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Abbreviations: Av: volume activity resp. activity concentration; CT: X-ray computed
tomography; DAC: 5-Aza-2'-deoxycytidine; DNMT: DNA-N-methyltransferase; ET:
epigenetic treatment; GSEA: gene set enrichment analysis; HDAC: histone deacetylase; LDso:
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TATE: (Tyr®)octreotate; VPA: valproic acid
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1 Additional Methods

1.1 Preparation of epigenetic drugs

For in vitro application, VPA was freshly dissolved in cell culture medium and added to the
cells at final concentrations between 10~° and 102 mol/L. DAC was dissolved in H0 to obtain
a10~# mol/L stock solution that was stored at —20 °C. For each experiment, aliquots of the DAC

stock were thawed and added to the cells at final concentrations between 108 and 10~° mol/L.

For in vivo application, VPA was dissolved at 0.26 mol/L in Dulbecco’s phosphate-buffered
saline. DAC was dissolved at 0.04 mol/L in acetic acid (9.6 mol/L) to obtain a stock solution
that was further diluted to 6.6x10~* mol/L in Dulbecco’s phosphate buffered. All solutions
were adjusted to pH 7.2 using small amounts of aqueous NaOH (2.8 mol/L), sterile-filtered,

and frozen at —20 °C.

1.2 Radionuclide production and supply

The radionuclide ®3Ga ([*®Ga]GaCls dissolved in 1 mol/L HCI) was obtained from the
commercial %8Ge/%®Ga-Generator IGG 100-50M (Eckert und Ziegler). The radionuclide 54Cu
([®*Cu]CuCl; dissolved in 0.01 mol/L HCI) was produced at the Helmholtz-Zentrum Dresden-
Rossendorf on the cyclotron TR-Flex (Advanced Cyclotron Systems Inc., Richmond, Canada)
by a 8*Ni(p,n)®*Cu nuclear reaction. The radionuclide *"’Lu (EndolucinBeta®, non-carrier
added [*""Lu]LuCls dissolved in 0.04 mol/L HCI) was purchased from ITM (Isotope

Technologies Munchen AG, Miinchen, Germany).

1.3 Tumor volumes in animal cohorts

Animals with higher initial tumor volume were specifically included in cohorts that received
epigenetic drugs in order to compensate for the growth-reducing effects of ET and to match

tumor volumes as closely as possible across cohorts at the time of radiopharmaceutical injection

4



92 (Table S 1). The variation in tumor volumes at a specific time point can be explained by
93  different tumor formation times, while tumor growth rates were largely similar. Differences in
94  tumor volume between the treatment groups were comparable to the overall variation observed

95 in the entire model cohort.

96 Table S 1: Tumor volumes of MPC and MTT allograft mice included in treatment groups; (ET strt) day O of the treatment
97 schedule when animals received the first dose of epigenetic drugs; (ET start + 4 d 2 PET start/ PRRT start) day 4 of the investigation
98 when animals received a single dose of radiopharmaceutical to perform PET imaging or PRRT depending on the

99  radiopharmaceutical applied; data presented as means + SEM

Cohort label ET Radiopharmaceutical Viumor (cmd) Vtumor (CM°)
ET start ETstart+ 4 d
2 PET start / PRRT start
MPC allograft model - PET and biodistribution
[Control] Vehicle (PBS) [t*Cu]Cu-DOTA-TATE 0.18+0.12 0.28+0.13
[ET veal VPA [t*Cu]Cu-DOTA-TATE 0.27 £0.13 0.46 £0.23
[ET pac] DAC [¢*Cu]Cu-DOTA-TATE 0.39+0.16 0.57+0.18
[ET vea + pAc] VPA + DAC [t*Cu]Cu-DOTA-TATE 0.51+£0.17 0.81+£0.20
MTT allograft model — PET and biodistribution
[Control] Vehicle (PBS) [®*Cu]Cu-DOTA-TATE 0.13+0.02 0.42 +0.08
[ET vea] VPA [¢*Cu]Cu-DOTA-TATE 0.14 +0.05 0.35+0.05
[ET pac] DAC [6*Cu]Cu-DOTA-TATE 0.23+0.07 0.24 +0.06
[ET vpa +pac] VPA + DAC [*Cu]Cu-DOTA-TATE 0.28 +0.08 0.37 +0.11
MPC allograft model — PRRT, SPECT, and gene expression
[Control] Vehicle (PBS) w/o 0.17 £ 0.03 0.39+0.03
[ET] VPA + DAC w/o 0.25+£0.05 0.44 £0.10
[PRRT] Vehicle (PBS) [*7Lu]Lu-DOTA-TATE 0.09 +0.01 0.24 +0.06
[ET + PRRT] VPA + DAC [*7Lu]Lu-DOTA-TATE 0.25 £ 0.02 0.48 £0.05
MTT allograft model — PRRT, SPECT, and gene expression
[Control] Vehicle (PBS) w/o 0.13+0.02 0.54 £ 0.05
[ET] VPA + DAC w/o 0.37 £0.08 0.53 £ 0.06
[PRRT] Vehicle (PBS) [*7Lu]Lu-DOTA-TATE 0.12+0.01 0.36 +0.04
[ET + PRRT] VPA + DAC [*7Lu]Lu-DOTA-TATE 0.34£0.08 0.59 +0.08

