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Abstract 

Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and 
proper glycemic management of blood glucose are essential to prevent further progression and 
complications. Biosensor-based colorimetric detection has progressed and shown potential in portable 
and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient 
operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use 
natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. 
However, many natural enzymes have inherent defects, limiting their extensive application. Recently, 
nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, 
stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable 
catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and 
mechanisms, recent machine learning based analytic methods, quantification systems, applications and 
future directions for monitoring and managing diabetes. 
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1. Introduction 
Diabetes mellitus is a significant cause of death 

and a chronic disorder affecting more than 422 million 
people worldwide [1]. Chronically elevated blood 
glucose can cause retinopathy, cardiovascular 
diseases, neuropathy, blindness, and a high risk of 
congenital disability [2], causing 1.6 million deaths 
every year according to the World Health 
Organization (WHO) [3]. Therefore, early diagnosis 

and proper glycemic management are crucial to 
prevent further progression and complications in 
diabetic patients. Millions of diabetic patients rely on 
self-monitoring of blood glucose, but the current 
approaches have vast opportunities for improvement. 
In general, to manage blood glucose in diabetic 
patients, blood should be collected using a 
finger-prick method several times every day [4, 5]. 
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While direct monitoring of blood glucose is the most 
accurate measurement [6-8], it can create mental 
trauma for patients as well as infections and fingertip 
inflammation due to the requirement of several 
measurements a day, which is a major issue in terms 
of patient compliance with glycemic methods. 
Therefore, the demand for technology development to 
monitor blood glucose using noninvasive strategies 
has increased. Nanomaterial-based invasive and 
noninvasive glucose monitoring methods developed 
in the last 15 years are summarized in Figure 1. 
Advances in nanotechnology have led to the 
development of ultra-sensitive and high-performance 
platforms, including colorimetric, fluorometric, 
chemiluminescent, surface-enhanced Raman scat-
tering, and electrochemical biosensors [9]. In addition, 
nanomaterial-based glucose monitoring biosensors 
have expanded from using blood to utilizing bodily 
fluids including sweat, tears, urine, saliva, and 
interstitial fluid (ISF). 

Conventionally, the basic principle of detecting 
glucose is based on the glucose oxidase (GO) enzyme, 
which recognizes glucose as a substrate and initiates a 
biochemical enzymatic reaction. Therefore, since the 
reactivity of this enzyme has a significant influence on 
the sensitivity and reliability of the biosensor, much 
research is being conducted to improve the 
performance of the GO enzyme using protein 
engineering technology. Since the term ‘Nanozyme’ 
was first used in 2004, research and development 
using various functional nanomaterials that mimic the 
function of the GO enzyme have been conducted [10]. 
The definition of a nanozyme has been solidified into 
an enzyme-mimicking nanomaterial that 
demonstrates intrinsic peroxidase-like activity [11, 
12]. Functional nanomaterials as artificial enzymes 
(nanozymes) show several remarkable advantages, 
including simple and excellent tunable catalytic 
activity, controllable synthesis protocols, ultrahigh 
environmental stability, ease of modification, low 
cost, and large-scale production [13, 14]. These 
properties greatly facilitate automation of multiple 
processes and high-speed integration of separation 
and detection procedures, saving time and reducing 
preparation steps. Recently, a few types of inorganic 
nanoparticles such as nanocarbon materials (carbon 
nanotubes and graphene oxide) [15], polymer-coated 
nanoparticles [16, 17], and nanocomposites [17], have 
been spotlighted for their ability to catalyze chemical 
reaction as enzyme-mimics that can be utilized for 
bio-detection. These nanozymes have been applied as 
chemical sensors and biosensors for colorimetric 
detection of pH, temperature, ions, reductive small 
molecules, H2O2, glucose, viruses, bacteria, cancer 
cells, and pesticides [18]. In addition, invasive and 

noninvasive biosensors using these nanozymes are 
being developed to monitor glucose. Over the last 
decade, colorimetric-based biosensors with nano-
zymes have expanded due to several advantages 
including high efficiency, high versatility, low-cost, 
and high stability. 

Nanozyme-based biosensors mainly detect color 
in a qualitative manner [19, 20]. Therefore, for 
quantitative measurement of glucose concentration, 
many algorithms have been developed in different 
color spaces (RGB, CMYK, HSB/HSL, CIE XYZ, 
L*a*b*, and YUV models) to analyze color variations. 
In addition, since color values can be affected by the 
measurement area of the device or the surrounding 
environment, algorithms including supervised 
learning based convolutional neural networks (CNN), 
artificial neural network (ANN), and support vector 
machine (SVM), polynomial regression, statistical 
learning-based color reconstruction, and color 
checker-based digital image reconstruction are being 
developed to improve these errors [21]. 

This review highlights important advances in 
colorimetric-based glucose detection utilizing 
nanozymes, various mechanisms, colorimetric 
analysis methods, and their applications in 
biosensors. This review also discusses sensor 
performance in whole blood, saliva, urine, tears, and 
interstitial fluid. Finally, we address future 
development requirements of biosensing nanozymes 
for wearable glucose sensors. 

2. Invasive and noninvasive/minimally 
invasive glucose detection 

Various enzyme-based glucose sensors have 
been developed for bodily fluids including whole 
blood, urine, saliva, tear, and interstitial fluid (ISF) 
[22, 23]. The finger-pricking whole blood test is the 
most widely used method for fast glucose monitoring 
because blood possesses a high biomolecule 
concentration [6]. However, since this method 
requires pricking a finger to extract a small amount of 
blood for analysis up to 8 times a day, procedural 
discomfort decreases patient compliance. In addition, 
there is a high risk of complications such as infection 
and fibrosis. Therefore, implantable biosensors and 
microdialysis-type devices that can continuously 
monitor blood glucose have been developed [6]. 
However, implantable glucose sensors pose several 
challenges, including short lifespan, susceptibility to 
infection, and poor biocompatibility. Therefore, 
alternative methods have been explored for 
noninvasive glucose measurements using body fluids 
[24]. 
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Figure 1. A brief timeline of glucose monitoring methods and its applications. Adapted with permission from [116-126]. 

 
Several studies have shown that glucose 

concentrations in body fluids such as ISF, tears, saliva, 
and sweat correlate with that of whole blood [13]. 
Therefore, many studies have focused on these body 
fluids to develop noninvasive biosensors for glucose 
monitoring. To this end, advances in nanotechnology 
have made it an attractive and alternative sample 
medium for noninvasive continuous blood 
monitoring. Table 1 compares the key aspects of the 

most studied nanomaterials for various physiological 
measures, including biomarkers, representative 
concentrations, and their advantages and 
disadvantages. However, various considerations are 
required to protect the quality and accuracy of 
glucose concentration measurements in body fluids. 
One of the main considerations is that glucose 
concentration in these body fluids is lower than in 
whole blood (2–40 × 10−3 M in blood vs. 0.008–1.77 × 
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10−3 M in saliva, 0.01–1.11 × 10−3 M in sweat, 0.05–5 × 
10−3 M in tears, and 1.99–22.2 × 10−3 M in ISF) [13, 25]. 
Therefore, an optimized design and analysis method 
for monitoring systems specialized for each body 
fluid method should be developed. 

The sampling method and physicochemical 
properties of each body fluid are also important 
considerations. For example, ISF fills the spaces 
between most of the body's cells and provides a 
significant portion of the body’s liquid environment 
[13]. ISF has potential for medical diagnosis because it 
is very similar to whole blood plasma in terms of 
composition. Subcutaneous injection of a needle is 
required to monitor ISF, which can be inconvenient 
for prospective users [13]. Saliva is a complex mixture 
of 99.5% water and 0.5% electrolytes (glycoproteins, 
lipase, mucin, amylase, glucose, and antimicrobial 
enzymes) [26]. Analytes can be easily collected by 
spitting, but saliva contains many impurities, making 
it difficult to isolate the intrinsic glucose in the fluid. 
In tears, they can be excreted from the body as an 
extracellular fluid containing mucin, lipids, glucose, 
water, lysozyme, lactoferrin, lipocalin, lacritin, urea, 
sodium, immunoglobulins, and potassium [25, 26]. 
Tear glucose concentration has been shown to be 
highly correlated with blood glucose, with relatively 
little interference by impurities. However, biosensors 
require high sensitivity, selectivity, and low limit of 
detection (LOD) to monitor tear glucose 
concentration. Lastly, sweat is composed of water, 
ammonia, urea, salts, and glucose. The glucose level 
in sweat shows a high correlation with that in whole 
blood [27]. Sweat is easily accessible, but it is 
complicated by impurities and other components and 

requires exercise for collection. 
All of these approaches using body fluids for 

blood glucose monitoring have unresolved hurdles as 
their respective fluid-based glucose measurements 
have not been strongly correlated with plasma 
glucose concentration or clinical evidence. However, 
painless and noninvasive methods using each body 
fluid-based glucose measurement are promising as 
they allow faster and more convenient monitoring of 
glucose concentrations in diabetes patients. Therefore, 
for the finding high correlation and clinical evidence, 
a system capable of requiring more accurate 
measurement is needed, and many clinical trials are 
required. 

