	59	М	IV	16.7	Hypertensive	30	30
					nephropathy		
6	55	М	II	72.3	Hypertensive	30	30
					nephropathy		
7	38	М	IV	19	Hypertensive	70	70
					nephropathy		

61