100 1.4 PET imaging and quantitative image analysis

101  Small animal positron emission tomography (PET) was performed using the nanoPET/CT
102  scanner (Mediso Medical Imaging Systems, Budapest, Hungary). Images were reconstructed
103  using the Tera-Tomo™ three-dimensional (3D) algorithm using a voxel size of 0.4 mm and
104  applying corrections for scatter, attenuation, and decay. Images were post-processed and

105 analyzed using ROVER (ABX, Radeberg, Germany). Three-dimensional volumes of interest
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(VOIs) were created (40—-60 min frames) applying fixed thresholds for delineation of tumor

(30%), muscle (0%), kidneys (25%), and liver (35%).

1.5 SPECT imaging and quantitative image analysis

Small animal single-photon emission computed tomography nanoSPECT/CT was performed
using the nanoSPECT/CT scanner (Mediso Medical Imaging Systems) equipped with the
APT62 aperture consisting of four M3 multi-pinhole collimators providing a 30x30 mm axial
field of view (FOV). Photon emission was recorded using a frame time of 120 s (total scan time
of 90 min) and binned within the 20% energy windows of the 56, 113, and 208 keV photopeaks.
Images were reconstructed using the Tera-Tomo™ three-dimensional (3D) algorithm at high
dynamic range using a voxel size of 0.4 mm and applying corrections for scatter and
attenuation. Images were post-processed and analyzed using ROVER (ABX). Three-
dimensional VOIs were created by applying a fixed threshold for delineation of tumor (20%),

kidneys (15%), and liver (25%).

1.6 Sstr2 promoter methylation analysis

DNA from cell cultures and allografts was extracted using the DNeasy Blood and Tissue Kit
(Qiagen, Venlo, The Netherlands) and treated with bisulfite using the EpiTect Fast DNA
Bisulfite Kit (Qiagen, Hilden, Germany). Bisulfite-converted DNA was amplified using a
primer pair covering 20 CpGs of the Sstr2 promoter. Amplicon size (195bp) was confirmed
on an agarose gel and the PCR product was sent for Sanger sequencing (Microsynth, Balbach,
Switzerland). Electropherograms were compared to PCR products amplified from bisulfite-
converted mouse Universal Methylated DNA Standard (Zymoresearch, Irvine CA, USA) and
an unmethylated 900bp-DNA fragment. The latter was generated by amplification of genomic
mouse DNA using primers annealing around the CpG island of Sstr2. Nucleotide sequences

of primers are provided in (Table S 2).
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Table S 2: Primer pairs used for Sstr2 promoter methylation analysis

Target Nucleotide sequence

Amplification of bisulfite-converted DNA 5’-AtTtTGITIAICGGGTHAAtAGGALt-3°
5’-CCTaTAaATCATTaACGCCCAaCC-3’

Generation of an unmethylated DNA fragment 5’-GGTTGGGCTGGGGCTGGGTC-3’

5’- CCTCGAGCACTCGCTTCCCTGTG-3’

1.7 Pre-selection of KEGG pathways for gene set enrichment analysis

For investigations on transcriptional responses associated with ET and PRRT, 39 pathways
were pre-selected from the KEGG database for gene set enrichment analysis. The latter included
the following two categories: (1) pathways involved in cancer (‘pathways in cancer’
[mmu05200 and pathways therein]; ‘transcriptional misregulation in cancer’ [mmu05202]) and
(2) pathways involved in the sensitivity to ionizing radiation (central carbon metabolism in
cancer [mmu5230 and pathways therein]; DNA damage repair [mmu03030, mmu03410,
mmu03420, mmu03430, mmu03440, mmu03450, mmu03460]; reactive oxygen species (ROS)

defense [mmu00480]).

A specific subset of these enrichment pathways was extracted representing the additional effects
of ET on the regular response to PRRT. These gene sets met two conditions: (i) enrichment in
[ET + PRRT] vs. [PRRT], and at the same time (ii) overlapping with enrichment in [PRRT] vs.
[Control] or with enrichment in [ET + PRRT] vs. [Control]. Differentially expressed leading-

edge genes from the extracted enrichment pathways were reported.