3. Glucose monitoring techniques 
Developing a practical glucose biosensor with 

high reliability and sensitivity must be a top 
consideration for the biosensor industry. Various 
noninvasive glucose biosensors have been developed 
including optical, electrochemical, transdermal, 
colorimetric assay, luminescent detection, magnetic 
signal detection, and microwave approaches [28]. 
Table 2 shows the advantages and disadvantages of 
LOD, nanomaterials, and techniques for glucose 
detection with different methods and the current 
research status using body fluids. Optical methods of 
near-infrared reflectance spectroscopy (NIRS) [29, 30], 
surface plasmon resonance interferometry [31] 
photoacoustic spectroscopy [32], polarized optical 
rotation [33], Raman spectroscopy [34], fluorescence 
[35] and optical coherence tomography (OCT) [36] are 
illustrated in Figure 2, 3.  

 

Table 1. Interstitial fluid (ISF)-based glucose monitoring comparison of body fluids for including whole blood, saliva, tears, and sweat 

Body 
fluids 

Biomarker Typical 
concentration 
(mg/dL) 

Typical 
concentration 
(mM) 

Advantages Disadvantages Most studied  
Nano-materials 

Ref 

Blood Glucose 80 – 120 0.33 – 6.66  Cost-effective, 
real-time monitoring  

Invasive, highly  
uncomfortable for patients, infection 
risk  

ZnO, metal NPs, metal oxide, 
CNTs, NiSe2-NS transition 
metal dichalcogenide, MOFs  

[130-132] 

Urine Glucose 0 – 50 0 – 2.77 Noninvasive and painless, 
portable, rapid reproduction 

Low accuracy, low glucose detection 
level, requires frequent calibration, 
susceptible to interference by bodily 
fluid 

Metal NPs,  
CNTs, Pt, Ag@Au 
nanoprism-MOF  

[133, 
134] 

Saliva Glucose 1.5 – 4 0.08 – 0.22 Noninvasive and painless, 
safe for children and adults, 
easy sample collection, 
cost-effective 

Low detection level,  
requires high sensitivity,  
inaccurate reading 
 

Polymer, 
quantum dots,  
CNTs,  
Graphene, MOF-Encapsulated 
TiO2 Platform  

[135-137] 

Sweat Glucose 1 – 4 0.06 – 0.22 Non or minimally invasive,  
sufficient quantities and 
rapid reproduction 

Difficult sample collection, requires 
long calibration times, irritation and 
blistering of the skin, inaccurate 
readings, lag and inconsistent testing 

Polymer,QDs, CNTs, Ni-based 
MOF  

[138, 
139] 

Interstitial 
fluid (ISF) 

Glucose 80 – 120 4.44 – 6.66  Painless, portable, quick 
results, long term use 

Results and analysis  
influenced by multiple 
confounding factors,  
invasive, vulnerable to infection 

Polymer, 
 CNTs 

[140] 

Tear Glucose 2.2 – 12.5 0.11 – 0.55 Highly accessible,  
less susceptibility to dilution, 
numerous testing methods,  
cost-effective 

Lack of suitable power  
source for testing,  
requires low LOD, high sensitivity, 
high selectivity 

Polymer,  
metal oxide NPs, CNTs, cerium 
nanoparticle (CNPs) 

[19] 
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Table 2. Summary of the glucose detection methods, nanomaterials, limits of detection (LODs), advantages, and disadvantages 

 Technique Sample Nano- 
materials 

LOD Advantages Disadvantages Ref 

Optical Infrared 
spectroscopy 

Glucose 
solution 

CuInS2 
quantum dots 
(QDs) 
CuBDC 

4.1 μM, 1.2 
mM 

Low scattering, 
low-cost materials, 
high penetration 

Not portable, 
requires high hardware 
sensitivity, stability, and scanning 
pressure 

[29, 30, 
141] 

Raman 
spectroscopy 

Saliva, 
urine 

AuNPs onto 
Cu-tetra(4carboxyphenyl) 
porphyrin chloride 
(Fe(III)) 

3.9 μM Sharpens spectra, 
less sensitive to 
temperature changes 

Not portable, high cost, 
instability of laser wavelength, 
low SNR 

[34, 142] 

Fluorescence 
spectroscopy 

Glucose 
solution 

Boronic acid 
Functionalized\CNPs, 
Carbon-based nanozyme 
CuAA 

1.56 μM, 
10 μM 

Highly sensitive, 
less damage to the body 

Not portable, high cost, scattering 
phenomena 
can affect accuracy 

[35, 143] 

Surface plasmon 
resonance 
interferometry 

Glucose 
solution 

Gold in TiO2 
coated in PCF, 
Gold nanoparticles 

10 mg/dL, 
25 μM  

Rapid detection, 
real-time monitoring 

Not portable, high cost, limited to 
high molecular weight 
biomolecules glucose, requires 
complex setup 

[31, 144] 

Optical coherence 
tomography 

Blood 
sample 

Silica 
gold 
nanoshells 

5.78 mM 
0.015-0.045 
mg/dL 

High resolution, 
high penetration 

Sensitive to individual 
movement, affected by 
temperature 

[36, 145] 

Photoacoustic 
spectroscopy 

Skin, 
Blood, 
glucose 

AuNPs 0.035 – 0.098 
μg/dL 
 

High detection rate, 
high SNR 

Sensitive to changes 
in temperature and pressure, 
vulnerable to motion artifacts 

[32, 146] 

Optical Polarimetry Tear, 
skin, 
glucose 

 125.4, 151.1 
mg /dL 

High resolution, 
easy to be miniaturized 

Sensitive to temperature and 
motion changes, not portable, 
long lag time < 30 min 

[33] 

Transdermal Impedance 
spectroscopy 

Glucose 
solution, 
Skin 

Gold 
nanoparticles 

0.9 μM, 
0.02-0.05 
mg/dL 

Differentiates between 
extracellular and intracellular 
fluids 

Requires a long processing time [145, 147] 

Reverse 
iontophoresis 

Glucose 
solution 

Gold nanoparticles 
PBNPs 

0.01 mM, 
0.85 μM  

Biocompatibility, 
easy handling 

Skin irritation, 
inaccurate and long-term 
measurement 

[38, 148] 

Electrochemical Enzymatic detection 
of glucose 

Tear, 
saliva, 
sweat, 
glucose 
solution 

Gold 
nanoparticles SiO2, ZnO, 
Silver, WSNFs 

0.1 μM, 
3.7 μM 
500 nM 

Real-time monitoring, 
high detection range sensitivity, 
and low LOD 

Requires electrodes, 
toxicity, vulnerable to 
temperature and motion change 

[149-151] 

Amperometry Glucose 
solution 

Gold 
nanoparticles 
Pt 

0.024 
mM/L, 
4 μM 

Easily commercialized, 
high accuracy by multiple sensors 

Sensor error from drift, 
calibration error and delays 

[152, 153] 

Other Colorimetric 
assay 

Tear, 
saliva, 
sweat 

Cerium 
Nanoparticles  

1.25 
ng/mL 
0.1 ng/mL 

Rapid, widely used, reliable 
performance, 
portable and convenient, easy to 
manipulate, cost-effectiveness 

Low accuracy, toxicity, limited by 
battery life and storage 

[58, 154] 

Luminescent 
detection 

Tear, 
saliva, 
sweat, 
H2O2 

ZnO, Lanthanide-doped 
Nanoparticles and MOFs 
and CPs 

5 ng/dL, 
20 pg/mL 
0.1 μM 

High accuracy and sensitive, 
widely used 

Not portable, need specific 
excitation source, high 
autofluorescence background, 
complicated operation 

[155, 156] 

Magnetic 
signal 
detection 

Tear, 
saliva, 
sweat 

MoS2/Fe3O4 
magnetic 
nanoparticles 
(MNPs) 

100 nM, 
0.5 ng/mL 
8.6 nM 

High accuracy and sensitivity, 
detect entire magnetic 
interference, portable, 
convenient, high accuracy 

Requires an ultrasensitive 
magnetic sensor, 
vulnerable to external magnetic 
interference, high cost 

[157-159] 

Microwave Glucose 
solution 

CuO 
nanoparticles 

 
0.2 -10 μM, 
36-454 
mg/dL 

High accuracy and sensitivity High cost, toxicity, 
sensitive to temperature and 
motion artifacts 

[160, 161] 

 
Optical methods measure the glucose concen-

tration from body fluids and indirectly calculate the 
blood glucose concentration using correlations 
between glucose concentrations in whole blood and 
body fluids. 

3.1. Near-infrared reflectance spectroscopy 
(NIRS) and Raman spectroscopy 

Arnold et al. reported noninvasive glucose 
monitoring in diabetic patients utilizing the visible 
and near-infrared (NIR) spectral regions [37, 38]. A 
spectrophotometer can measure reflected/transmit-
ted light intensities as a function of concentration, 
absorption coefficient, and sample thickness as well as 

evaluate the effect of scattered light in body fluids 
(Figure 2A). However, the internal structure of 
human tissues is complex, and spectral information of 
numerous materials or substances can interfere with 
the accuracy of the results. Therefore, NIRS methods 
require processing algorithms to extract the glucose 
concentration from multiple parameters such as 
refractive index, angle information, and information 
of the illumination light source. To improve this 
issues, deep neural network (DNN) model and 
efficient regression models has been designed for 
prediction of serum glucose concentration from 
healthy subjects, prediabetic, and diabetic condition 
[39]. These DNN make more high accuracy serum 
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glucose prediction in comparison with other NIR 
measurement with detection range of 80 - 420 mg/dL. 
However, since the training data and validation sets 
were relatively small and it can only detect 
prediabetic and diabetic condition, it is necessary to 
collect more clinical sample for the training and 
validation purpose for the detection of hypoglycemic 
ranges. 