1.8 Real-time RT-PCR

cDNA was prepared from mouse RNA using gScript cDNA Synthesis Kit (Quantabio, Beverly
MA, USA) following the manufacturer’s recommendations. cDNA was diluted 1:2 and
amplified with the PerfeCTa SYBR Green Super Mix Low Rox (Quantabio, Beverly MA, USA)
on a CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules CA, USA) using

primer pairs specific for Sstr2, Chga, Actb, and Rpl19 (Table S 3). Amplicons were generated



151  in 40 cycles (95°C 5 sec, 60°C 10 sec) with 5 minutes at 95°C for initial denaturation

152  characterized by melting curve analysis and on an agarose gel.

153  Table S 3: Primer pairs used for real-time RT-PCR

and

Target gene Nucleotide sequence

Sstr2 5’-CGCATGGTGTCCATCGTAGT-3’
5’-GGATTGTGAATTGTCTGCCTTGA-3’

Chga 5’-CCAAGGTGATGAAGTGCGTC-3’
5’-GGTGTCGCAGGATAGAGAGGA-3’

Actb 5’-GGCTGTATTCCCCTCCATCG-3’
5’-CCAGTTGGTAACAATGCCATGT-3’

Rpl19 5’-ATATGGGCATAGGGAAGAGG-3’

5’-CTGTCTGCCTTCAGCTTGT-3’

154
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2 Additional Results

2.1 [%®Ga]Ga-DOTA-TATE and [%*Cu]Cu-DOTA-TATE binding in response to epigenetic

drugs in vitro

In MPC cells, the radioligand assay showed impairment of [®Ga]Ga-DOTA-TATE uptake at
37° C due to cytotoxic effects of VPA and DAC at concentrations of 1073 mol/L and
5x10~" mol/L, respectively. Hence the following experiments were performed with lower

concentrations of the epigenetic drugs (Figure S 1A).

Binding assays with cell homogenates showed that ET, a combination of 10~ mol/L VPA and
107" mol/L DAC, significantly increased the specific binding capacity for [**Cu]Cu-DOTA-

TATE in both MPC and MTT cells (Figure S 1B).

A [$Ga]Ga-DOTA-TATE B [54Cu]Cu-DOTA-TATE saturation binding on MPC and MTT cells

uptake of MPC cells o fotal O non-specific @ specific
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[VPA] _ -4
(moliL) 110
[DAC] _
(moliL) - 107

Figure S 1: SSTR2 radiotracer assays and effects of epigenetic drugs; (A) Decreased [%8Ga]Ga-DOTA-TATE uptake in
MPC cells at 37° C after treatment with VPA and DAC at concentrations of 1072 mol/L and 5x10~7 mol/L, respectively;
(B) Saturation binding of [**Cu]Cu-DOTA-TATE in homogenates of MPC and MTT cells treated with VPA and DAC at
concentrations of 107 mol/L and 10~7 mol/L, respectively; (dotted lines) Bmax values of SSTR2 binding sites; significance of
differences (t-test): *P < 0.05; £ P <0.01
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2.2 [**Cu]Cu-DOTA-TATE uptake of allograft tumors in response to epigenetic drugs

PET images of MPC and MTT allograft mice provide an overview over ET effects on the
distribution of [**Cu]Cu-DOTA-TATE in individual animals (Figure S 2). Quantitative image
analysis showed the reduction of [**Cu]Cu-DOTA-TATE uptake in MPC tumors and the
stimulation of [**Cu]Cu-DOTA-TATE in MTT tumors in response to ET. Extracted
standardized uptake values (SUVmean, SUVmax) showed similar trends to reference tissue
ratios (tumor/muscle). (Table S 4). Uptake values in tumors measured ex vivo (SUV and

% initial dose/qg tissue) confirmed these observations (Figure S 3).

Uptake of [*Cu]Cu-DOTA-TATE in tumors was correlated with other parameters such as
initial tumor, ET-induced reduction in tumor growth, and ET-induced changes in the
biodistribution of the radiotracer. Tumor growth was reduced upon ET in both MPC and MTT
allograft mice (Figure S 4A). Since correlation analyses did not show any relationship
between tumor volume and the SUV (Figure S 4B), animals with tumor volumes of

0.05—1.4 cm? for MPC and 0.04—0.82 cm?® for MTT were included in quantitative image
analyses focusing on [**Cu]Cu-DOTA-TATE uptake. A positive linear relationship between
growth-reducing effects of ET and reduced SUVs in MPC tumors indicate that cytostatic
effects of the epigenetic drugs contributed to the reduction of [3*Cu]Cu-DOTA-TATE uptake

(Figure S 4C).

Using the treatment protocol, epigenetic drugs showed no statistically relevant effects on
[¢*Cu]Cu-DOTA-TATE retention in blood as determined from areas under time-activity
curves (AUC-60 min) in the heart, nor did individual differences in activity retention in blood

correlate with SUV changes in tumors (Figure S 5A-B).

Activity retention in the liver was significantly higher in DAC-treated animals; however, this

effect showed no relationship with SUV changes in tumors (Figure S 5C-D). Activity in the

10
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liver may also have resulted from [®*Cu]Cu?* trans-chelation reactions and small amounts of

free [®*Cu]Cu?* ions (< 3%) remaining in the radiotracer preparation.

Activity in the renal cortex showed no statistically relevant differences between treatment
groups nor did individual differences correlate with SUV changes in tumors (Figure S 5E-F).
Some animals showed higher activity in the renal pelvis, resulting from activity in primary

urine that has not yet been drained completely.
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Figure S 2: PET images of [%*Cu]Cu-DOTA-TATE distribution in MPC and MTT allograft mice in response to
epigenetic treatment; Maximum intensity projections presented with different SUV color scaling: MPC (0—10); MTT (0-3);
ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as single and combination doses, respectively, on days —3 and 0;
PET imaging with [®*Cu]Cu-DOTA-TATE (10 MBg/animal, equivalent to 0.25 nmol) on day 1 after final ET; MPC allograft
mice [Control #1 and #5] and [ET VPA+DAC #2] showed activity hotspots within the intestinal loops resulting from accidental
intake of contaminated bedding materials assimilated prior to PET scanning (between radiotracer injection and induction of
anesthesia); (dotted regions) radiotracer uptake in tumors 40—60 min after injection; see Table S 4 for uptake values in tumors
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209  Table S 4: Uptake of [¢*Cu]Cu-DOTA-TATE in tumors of MPC and MTT allograft mice treated with epigenetic drugs;
210 ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as single and combination doses, on days —3 and 0; PET imaging
211 with [®*Cu]Cu-DOTA-TATE (10 MBg/animal, equivalent to 0.25 nmol) on day 1 after final ET; (SUV) standardized uptake
212  values 40-60 min after injection of the radiotracer

Cohort label Animals SUVmean SUVmean ratio SUVmax SUVmax ratio
tumor tumor / muscle tumor tumor / muscle
MPC allograft mice
[Control] 1 5.71 61.5 125 62.4
2 6.16 56.4 13.8 515
3 8.04 85.8 19.2 83.4
4 9.46 112 18.8 63.8
5 10.3 103 22.7 106
mean + SEM 7.93+0.89 83.8+11.0 174 +1.89 73.3+9.54
[ET veal 1 4.22 60.0 8.80 33.0
2 5.61 67.2 10.8 60.8
3 8.55 91.2 19.7 78.3
4 9.24 100 18.5 65.2
mean + SEM 6.91+1.19 79.6 £9.53 145+273 59.3+9.54
[ET bac] 1 5.09 68.2 115 57.8
2 6.74 96.7 13.9 65.6
3 7.52 93.2 15.3 58.7
4 7.99 80.6 15.2 69.1
5 9.57 104 20.6 67.9
mean + SEM 7.38+0.74 88.6 £6.39 15.3+1.49 63.8 +2.35
[ET vea+pAc] 1 5.89 73.7 13.2 47.4
2 6.11 82.3 13.2 66.9
3 6.63 70.9 134 57.6
4 7.04 79.7 15.2 63.3
5 7.48 90.0 16.0 72.2
mean + SEM 6.63 +0.29 79.3 +£3.36 14.2 +0.58 61.5+4.24
MTT allograft mice
[Control] 1 0.12 1.32 0.25 1.09
2 0.43 4,91 1.02 4.05
3 0.54 8.63 1.33 4,52
4 0.55 6.83 1.39 6.57
5 0.60 7.64 1.53 9.62
6 0.68 9.13 1.67 6.34
7 0.68 8.43 1.63 8.38
mean + SEM 0.51 £0.07 6.70 £1.04 1.26 +0.19 5.80 +£1.08
[ET veal 1 0.34 3.20 0.69 3.3
2 0.70 10.52 1.41 4,72
3 0.71 7.63 1.61 8.25
4 0.73 114 1.60 10.8
5 0.74 7.80 1.62 5.31
6R 0.86 9.73 1.73 5.70
7R 1.06 9.95 2.23 6.06
mean + SEM 0.73+0.08 8.60 +1.04 1.55+0.17 6.30 + 0.94
[ET bac] 1 0.38 491 0.83 4,01
2 0.65 7.82 1.52 6.62
3 0.77 8.27 1.66 5.31
4R 0.80 12.6 2.00 11.0
5R 0.93 115 1.88 7.68
6R 1.24 17.9 2.71 14.7
7R 1.37 21.3 2.72 18.9
mean+SEM  0.88+0.13* 121+22* 1.90 +0.25 9.74 £ 2.05
[ET vea+pac] 1 0.74 8.72 1.68 7.80
2R 0.97 10.8 2.31 8.84
3R 0.99 9.47 2.44 10.7
4R 1.02 10.8 2.34 8.98
5R 1.19 13.1 2.34 11.8
6R 1.24 10.7 2.81 7.75
7R 1.27 16.6 2.88 15.0
mean + SEM 1.06 +0.07 # 115+1 240+0.15 % 10.1 +£0.99