Raman spectroscopy is a non-destructive 
chemical analysis technique with sharp spectral peaks 
that provide direct chemical variations of the glucose 
molecule. Raman scattering is an inelastic scattering 
involving the target molecule’s vibrational energy 
changes from interaction with incident photons. This 
wavelength change, called the Raman shift, can 
represent the glucose difference between the initial 
and final vibration states (Figure 2B) [37]. Raman 
spectroscopy is performed at low frequencies at the 
end of the NIR band and detects fundamental 
vibrations of atomic groups, leading to more accurate 
identification. However, compared with other optical 
methods, Raman spectroscopy suffers from weak 
Raman signals, extremely challenging calibration in 
turbid samples, and strong background noise of the 
surrounding environments. Thus, current efforts are 
underway to resolve these issues in a wide range of 
techniques including photon migration theory and 
multivariate calibration (MVC) analysis for tissue 
modulation [40]. However, to extract meaningful 
information, chemometric algorithms which is 
mathematical, statistical, and computational methods 
are required for interpreting analytical data. For this 
aspect, recently the combination of machine learning 
and surface enhanced Raman Spectroscopy (SERS), 
and convolutional neural networks (CNN) composed 
hidden layers are introduced and enhanced the 
Raman scattering. In 2022, Wang et al. introduced the 
Gramian angular field (GAF-CNN) which can convert 
into blood glucose concentration (output) with 1-D 
Raman spectral data (input) for prediction of glucose 
concentration. They showed the high performance 
with error of prediction (REMSP = 0.065) and 
coefficient of predication (0.999). These algorithms 
might be good option to predict of glucose 
concentration with Raman signal [41, 42]. 

3.2. Fluorescence spectroscopy 
Fluorescence spectroscopy uses specialized 

molecules called fluorophores that absorb the energy 
of an excitation photon at a specific wavelength and 
then emit fluorescence, causing a wavelength 
difference known as the Stroke’s shift [43]. In glucose 
detection, fluorophores like intermediate molecules 
can bind directly to glucose and alter fluorescence 
[43]. Fluorescent glucose sensing molecules may be 

configured to increase or decrease fluorescence at 
baseline depending on ambient glucose concentration. 
A variety of glucose-sensing fluorophore, ranging 
from inorganic (e.g. synthetic carbon nanotube 
materials and quantum dots) to organic (e.g. enzyme, 
glucose binding proteins (GBPs), and boronic acid 
derivatives), have been introduced over the decade 
[44]. Quantum dots (QDs), nanometer-sized 
semiconductor crystal, can be designed to fluoresce at 
any wavelength depending on the crystal size and 
material used. There are three types of organic 
molecules that generally recognize glucose: (1) 
enzymes, (2) GBP, and (3) boronic acid derivatives. It 
consists of a fluorescent glucose sensor that can be 
integrated with a fluorophore to reversibly bind 
glucose. These organic molecules have the advantage 
of being able to monitor a wide spectral range from 
ultraviolet (380 nm) to near infrared (880 nm) 
depending on the immobilized fluorophore. Hitomi et 
al. reported fluorescence resonant energy transfer 
(FRET) as shown in Figure 2C, which provides 
excellent sensitivity for detecting low glucose 
concentrations [45]. Fluorescence biosensors have 
advantages of high specificity, sensitivity, and a wide 
detection range, allowing measurement of analyte 
concentration based on fluorescence intensity and 
decay time due to the characteristic emission spectra 
of specific fluorophores. Therefore, in vitro test 
projects and experiments commonly use fluorescence 
biosensors. However, fluorescence biosensors have 
limitations, including potential toxicity issues, 
susceptibility to interference due to pH changes and 
oxygen concentrations, short lifespan of the 
fluorophore, photostability issues, loss of recognition 
capability, and a low signal-to-noise ratio. In addition, 
conventional statistical algorithms are often limited 
by low accuracy under low illumination conditions, 
long computation times, and incorrect initial 
assumptions of decay parameter [46]. Therefore, 
machine learning-based simple training architectures 
of artificial neural network (ANN) or convolutional 
neural network (CNN) have been employed to 
improve the visualization, less computational time, 
and detect low fluorescent signal. In 2022, Chen et al. 
used a Wasserstein GAN-based algorithm in which 
the generator (G) is trained to generate a 
high-photon-count fluorescence decay histogram 
using a low-photon-count input. The GAN training 
algorithm with rectified linear unit (ReLU) activation 
was up to 2,800 times faster than the gold standard 
estimation and showed more accurate analysis of 
low-photon-count histograms. Since these algorithms 
have not yet been applied to fluorescence-based 
glucose detection, better neural network architecture 
with appropriate activation functions will eventually 
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improve the issues. 

3.3. Optical polarimetry (OP) 
As another optical method, Cameron et al. 

developed optical polarimetry (OP) to noninvasively 
measure blood glucose concentration [47]. They used 
a polarized beam of light to illuminate a glucose 
solution and measured the rotation angle of the 
incident light's polarized plane (Figure 2D) because 
glucose is an optically active substance and can rotate 
the plane of the polarized beam [37]. The polarization 
orientation plane will be changed by the deflection 
angle from the original incident direction depending 
on the glucose concentration. The total rotation is 
proportional to the optical path length, concentration 

of the analyte, temperature, and wavelength of the 
laser beam (400-780 nm). Optical polarimetry takes 
advantage of the easy miniaturization of optical 
components because it only uses molecules that can 
rotate the plane of polarized light [48]. However, the 
relatively low measurement accuracy is challenging 
issues, mainly due to the presence of other active 
molecules, high degree of scattering in skin tissue, 
varying corneal birefringence, and high deflection 
angle. To improve these issues, a number of geometric 
and physical model have been proposed to explain 
physical process, overcoming is difficult because 
extracting the sample itself is untidy, rendering 
unpopular sampling methods [49]. 

 
Figure 2. An illustration of the principle for glucose detection using optical monitoring methods. Principles of (A) NIR spectroscopy, (B) Raman spectroscopy, 
(C) Surface plasmon resonance (D) Optical polarimetry, and (E) OCT scanning. Reproduced with permission [43]. Copyright 2019, MDPI 
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3.4. Optical coherence tomography (OCT) and 
photoacoustic spectroscopy (PAS)  

Optical coherence tomography (OCT) has been 
developed to measure glucose concentration more 
accurately for high-resolution imaging, providing 
depth-oriented tomography with two- or 
three-dimensional images using low-coherence 
interferometry (Figure 2E). OCT typically employs 
the NIR range of light and can be used to observe 
internal biological tissues at depths of 1-2 mm with a 
spatial resolution of 10-15 microns. OCT was 
proposed to detect blood glucose from specific skin or 
in vitro samples and has distinct advantages including 
continuously monitoring blood glucose concentration 
with a high signal-to-noise ratio, high resolution, and 
high noninvasive penetration depth. However, OCT 
is sensitive to motion artifacts such as skin 
temperature change, pH, and humidity, leading to 
low measurement accuracy. In addition, variation of 
the scattering coefficient by physiological compound 
is a key factor restricting its development. Therefore, a 
photoacoustic spectroscopy (PAS) technique was 
reported by Tanaka et al. [50]. The basic concept of 
PAS is shown in Figure 3A. The technology of PAS 
uses ultrasound waves and short laser pulses with 
wavelengths that are absorbed to produce 
microscopic-scale localized heating. The localized 
heating causes a volumetric expansion of the medium, 
generating an ultrasound wave that can be detected 
by an acoustic biosensor to measure variations of 
blood glucose concentration. Even though it can 
improve the depth and increase detection reliability 
on the micrometer scale [51], and has low detection 
sensitivity in the range of physiological glucose 
concentrations, PAS of the detection sensitivity is still 
unsatisfactory for clinically approved glucose 
monitoring. In 2018, Sim et al. developed in vivo 
microscopic PAS for noninvasive glucose monitoring. 
They used two laser sources (glucose absorbing and 
insensitive region detection wavelengths) to improve 
the system's overall signal-to-noise ratio (SNR) [52]. In 
2022, Abdulrahman et al. introduced a photoacoustic 
spectroscopy using machine learning to detect 
glucose level in skin sample with 40, 200 dataset and 
enhancing the sensitivity ± 25 mg/dLdL [53]. Even 
though this study required to demonstrate the 
feasibility of in vivo, measurement of glucose 
concentration can be further enhanced with different 
classification models. 