213 R SUV responders to epigenetic treatment; responder thresholds were calculated from the SUVmean values of the [Control]
214 cohorts + two times typical error (2xTE)
215 = significance of differences compared to [Control]: *P < 0.05; 1 P < 0.01; # P < 0.001

13
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217 Figure S 3: Distribution of [**Cu]Cu-DOTA-TATE in MPC and MTT allograft mice treated with epigenetic drugs as
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219 distribution reported as % initial dose/g tissue; both evaluation methods showed similar effects of ET with increased tumor
220  uptake in MTT allograft mice only; significance of differences: # P < 0.001

221

14



222
223

224
225
226
227
228
229

A . _
£
et
L ©
<7
©
sy
T o
o E
=]
ss
[VPA] {
(mg/kg)
[DAC] {
(mg/kg)

MPC

L\O—\N(AJA

Lo o N ow s

<]

£

=

a g
©

Q

é E

o}

w

o (=1

"o I B Yol

N 3%

I - - C
<
£
2
c
[
@
£
=
2
w

MPC MTT
15 1.5
5]
oy, =
1047 o8 a 10 DE'.. -
oy a] g
" oo 8
5 P n‘, o 05 L m o
Bpo
o
0 0.0
00 05 10 1.5 0.0 0.5 1.0
Tumor volume (cm?3)
MPC MTT
s 0.63 15 ‘m
r, = 0. H
P < 001 P " p=
10 : 1.0 E
i u] vlg
| g IR mp
5 05{ . =a
. # g
‘o
0 0.0 -
-1 0 1 2 3 10 1 2 3

log, fold change in tumor volume
(ET start + 4 d)

I == Ry ]

B @ OO

[VPA] [DAC]
(mglkg) (mgrkg)

250 -

- 1

250 1
[VPA] [DAC]

(mg/kg) (mglkg)

250 -
- 1
250 1

Figure S 4: Correlation analyses between uptake of [**Cu]Cu-DOTA-TATE in tumors and tumor growth in MPC and

MTT allograft mice treated with epigenetic drugs; (A) Changes in tumor volume in response to ET showing reduced growth

in both MPC and MTT allograft mice; (logz fold changes) number of volume doublings compared to ET start; (B) Correlation

analyses showing independence of radiotracer uptake in tumors (SUVmean) from tumor volumes (cm®) across all treatment

groups; (C) Correlation analyses showing a positive linear relationship between the growth-reducing effects of ET and reduced

radiotracer uptake (SUVmean) in MPC tumors
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231 Figure S 5: Correlation analyses between uptake of [**Cu]Cu-DOTA-TATE in tumors and retention in blood, liver, and
232  kidneysin MPC and MTT allograft mice treated with epigenetic drugs; (A—B) Activity retention in blood determined from
areas under time-activity curves 0-60 min) iN the heart and correlation with tumor uptake; (C— ctivity retention in the
233 der t tivity AUC the heart and lat th t ptake; (C-D) Activity retent th
iver and correlation with tumor uptake; (E— ctivity retention in the renal cortex and correlation with tumor uptake;
234 | d lat th t ptake; (E-F) Activity retent th | cort d lat th t ptak
235  significance of differences: # P < 0.001
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2.3 [Y"Lu]Lu-DOTA-TATE uptake and growth of allograft tumors in response to epigenetic

drugs

SPECT images of MPC and MTT allograft mice provide an overview over ET effects on the
distribution of [Y/’Lu]Lu-DOTA-TATE in individual animals (Figure S 6). Excretion of the
radiotracer via the renal pathway was associated with some retention of activity in the renal
cortex. Small amounts of free [*"/Lu]Lu®* ions (< 5%) that remained in the radiotracer
preparation contributed to retention of activity in liver and bones, in particular in joints.
Quantitative image analysis showed no effect of ET on [Y/'Lu]Lu-DOTA-TATE uptake in
MPC tumors but a higher uptake in MTT tumors. Analyses of VOI-averaged activity
concentrations (Av mean) and activity hotspots (Av max) in tumors showed similar trends