3.5. Luminescent detection 
Luminescent detection-based assays have 

emerged with high glucose detection sensitivity based 
on fluorescence intensity to determine glucose 

variations in biochemistry and immunoreaction 
applications. Fluorescence emission requires 
excitation energy, usually at a shorter wavelength 
(Figure 3B). Luminescent detection is performed to 
capture the fluorescent intensity from luminescent 
nanoparticles such as quantum dots (QDs) [54], 
dye-doped nanoparticles [55] and up-converting 
nanoparticles [56]. Similar to colorimetric detection, 
luminescent detection can be carried out on a 
handheld device that is cost-effective and easy to 
manage compared to bench-top apparatuses. In 2008, 
Faulstich et al. reported a pocket-size device that 
contains an illumination source and filters. The 
end-user inserts the test strip, activates the excitation 
light source, and monitors the test result with their 
naked eye [57]. In 2013, to obtain more quantitative 
results, Kozma et al. developed a handheld fluorescent 
microarray reader consisting of a filter, CCD camera, 
laser diode (λ=635 nm) with a collimator, and a prism. 
The total measurement time was less than 20 s [58]. In 
2017, Zhang et al. introduced a more rapid system 
with an analysis range of 1-100 ng/mL [59]. 
Conventional imaging setup required high quality of 
sCMOS or CCD, however, with the rapid 
development of sensing capabilities, the smartphone 
can capture luminescence image or fluorescence 
signal with expansion of attachments and software 
applications. Nonetheless, luminescent detection 
requires sophisticated optical components to result in 
high sensitivity. 

4. Colorimetric assay 
Colorimetric detection utilizes specific indicators 

(nanozyme or nanomaterials) that change color when 
interacting with molecules of interest. The color 
information is recorded with a complementary 
metal-oxide-semiconductor (CMOS) or charge- 
coupled device (CCD) divided into two-dimensional 
grids, known as pixels. The sensor converts the 
photons into electrons in each pixel. The electrical 
signal is processed by an image processor to produce 
final images in JPEG, PNG, TIFF, and BMP formats, as 
illustrated in Figure 3C- D. Digital cameras, scanners, 
and smartphones are now widely used to measure 
color changes and have emerged as suitable 
alternatives for colorimetric analysis. Among them, 
current smartphones are prominent as they are 
equivalent to a microcomputer with high-capacity 
internal memories and are equipped with 
high-resolution cameras and wirelessly communicate 
with other devices [60]. Significant advances in 
smartphones make them useful for colorimetric 
assays, including fluorometric or spectroscopy 
applications. 
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Figure 3. An illustration of the principle for glucose detection with different types of monitoring methods. Working principles of (A) photoacoustic spectroscopy 
for glucose monitoring. Adapted with permission from [53]. Copyright 2017, MDPI. (B) optical transducer. Adapted with permission from [103]. Copyright 2018, American 
Chemical Society. (C) Different devices used for image acquisition of the colorimetric reaction: (left-top) sCMOS, CCD-based digital camera (right-top), smartphone 
(left-bottom), image scanner (right-bottom), and the naked eye. (D) The working principle of the image sensor from the colorimetric reaction. 

 
In the algorithms aspects, conventional 

colorimetric analysis is started to track the region of 
interest (ROI), extracting the true color in color space 
of RGB, CMYK, HSB/HSL, CIE XYZ, L*a*b*, and 
YUV models. Each acquired intensity was directly 
plotted with prepared glucose concentrations, 
generating a calibration curve. This curve fitting was 
used to estimate sample glucose concentrations. 
However, colorimetric analysis is highly affected by 
ambient light conditions and camera optics. To 
address this issue, advanced algorithms such as 
machine learning based deep neuronal networks were 
proposed in the quantitative glucose evaluation 
process with automated decision-making and 
self-learning from the data. 

4.1. Color space 
RGB, CMYK, HSB/HSL, CIE XYZ, CIELAB, and 

YUV models are commonly used color spaces. The 
advantages and disadvantages of the color spaces are 
compared in Table 3. Primary RGB (red, green, and 
blue) or CMYK (cyan, magenta, yellow, and black) are 
the most used color spaces. In the RGB color space, 
each color is assigned to orthogonal coordinate axes in 

3D space. The RGB color space ranges from 0 to 255 
(8-bit format) or 0 to 1 (fractional format). The RGB 
color space is commonly used in industry, such as the 
Bayer filter used in CMOS sensors and many digital 
products (e.g. smartphones, webcams, flatbed 
scanners, digital cameras). Utilization of nanozyme in 
colorimetric-based glucose biosensors can typically 
use the RGB color space due to its simplicity. In 2022, 
Firdaus et al. developed smartphone application 
called glucose analyzer and built the Android Studio 
platform (DIC-Smartphone), which can achieve a 
detection limit of 0.043 μM [61]. Although these 
algorithms can precisely extract RGB color values for 
calculation of glucose concentration, the RGB color 
space sometime omits a much smaller number of 
colors, indicating the limitations of the perceptual 
space. 

On the other hand, the CMYK color space, 
mainly used for color printing, can be applied to 
paper-based glucose detection. Each color creates a 
range of colors from 0 to 100%. All colors are created 
from combination of different CMYK amounts. In 
2018, Wilson et al. introduced a paper-based 
microfluidic device for glucose analysis employing 
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artificial neural networks. They used 4-channel 
CMYK color data to demonstrate the effectiveness of 
ANN fitting and classification algorithms [62]. 
Typically, the RGB colors from the images recorded 
by the camera were converted to the CMYK color 
space using Photoshop (Adobe, Inc., USA). However, 
since RGB can produce much more vivid colors than 
CMYK, a lot of data can be lost during this 
conversion. 

 

Table 3. Comparison of color spaces for analysis of colorimetric 
detection 

Color 
space 

Color 
mixing 

Primary 
parameters 

Advantages Disadvantages 

RGB Additive Red, Green, 
Blue 

Convenient for 
image acquisition 
and display 

Non-uniform 
illumination, colors 
is not linear 

 
HSV/HIS 

Additive Hue, 
Saturation, 
Value 
Hue, 
Saturation, 
Intensity 

Based on human 
color perception; 
robust before 
non-uniform 
illumination, the 
chromaticity is 
decoupled from the 
intensity 

 
 
Non-removable 
singularities 

CIE 
L* a* b*, 
L* u* v* 

Additive L: Luminance, 
a: red to green 
b: blue to 
yellow 
u: Saturation 
v: Hue angle 

Efficient in 
measuring small 
color differences, 
chromaticity is 
decoupled from the 
intensity 

 
Singularity 
problems, nonlinear 
transformation 

CMYK Subtractive Cyan, 
Magenta, 
Yellow, and 
Black 

Commonly used for 
production printer 
color 

Since it is a 
subtractive model, 
the components are 
pigments or inks 

YUV, 
YIQ 

Additive Y (luminance), 
U (blue 
chroma),  
V (red chroma) 
I (rotated from 
U), Q (rotated 
from V) 

 
Efficient coding 
color information 
for TV signal 

The color range is 
restricted, difficult 
to recreate image 
display  

 
The International Commission on Illumination 

(ICI) established CIE XYZ in 1931, the first system for 
scientifically defining light or additive colors. It is 
widely accepted as an international standard method 
for defining color. In CIE XYZ, chromaticity is defined 
by X and Z, and luminance is defined by Y. The 
calculated CIE XYZ coordinates are not the same as 
the original RGB values. The CIE XYZ color space is 
not as easily represented as the RGB color cube, but it 
is very similar to the RGB color space with noticeable 
color distortion. Spectrophotometers and digital color 
analytical instruments with a CCD or sCMOS sensor 
typically use the CIE XYZ color space because they 
can provide reflected or transmitted light from 
samples. In 2021, Samira et al. introduced a 
smartphone-based colorimetric sensing system for the 
measurement of glucose concentration in urine 
samples. They mapped image color acquired in the 
CIE chromaticity space, compared them with the 
reference color, and increased sensitivity with 
commercial reference charts [63]. However, it is not 

easy to compare two colors due to the non-uniform 
color distribution. 

HSB, also known as HSV, represents three 
components: Hue, Saturation, and Brightness. The 
HSB color space is a kind of non-linear transformation 
of RGB defined as the simple addition or subtraction 
of RGB color. Hue is the color type and can be defined 
as the length of the illumination spectrum ranging 
from 0 to 360º (for example, the value of 0º is red and 
45º is a shade of orange). Saturation is a color range of 
high intensity values from 0 to 100%. Here 0% means 
no color and 100% is the most intense color. 
Brightness is the visual perception derived by 
luminance ranging from 0 to 100%, where 0% is 
colorless (black) and 100% is intense color (white 
saturated color). The HSL (hue, saturation, lightness) 
space is similar to that of HSB or HSV. However, the 
main difference of HSL is that it is symmetric to light 
and dark. Therefore, HSL usually provides a more 
accurate color approximation than HSB or HSV. This 
color space can represent a single parameter (H), 
avoiding redundant color coordinate information 
when use in colorimetric-based biosensors. In 2020, 
Simon et al. developed colorimetric sensor for glucose 
monitoring using smartphone camera. They used HSL 
and RGB color space to directly compare the 
estimated performance and show better results in the 
HSL models [64]. However, this is not the same as the 
CIE XYZ color space. Thus, it is also difficult to find 
significant differences between the two-color spaces 
[108]. 

The L*, a*, and b* (CIELAB) spaces are 
international standard for color measurements 
adopted by the CIE in 1976. CIELAB consists of a 
luminance or luminance component (L*) between 0 to 
100. The parameter a* is the color change from red to 
green. The parameter b* is the color change from 
yellow to blue. Unlike CIE XYZ and HSL, the CIELAB 
space is perceptually uniform due to slight change in 
the chromaticity diagram that produce changes 
perceived by the human eye. Thus, the CIELAB space 
can extract color differences between two colors, 
which is relevant for colorimetric-based biosensors. In 
addition, another advantage of the CIELAB space is 
that it uses Euclidean distance to determine the 
amount of color difference between two colors, 
providing information about color and time function 
changes for different glucose concentrations based on 
colorimetric detection via continuous and monotonic 
color profiles. In 2021, Son et al. introduced a 
colorimetric biosensor using deep neural network. To 
address the existing perceptual non-uniformity, they 
used CIELAB color space and found highly 
perceptible spectra with CIELAB coordinate values 
[65]. However, the major disadvantage is the 
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requirement of further processing and the number of 
steps needed to obtain the results. 

As the last color space, the YUV model also 
describes color. The parameter Y is the brightness 
(luma component) in the range of 0 ~ 100%, the 
parameter U is the blue luminance of the chrominance 
component, and the parameter V is the red luminance 
of the chrominance component. In 2022, Yang et al. 
developed a biosensor for colorimetric determination 
of uric acid. For the colorimetric detection, they used 
algorithm in the YUV color space [66], because the Y 
value showed good linear relationship in the range of 
UA concentration. Moreover, the YUV model is 
suitable for detecting moving objects because YUV 
simulates human perception of color more closely 
than does the primary RGB color space model. 

4.2. Image processing software and analysis 
formats 

Digital images can be obtained from various 
devices (e.g., smartphones, webcams, flatbed 
scanners, digital cameras) with different image 
qualities. Therefore, to quantitatively monitor the 
colorimetric variation, the same devices collect images 
to minimize instrumental errors. Image processing 
and analysis methods are essential to adopt 
colorimetric-based biosensors to reduce instrumental 

error and increase repeatability across devices. Table 
4 summarizes colorimetric glucose detection in body 
fluids. Many acquisition devices are based on the 
color change used for glucose monitoring. The RGB, 
CMYK, HSV/HSL, CIE XYZ, CIELAB, and YUV color 
spaces are usually processed using Matlab, Adobe 
Photoshop, Image J, Image color Picker processing, 
and Photometrix software. Matlab, Image J, and 
Adobe Photoshop are widely used in processing 
images obtained by digital devices [67]. Several 
analytical parameters can be monitored after 
capturing digital images to measure colorimetric 
variation. In this step, a histogram is acquired, and 
various parameters can be calculated to obtain 
colorimetric differences. In addition, the 
Lambert-Beer Law (-log (I/I0)) or RGB normalization 
is used to determine a quantitative correlation of 
analyte concentration [19], where I0 refers to the 
background signal intensity (Black), and I refers to the 
sample signal intensity monitored from chemical or 
enzymatic reactions [68]. However, CIELAB, CIE 
XYZ, or HSV are unrelated to color intensity. Thus, 
the use of images analyzed by different processing 
programs has been used as a strategy to determine a 
variety of analytes present in different matrices. 

 

Table 4. Summary of color spaces, image acquisition, and processing for colorimetric glucose analysis using various body fluids 

Color space Sample Acquisition device Acquisition format Image Processing Software Ref 
HSV Serum, urine Canon Power shot S5 IS digital 

camera, iPhone 4.0 
JPEG Image J, Objective C [162] 

SRGB Glucose solutions Smartphone JPEG Image J, Gray color value filter paper [89] 
SRGB Urine Smartphone JPEG Android apps [61] 
SRGB Glucose solutions, 

human serum 
Smartphone JPEG Color picker, application n-pads [163] 

SRGB Glucose solutions iPod Touch JPEG Image J [164] 
CIELAB Artificial sweat, 

human sweat 
Smartphone JPEG Image J [124] 

CMYK Glucose solution Epson Perfection V600 scanner  
JPEG 

MATLAB image processing, toolbox, adobe 
photoshop, Photoshop CS2 

[62] 

SRGB Artificial sweat, 
human sweat 

Smartphone JPEG Smartphone based software [89] 

SRGB Artificial sweat, 
human sweat 

Smartphone JPEG Color grab application [165] 

CIE-RGB-to-HSV  Human urine Galaxy A20e JPEG C++, Java, API 28 in Android Studio 4.0 [63] 
SRGB Glucose solutions, 

human serum,  
tears 

iPhone 6 JPEG Image J,  
Gray value filter paper 

[166] 

RGB, HSL  Glucose solution Smartphone JPEG Android app [64] 
SRGB Glucose solutions, 

artificial urine 
Smartphone JPEG Urine analysis and android application [167] 

SRGB Glucose solutions, 
artificial saliva 

iPhone 7 JPEG MATLAB [168] 

SRGB Blood glucose iPhone 5s JPEG Color assist application [169] 
SRGB, RGB Whole blood 

Glucose solutions 
Sony DSC-HX300, digital camera, 
Galaxy S5, Tab A,  
Moto G4 

JPEG Image J, Avidemux 2.6, Python, Open CV, 
Android studio 

[170] 

SRGB Glucose solutions Xiaomi MI 2SC JPEG Image J [171] 
SRGB, RGB Glucose solutions blood 

glucose 
Scanner (Epson perfection V700), LG 
Optimus Vu 

JPEG Image J [172] 

HSV Glucose solutions, real 
samples 

Smartphone JPEG Color Lab application [173] 

SRGB Glucose solutions, 
human serum 

LG Optimus L5 II JPEG Image J [174] 
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Color space Sample Acquisition device Acquisition format Image Processing Software Ref 
CIE LAB Glucose solution Reflectance spectra - MATLAB,  [65] 
SRGB Glucose solutions LG G2 JPEG Image J, Microsoft, PowerPoint [175] 
SRGB Glucose solutions Smartphone JPEG Image J [176] 
SRGB Glucose solutions, 

human serum 
iPhone 6 JPEG Image J, Adobe Photoshop, Gray 

value-μpad 
[177] 

SRGB, RGB Glucose solutions 
human serum 

I8000U,  
CCD (HDF70-A) 

JPEG Adobe Photoshop CS4 [178] 

CIELAB, SRGB Glucose solutions real 
samples 

iPhone 5S, Samsung J5, Scanner 
(Canon MF 4780dn) 

JPEG C-Measure Lite, Color Grab, Digital Color 
meter 

[179] 

SRGB Glucose solutions HTC sensation XE,  
iPhone 5s,  
Nokia Lumia 920 

JPEG Cell phone spectrometer application [95] 

SRGB Glucose solutions, urine iPhone 4, Galaxy SII,  
MEIZU MX2 

JPEG Cam card, adobe photoshop [180] 

SRGB, YUV Uric acid, human 
plasma 

Smartphone, 
Microplate reader 

JPEG Color software [66] 

SRGB Serum samples iPhone 4  JPEG ColorAssist application, RGB 
colors-commercial test slide 

[181] 

SRGB Uric acid Smartphone JPEG Image J, Android studio app  [182] 
SRGB Serum samples Smartphone JPEG Image J-μPad [183] 
SRGB Artificial urine iPhone 5, Galaxy 5 JPEG RGB colors-colorimetric urine test strips [184] 
SRGB Glucose solutions Smartphone JPEG Color detector application [185] 
RGB, HSV Glucose solutions 

Human serum 
Smartphone JPEG HSV application [186] 

SRGB Human tears, 
glucose solutions 

Smartphone  
 

JPEG MATLAB, ImageJ [20] 

RGB Human tears, 
glucose solutions 

Color CCD TIFF MATLAB, ImageJ [19] 

SRGB Urine glucose MIX6X Xiaomi JPEG Color Picker 1.5.2 [103] 
 

Table 5. The characteristics of image formats for colorimetric glucose analysis and their advantages and disadvantages 

Image 
Format 

Available 
colors 

Compression File size Advantages Disadvantages 

JPEG (.jpg) 16.7 million Lossy Small (<1MB) Small image size, fast processing, widely used in the 
digital image 

Loss some of the data files and not recoverable, 
lower image quality 

GIF (.gif) 256 Lossless Small (<1MB) Suitable for animation as it enables transparency, good 
internet browser support 

Few colors (256),  
low level of transparency support 

PNG (.png) 16.1 milion + 
transparency 

Lossless Large (<3MB) Extendable up to 24-bit color, can adjust color when 
displayed on different monitors 

Lossless, large file size 

TIFF (.tif) Variable Variable Large (<3MB) No compression, supported by image manipulation 
application, high image quality 

Large file size, requires more storage data and 
long transmission time 
 

DNG (.dng) 
Raw 

Billions No Very large 
(<10MB) 

Smartphone-based generation, 8 and 10 raw image files, 
high image quality 

Large image file size, requires more storage data 
and long transmission time 

BMP Variable Lossless Large (<3MB) Very easy to create, Simple to output Does not allow image compression, low image 
quality 

 
The image save format also affects the image 

quality of the color value in colorimetric-based 
biosensors. The detailed image format characteristics 
are described in Table 5. JPEG, also called JPG, is 
widely used to measure colorimetric variation due to 
their smaller file size, leading to fast image 
processing. However, the algorithm compresses 
images when creating JPEG, resulting in quality loss. 
Therefore, JPEG can lose some information that is not 
recoverable. Although GIF images undergo a different 
type of image compression that reduces the file size, 
they only use 256 colors, leading to poor image 
quality. PNG and BMP images use different image 
compression strategies without any quality loss and 
can be extended up to 24-bit color. Therefore, the 
images can be saved and analyzed without 
degradation. In addition, raw TIFF and DNG files are 
much larger, which means they require more storage 
capacity and result in a longer transmission time for 
image processing. However, TIFF and DNG images 

offer exceptionally detailed and high-quality images. 
Thus, these formats allow the ability to identify slight 
differences of color in colorimetric-based biosensors. 
Recently, smartphones have emerged as attractive 
capture devices because other devices cannot 
independently handle the image information and 
must connect to a computer for colorimetric detection 
and measurement. Moreover, various smartphone 
applications exist that can be used to capture digital 
images, controlling the macro, focal length, 
brightness, and exposure time. Recent smartphones 
produce raw image files of DNG, offering numerous 
advantages for colorimetric-based biosensors. 