(Table S 5).
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Figure S 6: SPECT images of [*’Lu]Lu-DOTA-TATE distribution in MPC and MTT allograft mice and effects of
epigenetic treatment; Maximum intensity projections presented at different Av color scaling: MPC (0—6 MBg/mL); MTT
(0-1.5 MBg/mL); ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as combination doses on days —4 and —1; PRRT:
treatment with [Y7’Lu]Lu-DOTA-TATE (70 MBg/animal, equivalent to 1.2 nmol) as a single dose on day O; quantitative
SPECT imaging on day 1; (Av24n) activity concentration of radionuclide drug 24 hours after injection; (dotted regions); MTT
allograft mouse [PRRT #6] showed activity hotspots within the stomach and the intestinal loops resulting from accidental
intake of contaminated bedding materials assimilated prior to image recording (between injection of radiopharmaceutical and

initiation of anesthesia); see Table S 5 for tumor uptake values and follow-up of tumor growth in individual animals
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Table S 5: Uptake of [Y7Lu]Lu-DOTA-TATE in tumors and follow-up of tumor growth in MPC and MTT allograft
mice treated with epigenetic drugs; ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as combination doses on
days —4 and —1; PRRT: treatment with [*"’Lu]Lu-DOTA-TATE (70 MBg/animal, equivalent to 1.2 nmol) as a single dose on
day 0; (Av24n) activity concentration of the radionuclide drug 24 hours after injection; mRNA of tumors was obtained from
the sub-cohorts A—H

Cohort label Animals Animals Av mean 24n Avmax 24h Follow-up
entire cohort sub-cohort tumor tumor tumor growth
(MRNA samples)! (MBg/mL) (MBg/mL) (days after ET start)
[Control] 1 Al - - 4
2 A2 - - 4
3 A3 - - 4
[ET] 1 B1 - - 4
2 B2 - - 4
3 B3 - - 4
[PRRT] 1 - 3.10 7.13 10
2 - 331 8.31 10
3 C3 3.68 8.36 10
4 C4 4.14 10.1 10
5 C5 4.33 10.1 10
6 - 5.56 13.2 10
mean + SEM 4.02 +£0.36 9.53 £0.87
mean + SEM 4.05+0.19 9.52 £0.58
[ET + PRRT] 1 - 3.32 8.11 10
2 - 3.76 10.0 10
3 D3 413 10.5 10
4 D4 4.38 11.6 10
5 D5 4.93 13.4 10
6R - 7.22 18.0 11F
mean + SEM 4.62 +0.57 119+141
mean + SEM 4.48 £0.24 11.8+0.85
[Control] 1 E2 - - 4
2 E2 - - 4
3 E3 - - 4
[ET] 1 F1 - - 4
2 F2 - - 4
3 F3 - - 4
[PRRT] 1 - 0.33 0.92 7A
2 G2 0.36 1.03 10
3 G3 0.39 1.17 10
4 G4 0.56 1.36 10
5 - 0.59 1.53 10
6 - 0.60 1.62 7A
7 - 0.70 1.66 10
mean + SEM 0.50 = 0.05 1.33+£0.19
- mean £ SEM 0.44 +0.06 1.19+0.10
[ET + PRRT] 1 - 0.39 1.04 10
2 H2 0.47 1.32 10
3 H3 0.56 1.45 10
4R H4 0.88 2.22 10
5R - 0.93 271 18F
6R - 1.04 3.17 18F
7R - 1.23 3.34 18F
mean + SEM 0.79+0.12 * 2.18+£0.35
mean + SEM 0.64 +£0.12 1.66 +0.28

! Sample codes A-H can be found in the results section.

R Av responders to epigenetic treatment; responder thresholds were calculated from the mean Av values of the [PRRT] cohorts
+ two times typical error (2xTE); significance of differences compared to [PRRT]: *P < 0.05

A Aborted follow-up due to incidental death during imaging procedure

E Extended follow-up in selected animals presenting with highest initial activity concentrations in tumor
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267 2.4 Status of Sstr2/SSTR2 in allograft tumors in response to epigenetic drugs and [*”/Lu]Lu-DOTA-TATE

[os: tttGGtAGGEGGAGL ARGt TGt EGTCALGTLAtCGGECGGCCECTGGGGAAGTGTGLEtAGGEGLTGL LAt tEGttEGOGLtAt TGt TAGEGCEGLAGL tAtEGCLCEGLTEGEGAGGLLALECGEGLtTGGAGLALLAGTEECECG]
TTTGGTAGGTGGAGT TAAGTTGTTGTGATGTTATGGGTGGGGGTGTGGGG AA GT GT GT TTAGGGGI TGTTAT TTGT TT GGGTTAT TGT TAGTGGTGTAGT TAT TGGTGTGT TTGTGAGGT TAT TGGT GT TTGGAGTAT TAGTTTGTGG