In general, colorimetric-based biosensors enable 
quantitative evaluation of glucose concentration with 
simple image processing without much consideration 
of errors resulting from illumination from external 
light sources. However, a proper lighting position, 
angle, and power control are essential to increase 
precision and accuracy. Moreover, the focal length 
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and exposure time difference are essential factors 
because they can affect the sensor's color recognition 
(CCD or CMOS) [69]. Thus, measuring accurate color 
values is not trivial and requires specific control. 
Methods to reduce experimental error in other 
research fields can be used, such as normalization, 
training-based color reconstruction, color checker- 
based digital image reconstruction, auto-tracking, and 
real-time monitoring algorithms. 

4.3. Colorimetric-based glucose detection with 
nanozyme 

Nanomaterials of natural enzymes have 
attracted enormous attention due to their unique 
characteristics compared to their molecular and bulk 
counterparts [70]. However, with the exception of 
some catalytic RNA molecules, all natural enzymes 
have some intrinsic disadvantages. Some of the 
fundamental limitations of natural enzymes include 
their low stability, storage difficulty, high cost, 
tedious purification processes, limited application 
conditions, and specific operating conditions (i.e., 
narrow substrate, temperature, and pH ranges). For 
example, degradation upon exposure to various 
environmental conditions is a risk factor, and natural 
enzymes are particularly susceptible to digestion by 
proteases. They also require time-consuming 
preparation and purification processes, relatively high 
costs, and specific storage conditions. Therefore, 
nanomaterial-based artificial mimetic enzymes are 
receiving considerable attention. Recently, 
nanomaterials with 'enzyme-like' activity that mimic 
traditional biological catalysts such as catalase, 
oxidase, and peroxidase have attracted interest for 
potential applications as artificial enzymes. Several 
engineered nanoparticles (NPs), called nanozymes, 
have been used as active substances in bioassay, 
biosensor, and biomedical fields [71, 72]. These NPs 
include nanomaterials such as simple metal and metal 
oxide nanoparticles, metal‐organic frameworks 
(MOF), metal nanoclusters, nanotubes, nanowires, 
carbon dots as well as quantum dots. These versatile 
nanomaterials can exhibit enzyme-like catalytic 
capabilities while overcoming many of the stability 
limitations and effective range associated with natural 
enzymes. In addition, the applications of hybrid, 
synthesis, and stimulus-responsive advanced 
nanozymes could revolutionize current practices in 
life sciences and biosensor applications. According to 
the activity they exhibit, nanozymes are classified into 
two large families: the oxidoreductase family and the 
hydrolase family. Nanozymes that are involved in 
redox catalysis and function similarly to oxidase, 
peroxidase, catalase, superoxide dismutase, or nitrate 
reductase are classified in the oxidoreductase family. 

As shown in Figure 4, by modifying the surface of 
iron oxide nanozyme or glucose oxidase or 
configuring it in a hybrid form, it is possible to 
construct a nanozyme capable of performing the 
function of an oxidase. In this assembly, oxidase 
activity is crucial as it provides a peroxidase-like 
nanozyme with hydrogen peroxide to induce a color 
change or emit light in colorimetric or fluorescent 
biosensors. These synergistic characteristics have led 
to ultra-sensitive platforms and high performance, 
including colorimetric, fluorometric, chemilumi-
nescent, surface-enhanced Raman scattering, and 
electrochemical biosensors. 

The most widely studied nanozymes in these 
biosensing systems are summarized in Table 6, 
including metal nanoparticles (NPs), metal oxide NPs, 
and carbon-based nanomaterials. Various nano-
materials, such as Fe3O4 NPs, Co3O4 NPs, carbon 
nanotubes, and graphene oxide, have peroxidase 
mimic activity [73, 74]. In addition, CNPs have been 
demonstrated to have peroxidase-like activity, which 
can be applied to design corresponding colorimetric 
sensing systems [75]. The peroxidase-like activity of 
iron oxide nanocomposites has been widely used for 
glucose detection. As peroxidase-mimicking nano-
zymes can oxidize chromogenic substrates (e.g. TMB, 
ABTS, and OPD) and produce color in the presence of 
H2O2, they can directly detect H2O2 or other 
H2O2-generating substrates (e.g. glucose). In all cases, 
these materials were combined with GOx, and the 
synergistic effect of these two enzymes is a key factor 
in achieving high sensitivity and superior analytical 
performance in biomolecular detection. The superior 
activity of these nanozymes facilitated colorimetric 
assays of H2O2, glucose, and sarcosine. In addition, it 
is possible to increase the effective catalytic surface 
area by introducing pores into iron oxide 
nanoparticles and to increase glucose detection 
sensitivity by exposing metal ions to the surface. 

Recently, supramolecular peptide nanomaterials 
are attracting attention as candidates for constructing 
organic nanozymes because peptides and enzymes 
are composed of amino acids as basic units [76]. These 
organic nanozymes can be rationally developed 
through self-assembly of peptides containing key 
amino acid sequences that participate in the formation 
of catalytically active sites. Amphiphilic amino acids 
can serve as building blocks for the supramolecular 
construction of nanoassemblies with the help of 
cofactors such as metal ions, and offer the possibility 
to fabricate nanozymes with minimal biological 
building blocks [77]. Several organic nanozymes 
studied so far are inspired by the supramolecular 
structure and redox principle of horseradish 
peroxidase (HRP), a typical natural metalloenzyme 
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that catalyzes oxidative substrates by H2O2. In this 
regard, histidine in native HRP plays an important 
role in participating in oxidation reactions and 
providing binding sites for coordination interactions 
with iron in heme. Therefore, inspired by the 
supramolecular structure of HRP, Geng et al. reported 
an organic nanozyme by co-assembly of an 

amphiphilic amino acid (Fmoc-histidine, FH) and a 
heme derivative (hemin) [78]. The FH/hemin 
assembly showed flexible nanostructures and 
morphologies by tuning the molar ratio between FH 
hemins and optimizing catalytic activity to establish a 
sensing platform for rapid and sensitive glucose 
detection. 

 
 

 

 
Figure 4. Nanozyme-based colorimetric biosensor with color classification. (A) Nanozyme based colorimetric detection with naked eye. (B) An illustration of 
nanozymes through assembly with peroxidase mimics. 
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Table 6. Summary of nanozyme-based glucose detection. 

Principle Nano materials Biological 
sample 

Enzyme LOD [uM] Substrate Optimum pH Response 
time (min) 

Ref 

Colorimetry Fe3O4-Au @ mesoporous SiO2 microspheres Glucose solution GOx 0.5 TMB 4.0 10 [187] 
Colorimetry V2O3-Au NP nano 

composites 
Glucose solution GOx 0.5 ABTS 7.0 - [188] 

Colorimetry Au@BSA NPs-GO nano 
composites 

Glucose solution GOx 0.6 TMB 4.0 - [189] 

Colorimetry HRP·H2O2·TMB Urine GOx 0.03 TMB  - [190] 
Colorimetry AuNPs 

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic 
acid) radical (ABTS+•) 

Glucose solution GOx 80 TMB 4.0 - [14] 

Colorimetry Carboxyl-NS@GOx Urine GOx 125 - 4.3 2 [90] 
Colorimetry C/H-Aerogel Blood, sweat GOx 11.4   10 [191] 
Colorimetry MGCN-chitin-AcOH Blood, urine  0.055   3 [192] 
Colorimetry MnO2 nano-oxidizers Human blood  10   50 [191] 
Colorimetry Pt NPs Glucose 

Uric acid 
 4 TMB + 4AD 7.0 20 [182] 

Colorimetry NL-MnCaO2 Human blood  23.86   - [193] 
Colorimetry Fe–N–C/MgO Glucose solution GOx 2.1 TMB 4.0 - [194] 
Colorimetry Pt2+2.30@g-C3N4 Human blood  0.01   - [195] 
Colorimetry g-C3N4 Human serum GOx 0.71 TMB 5.0 - [196] 
Colorimetry Pd91-GBLP NPs Human blood  1   - [197] 
Colorimetry Fe3O4@MnO2 Uric acid 

Human plasma 
GOx 0.27 TMB - 1 [66] 