100%: ttCGGtAGGCGGAGttAAGtTGtCGTGACGTtACGGGCGGGGGCGTGGGGAAGTGTGtttAGGGGtTGttAttCGttCGGGttAtTGtTAGCGGCGtAGttAtCGGCGCGtTCGCGAGGttAtCGGCGttTGGAGtAttAGTtCGCGG

ITTCGGTAGGCGGAGT TAAGTTGTICGIGACGT TACGGGCGGGGGCGTGGGGAAGT GT GTTTAGGGGTTGITATTCGT TCGGGTTATTGT TAGCGGCGTAGTTATCGGCGCGTTCGCGAGGTTATC GGCGTTTGGAGTATTAGT TCGC GG

MM AN A A A AW A A A A A AA AN A A A AR AN A MANAANAAA AR

1. MPC [Control]:unmethylated

TTTGGTAGGTGGAGTTAAGTTGTTGTGATGT TATGGGTGGGGGTGTGGGGAAGTGTGTTTA GGGGI TGT TATTTGT TTGGGTTAT TGT TAGTGGIGTAGT TATTGGTGIGT TTGTGAGGT TATTGGIGT TTGGAGTATTAGT T TGT GG

/ 7 il A \ 0 \ ““‘ A N\ A A AMANA A AN [ZA A 6. ilki ANAAN f Al AARAAAN - AN

i A AN A AR Ay s VR AR A g AR s Ao A AR A WA AR AV M
2. MPC [ET]: unmethylated

TTTIGGTAGGTGGAGTTAAGTTGTTGTGATGTTATGGGTGGGGGTGTGGGGAAGTGTGTTTAGGGGIT GITATTTGI TTGGGITAT TGT TAGT GGT GIAGTTATTGGI GTGT TTGT GAGGI TAT TGGT GI TTGGAGTATTAGT TTGT GG

WA AR A AW A AR A Mo A A A A A A A A A A A

3. MTT [Control]:unmethylated
TTTGGTAGGTGGAGTTAAGTTIGT IGTGATGTTATGGGTGGGGGTGTGGGGAAGTGIGT TTAGGGGT TGTTATTTGT TTGGGTTATTGTTAGTGGTGTAGTTATTGGTGTGTTTGTGAGGTTATTGGTGTTTGGAGTATTAGTTTGTGG

4. MTT [ET]: N unmethylated
TTTGGTAGGTGGAGT TAAGT TGTTGTGATGTTATGGGTGGGGGTGTGGGGAAGTGTGTTTA GGGGI TG TATTTGI TTGGGITATT GT TAGT GGT GTAGTTATTGGTGI GTTTGTGAGGTTATTGGT GT TTGGAGTATTAGTTTGTGG!

A AN AN A A R A 1A o A AN A A VA P

5. MPC monolayer:unmethylated
TTTGGTAGGTGGAGTTAAGTTGTTGTGATGTTATGGGTGGGGGTGTGGGGAAGTGTGTTTAGGGGTTGT TATTT GTTTGGGT TATT GT TAGT GGTGTAGTTATTGGTGTGT TTGTGAGGTTATTGGTGTTTGGAGTATTAGTTTGTGG

6. MTT monolayer unmethylated
TTTGGTAGGTGGAGTTAAGTTGTTGTGATGTTATGGGTGGGGGTGTGGGGAAGTGTGTTTAGGGGI TGI TATTTGT TT GGGI TATT GT TAGT GGT GTAGT TATTGGTGTGTTTGT GAGGT TATTGGTGTTTGGAGTATTAGTTTGTGG

268

269 Figure S 7: Sstr2 promoter methylation; ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as combination doses on days 0 and 3; Genomic DNA from allograft tumors (1-4) or monolayer
270 cultures (5-6) was extracted and treated with bisulfite. PCR products spanning 20 CpGs (highlighted in yellow) of the Sstr2 promoter (amplified region 11:113510045-113510239,GRCm39) were

271 generated and Sanger sequenced (forward and reverse) together with methylated (100%) and unmethylated (0%) control DNA. Representative examples of three different allografts per group are
272  depicted.
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Gene expression relative quantity
(calc. from 2-24Ct yajues)