Colorimetry AuNCs Human serum GOx 74.7 TMB 3.0 - [198] 
Colorimetry P-Co3O4 Human blood  0.69   30 [199] 
Colorimetry R-Co3O4 Human blood  0.32   30 [199] 
Colorimetry Fe3O4 magnetic nanoparticles (MNPs) Glucose solution GOx 30 ABTS 4.0 10 [200] 
Colorimetry Positively charged AuNPs Glucose solution  4 TMB 4.0 15 [201] 
Colorimetry AuNPs Urine GOx 0.043  7.0 - [61] 
Colorimetry ceria nanoparticles 

 (CeO2 NPs) 
Human blood GOx 3 TMB 4.0 30 [202] 

Colorimetry Carbon nanodots  
(C-dots) 

Human blood  0.4 TMB 3.5 15 [203] 

Colorimetry Ag nanoplates Human blood GOx 0.2  7.38 15 [204] 
Colorimetry Chitosan stabilized silver nanoparticles (Ch-Ag 

NPs) 
Human blood GOx 0.1  3.0 10 [16] 

Colorimetry DNA-embedded core-shell Au@Ag 
nanoparticles 

Fetal bovine 
serum  

GOx 0.01  4.5 30 [205] 

Colorimetry Nitrogen-doped graphene quantum dots Serum GOx 16 TMB 3.0 90 [206] 
Colorimetry V2O3-OMC Serum GOx 3.3 ABTS 4.0 10 [207] 

 
Metal-organic frameworks (MOFs) are emerging 

as important candidates in the field of glucose 
sensing. MOFs are a class of materials composed of 
organic ligands and metal nodes. MOF nanozymes 
exhibit additional properties due to their diverse 
structures and functions compared to nanozymes 
based on noble metals, carbon materials, or transition 
metal compounds. Strong coordination interactions 
between metal ions and organic ligands allow the 
formation of unique framework structures with 
multimodal properties; (1) the porous structure of the 
MOF provides abundant surfaces and channels for 
rapid mass transfer; (2) the specific pore size of the 
MOF is conducive to the loading, adsorption and 
separation of the target; (3) the presence of metal 
nodes in MOFs contributes to possible active sites for 
catalysis; (4) The organic ligands of MOFs provide 
attractive electrical, optical and thermal properties 
and abundant functional groups for chemical 
modification [79]. Mechanically, the enzyme-like 
catalytic ability of MOFs can be attributed to two 
aspects: First, MOFs containing metal nodes such as 
Fe, Ce, Cu, Co or Ni can provide enzyme-mimicking 

catalytic activity due to the presence of these metal 
redox pairs. On the other side, the organic ligands of 
MOFs act as electron mediators, accepting electrons 
from a substrate and then donating electrons to other 
substrates, facilitating reactions similar to natural 
enzymes. Recently, several MOFs have been 
introduced as promising nanozymes with 
peroxidase-mimicking activity for glucose detection. 
In the study of Lin et al., terephthalic acid (TA) was 
used as a crosslinking ligand for MIL-53(Fe), which 
was applied as a fluorescent probe for hydroxyl 
radicals [80]. Fluorescent products were generated 
under the catalysis of H2O2 by MIL-53(Fe) MOF-based 
nanozymes, and the fluorescence intensity of the 
sensing system was related to H2O2 and glucose 
concentrations. Shahrokhian et al. reported an in situ 
strategy for the direct growth of Co3(BTC)2 MOFs on 
free carbon electrodes [81]. Electrodes designed for 
glucose concentration detection exhibit two linear 
ranges: 1 µM to 0.33 mM and 0.33 to 1.38 mM, with 
sensitivities of 1792 and 1002 µAm/M/cm2, 
respectively. In the context of colorimetric glucose 
sensing, glucose oxidase@Cu-hemin metal-organic 
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frameworks (GOD@Cu-hemin MOFs) with 
ball-flower structures as bi-enzyme catalysts for 
glucose detection have been reported by Lin et al. [82]. 
The absorption intensity of oxTMB increases linearly 
with increasing glucose concentration from 0.01 to 1.0 
mM, with a detection limit of 2.8 μM, which is claimed 
to be reasonably designed for colorimetric glucose 
sensors. Another example of MOF for glucose 
detection was designed to fabricate a nanoassembly 
by binding an amphiphilic amino acid, a histidine 
derivative, to a heme derivative containing an iron ion 
at the center [83]. The iron ion of the heme derivative 
and the side chain of the histidine derivative interact 
non-covalently and exhibit peroxidase mimicking 
properties that can confer glucose sensing ability. 

Although electrochemical-based biosensors 
utilizing nanozymes demonstrate highly selective and 
sensitive performance, they require sophisticated 
fabrication, storage capacity, electrodes, and chips for 
wireless communication. These drawbacks have led 
researchers to design glucose biosensors that do not 
require electrodes. It would be very useful if 
colorimetric biosensors could achieve the same 
performance as electrochemical biosensors. Therefore, 
nanozymes in colorimetric-based biosensors are 
important to achieve cost-effectiveness, high 
sensitivity, high selectivity, and stable biosensors for 
diagnosis and management of diabetic patients. 
Colorimetric glucose detection using nanozymes has 
the advantage of providing a rapid response (color 
change) to obtain visual observation (color camera 
and naked eye) [84]. After the first results are 
obtained, the concentration and severity of the disease 
can be quantified using a color camera (CCD or 
CMOS) or other quantitative measurements to 
determine the management strategies and treatment 
options. Additionally, the digital cameras, scanners, 
and smartphones are now widely used to measure 
color changes and have emerged as suitable 
alternatives for colorimetric analysis. Among them, 
current smartphones are prominent as they are 
equivalent to a microcomputer with high-capacity 
internal memories and are equipped with 
high-resolution cameras and wirelessly communicate 
with other devices. Significant advances in 
smartphones make them useful for colorimetric 
assays, including fluorometric or spectroscopy 
applications. It might be overcome using 
smartphone-based glucose detection platforms for 
widespread use and better sensitivity for 
self-diagnosis and management of diabetic patients. 
Also, algorithm software, including machine 
learning-based detection and polynomial regression, 
can improve sensitive glucose detection. Therefore, 
colorimetric-based glucose detection using 

nanozymes is suitable for self-monitoring of glucose 
because of its rapid and cost-effectiveness glucose 
detection. 

5. The current colorimetric analytical 
devices with nanozymes 
5.1. Paper-based colorimetric glucose 
biosensors 

A paper-based colorimetric detection with 
nanozymes consists of the conjugation of sample 
analyte, detection, and signal amplification. Paper can 
serve as the base material for biosensing platform 
with a significantly lower manufacturing cost. This 
assay platform is promising for glucose monitoring. 
To this end, nanozymes enable low-cost glucose 
detection and have been used as high-sensitivity 
probes for detection and signal amplification [85]. 
One of the important advantages of using nanozymes 
is that they can be easily synthesized without 
expensive chemical and sophisticated instrumenta-
tion, reducing the overall manufacturing cost. This 
allows the application of numerous metals, metal 
oxides, and MOF nanozymes for inexpensive 
colorimetric-based biosensors. Ornatrska et al. 
introduced the fabrication of a cerium oxide 
(CeO2)-based bioactive sensing paper strip to detect 
H2O2 and glucose concentrations (Figure 5A). With a 
reproducibility of 4.3%, this paper-based detection 
can be used for a minimum of 10 cycles without loss 
of activity, reducing costs in each experimental cycle 
[86]. The basic concept of this study was to use simple 
electrostatic adsorption method using functionaliza-
tion of CeO2 nanoparticles. Glucose oxidation 
produces higher concentration of H2O2, and the 
physicochemical properties of CeO2 change with 
oxidation state, resulting in colorimetric detection of 
glucose and H2O2. The acquired images were 
analyzed using Adobe Photoshop software, and the 
blue color intensity are mainly monitored because 
blue is the complementary color of yellow/orange. 
Reusability and the use of cost-effective materials are 
the main advantages of this study. Another advantage 
of nanozymes is their high thermal stability and mild 
storage conditions, which can reduce manufacturing 
costs. Although there are significant advantages in 
terms of cost-effectiveness from the materials, the 
acquired image system is bulky and inconvenient for 
the end-user. 

In 2018, Tran et al. developed a nanocomposite 
using peroxidase mimicry to detect glucose in human 
urine using FEOOH and N-doped carbon nanosheets. 
They demonstrated Fe-CN nanocomposite stability 
for up to 90 days. Another excellent example of 
low-cost biosensor fabrication utilizing highly stable 
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nanozymes was established by Kim et al. (Figure 5B) 
[87]. Their work utilized plasmonic paper-based gold 
nanoparticle formation (AuNPs) and detected color 
change. An image of RGB values acquired from a 
scanner (1200 dpi) was converted into CIE XYZ in 
1931 space. Glucose concentrations were estimated 
using exponential smoothing curve fitting. They 
showed a high linear correlation (R2 = 0.97) and 
similar sensitivity within low glucose concentrations. 
These studies demonstrate that nanozymes reduce 
manufacturing cost and provide much higher 
detection sensitivity compared to natural enzymes. 
However, despite the cost-effectiveness and facile 
synthesis of nanozymes, color change measurement 
requires expensive and bulky UV or visible 
spectrophotometer equipment, which can be 
overcome using smartphone-based glucose detection 
platforms. 