Figure S 8: Comparison of RT-PCR and RNAseq in gene expression analyses of selected genes in MPC and MTT tumors
responding to treatments; ET: treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as combination doses on days —4 and
—1; PRRT: treatment with [*"’Lu]Lu-DOTA-TATE (70 MBg/animal, equivalent to 1.2 nmol) as a single dose on day 0
(A) Relative gene expression ratios calculated from 2724¢t values measured using RT-gPCR; (B) Relative gene expression

ratios calculated from fpkm values (fragments per kilobase million) measured using RNAseq; all data were normalized to the
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Figure S 9: Immunoblots analyzed for assessing SSTR2 and CHGA levels in tumors responding to treatments; ET:
treatment with VPA (250 mg/kg) and DAC (1 mg/kg) as combination doses on days—4 and -1; PRRT:
treatment with [*"7Lu]Lu-DOTA-TATE (70 MBg/animal, equivalent to 1.2 nmol) as a single dose on day 0; (A) Total protein
extracted from MPC tumors (14 pg/lane) and MTT tumors (24pg/lane) was separated using SDS polyacrylamide gel
electrophoreses and blotted to PVDF membranes; immunodetection of SSTR2 and CHGA was done within the same
experimental run on different membranes using identical concentrations of antibodies and developer substrate; (B) On each
membrane, band intensities of the target proteins were normalized to ACTB as loading control; SSTR2/CHGA ratios were
calculated from normalized target intensities; significance of differences: * P < 0.05; { P <0.01, # P < 0.001
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289 2.5 Transcriptional responses of allograft tumors to epigenetic drugs and [*/Lu]Lu-DOTA-

290 TATE — all genes and gene sets included
[ETIT! [PRRT] 7 [ET+PRRT] 7| [ET+PRRT] 1/
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291

292 Figure S 10: Numbers of differentially expressed genes in MPC and MTT tumors in response to treatments; ET:
293  treatment with VPA (250 mg/kg) and DAC (1mg/kg) as combination doses on days—4 and -1; PRRT:
294 treatment with [*"7Lu]Lu-DOTA-TATE (70 MBg/animal, equivalent to 1.2 nmol) as a single dose on day 0; all protein-coding
295  genes; Pagj< 0.05

296
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298 Figure S 11: Principle component analysis of gene expression in MPC and MTT tumors responding to treatments; all genes included
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Figure S 12. Gene set enrichment analysis in MPC and MTT tumors — top-10 percent regulated gene sets in response to treatments; analysis based on KEGG pathway database; red bars: up-

regulated pathways; blue bars: down-regulated pathways; pathways related to specific diseases have been excluded from the analysis; fdr < 0.25
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2.6 Transcriptional responses of allograft tumors to epigenetic drugs and [*"’Lu]Lu-DOTA-

TATE — pre-selected gene sets involved in cancer and radiation resistance

Since the top-regulated gene sets in MPC and MTT tumors showed a number of pathways
attributed to treatment-associated tissue damage and infiltration of leukocytes, a more specific
pathway analysis was performed focusing on 39 pre-selected gene sets known to be involved

in cancer and radiation resistance (see also Additional Methods 1.7).
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Figure S 13: Gen set enrichment in MPC tumors — treatment responses in pre-selected gene sets involved in cancer and

radiation resistance; analysis based on KEGG pathway database; colored bars: fdr < 0.25; grey bars: fdr > 0.25
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312  Figure S 14: Gen set enrichment in MTT tumors — treatment responses in pre-selected gene sets involved in cancer and
313 radiation resistance; analysis based on KEGG pathway database; colored bars: fdr < 0.25; grey bars: fdr > 0.25
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315 Figure S 15: Protein classes encoded by leading-edge genes in MPC tumors responding specifically to [1”’Lu]Lu-DOTA-
316 TATE; extracted from enrichment gene sets involved in cancer and radiation resistance; PANTHER gene list analyses based
317  on gene ontology classification; Pagj < 0.05
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319 Figure S 16: Protein classes encoded by leading-edge genes in MTT tumors responding specifically to [*’Lu]Lu-DOTA-
320 TATE; extracted from enrichment gene sets involved in cancer and radiation resistance; PANTHER gene list analyses based

321  ongene ontology classification; Pagj < 0.05
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Figure S 17: Upregulated leading-edge genes in MPC tumors responding specifically to
[*7Lu]Lu-DOTA-TATE; extracted from enrichment gene sets involved in cancer and
radiation resistance; row clustering: average linkage of distances determined from Spearman
rank correlation; Pagj < 0.05
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328 Figure S 18: Upregulated leading-edge genes in MTT tumors responding specifically to
329  [Y7Lu]Lu-DOTA-TATE; extracted from enrichment gene sets involved in cancer and
330 radiation resistance; row clustering: average linkage of distances determined from Spearman
331  rank correlation; Pagj < 0.05
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333 Figure S 19: Upregulated leading-edge genes shared between MPC and MTT tumors responding
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