Currently, smartphones have become an 
essential part of our lives and are being used for 
scientific purposes. Most smartphones have built-in 
sensors such as Bluetooth, HD (high definition) 
cameras, USB (universal serial bus) ports, 
thermometers, microphones, and gyroscopes. These 
features make smartphones an attractive platform for 
analytical devices in environmental monitoring and 
disease surveillance [88]. Li et al. first reported 
Antimony-doped tin oxide nanoparticles (ATO NPs) 
loaded on a filter paper mimicking peroxidase-like 
activity, and combined them with a smartphone to an 
analyzer that detects H2O2 and glucose [89]. This 
approach was used to determine glucose in aqueous 
samples. In addition, for the development of rapid, 
disposable, cost-effective manufacturing and 
inexpensive devices, Pinheiro et al. developed a 
colorimetric paper-based assay for determination of 
glucose concentration determination [90]. They 
synthesized gold nanoparticles (AuNPs) by reducing 
the gold salt precursor to directly measure glucose 
using a smartphone camera in Figure 5C. Smartphone 
cameras utilizing nanozymes for colorimetric glucose 
detection show harness portability, high-speed 
processing, and high sensitivity. However, the 
development of digital systems that can interface with 
mobile sensors in an efficient manner remains a 
challenge because of the low sensitivity and optical 
noise of ambient light. In 2021, Balbach et al. reported 
a smartphone application that estimates colorimetric 
signals for glucose detection. As shown in Figure 5D, 
they put in a reference color chart and a CIE-RGB to 
HSV color space conversion to remove background 
noise provided by ambient lighting. These efforts 
have been devoted to the development of smartphone 
applications for colorimetric detection. Such a system 

would provide benefits to diabetics who need to 
constantly monitor their blood glucose levels on a 
daily basis. 

5.2. Microfluidic paper-based device for 
glucose biosensors 

The performance of microfluidic paper-based 
devices (μPADs) has been extensively investigated for 
monitoring glucose concentrations [91]. μPAD is 
attractive for the following reasons: first, μPAD is 
ubiquitous and consists of very inexpensive materials. 
Second, μPAD is compatible with other chemical, 
biochemical, and medical applications. Third, μPAD 
uses capillary forces to transport liquids without 
external forces. Various two-dimensional (2D) and 3D 
microfluidic channels have been made on paper, 
which transport body fluids in pre-designed μPAD 
pathways, allowing quantitative detection of glucose 
concentrations [92]. Coltro et al. reported a 
paper-based colorimetric biosensor for the measure-
ment of surface acetic acid-to-chitosan-modified tear 
glucose [114]. They measured glucose concentrations 
in human tears using TMB as a chromogenic reagent 
(Figure 6A). Images are recorded with office scanner 
at 600-dpi resolution and converted to RGB color 
space. Pinheiro et al. also presented the application of 
chemically produced and tailored AuNPs in μPADs 
for glucose sensing (Figure 6B). They also used 
commercial scanner to minimize the effect of ambient 
light conditions, and a AuNP-based plasmon for 
colorimetric transformation of paper substrate sand 
showed an LOD of 1.25 mM at a time of 2 min [93]. 
Although μPAD is a cost-effective material and 
commercial scanners can also improve glucose 
detection sensitivity, the paper may fluoresce under 
prolonged illumination and interfere with true color 
detection. Pomili et al. introduced fully integrated 
all-in-one paper-based device to detect salivary 
glucose concentrations. They used colloidal 60-nm 
multibranched AuNP (MGNPs) and read the 
colorimetric response within 10 min with the naked 
eye or using a smartphone. Ortiz-Gómez et al. also 
reported a paper-based microfluidic colorimetric 
device for measuring glucose in urine and serum 
based on a Fe-MIL-101 metal-organic framework 
(MOF) [123]. The assay was based on Fe-MIL-101 MOF 
to mimic horseradish peroxidase (HRP) immobilized 
on commercial cellulose paper. Their μPAD allowed 
for accurate measurement of glucose using a small 
sample volume (10 μL) with low LOD (2.5-10 μM/L). 
Images acquired with a smartphone can be processed 
on the same device as the developed iOS application 
without a separate attachment.  
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Figure 5. A paper-based colorimetric glucose biosensor. (A) Paper strip to detect H2O2 and glucose utilizing a cerium oxide (CeO2)-based bioactive biosensor. Adapted 
with permission from [86]. Copyright 2011, American Chemical Society. (B) Chromatic characteristic of plasmonic paper with gold nanoparticles (AuNPs) formation in the CIE 
XYZ in 1931 color space. Adapted with permission from [87] Copyright 2020, MDPI. (C) Schematic illustration of the ATO-based paper biosensor as peroxidase mimics for 
colorimetric detection of glucose using smartphone read-out. Adapted with permission from [89], Copyright 2019, Springer. (D) User interface with smartphone readout of 
glucose urine tests using smartphone app. Adapted with permission from [63], Copyright 2021, Royal Society of Chemistry. 

 
However, accurate measurement requires the 

system to set certain conditions, including shutter 
speed, aperture value, focal length, automatic white 

balance, and the same ambient lighting conditions. 
Also, the captured image is processed after saving the 
JPEG, where the raw color information can be lost. 
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Therefore, in 2021, Mercan et al. reported a portable 
platform based on a color change in μPAD by 
implementing machine learning classifier with Linear 
Discriminant Analysis (LDA), Gradient Boosting 
Classifier (GBC), and Random Forest (RF) [94]. They 
used different smartphones to train images captured 
in seven different lighting conditions. Among the 
tested and calibrated image sets, TMB (98.24%) with 
an LOD of 0.8 μM obtained the highest accuracy 
classification. The platform can automatically find 
ROI and minimize human error, contributing to 
user-friendly and accurate measurement of POC 
systems. 

For improved sensitivity, Freitas et al. used mass 
spectrometry in combination with matrix-assisted 
laser desorption/ionization (MALDI) and desorption 
electrospray ionization (DESI) to monitor color 
gradient-based μPAD (Figure 6C). To understand 
assay performance such as reproducebility and 
sensitivity, they used a glucose enzyme assay using 
potassium iodide (KI) as a chromogen for generating 
color formation [93]. Although MALDI and DESI 
imaging techniques have been successfully explored 
in enzymatic assays for glucose colorimetric detection, 
the above studies have reusability issues, information 
loss due to RGB color space conversion, and bulky 
imaging setups. From these points of view, 
inexpensive, simple and reliable self-monitoring 
image acquisition systems and algorithms are highly 
demanded for POC devices. For the development of 
POC devices, Wang et al. developed a smartphone- 
based spectrometer for colorimetric-based glucose 
biosensors containing aptamer-functionalized AuNP 
[95]. The smartphone-based spectrometer is 
integrated with the grid substrate, and it uses the 
built-in camera and LED flash in the smartphone. 
They experimentally demonstrated the detection of 
glucose and human cardiac Troponin I (cTnl) with 
peptide-functionalized AuNP. A smartphone-based 
spectrometer with spectral numerical correction 
enables fast and sensitive real-time glucose moni-
toring with LOD from 0.2 to 0.47 mM. However, the 
integrated grating substrate is expensive and still 
requires additional devices and complex processing.  

Meanwhile, to improve sensitivity, Darabdhara 
et al. fabricated paper strips to exploit the peroxidase 
and oxidase mimic activity [96]. They prepared 
bimetallic Cu-Pd NPs to reduce graphitic carbon 
nitride (g-C3N4), graphene oxide (rGO) and MoS2 
sheets with a size of less than 10 nm. They optimized 
the synthesis of Cu-Pd NPs with the desired shape, 
size, and oxidation state (Figure 6D). A designed 
biosensor strip of μPAD measured glucose in serum 
with a detection limit of 0.29 μM and a detection 
range from 0.2 to 50 μM [96]. Tian et al. designed a 2D 

layer of PtS2 integrated with dopamine-functionalized 
hyaluronic acid (HA-DA) hydrogel microspheres for 
sensing H2O2 using a low-cost ultrasonication-assisted 
liquid exfoliation method [97]. This biosensor has a 
greater color change than the PtS2 nanosheets by 
adding it directly to the glucose solution. 
Subsequently, a colorimetric biosensor based on PtS2 
nanosheets and PtS2@HA-DA microspheres was 
developed to quantitatively determine glucose 
concentrations in buffer and human serum, 
respectively. The PtS2 nanosheet showed linearity in 
the dynamic range (0.5 to 150 μM) with a low LOD of 
0.20 μM. Although a μPAD has been reported using 
this bifunctional oxidase-peroxide mimicking 
nanozyme and has provided a low-cost and simple 
platform for glucose detection, μPADs require 
reaction time to premix samples prior to the final 
reaction. From this point of view, inexpensive and 
metal-free bifunctional nanozymes using earth- 
abundant elements are highly desirable. Zhang et al. 
reported metal-free nanozymes of modified graphitic 
carbon nitride (g-C3N4: GCN) and demonstrated an 
enzymatic mimic role of this function [98]. They 
demonstrated dual-functional enzyme-mimicking 
behaviors that combines the roles of oxidase (GOx) 
and peroxidase (HRP) using metal-free nanozymes 
based on modified graphitic carbon nitride (g-C3N4: 
GCN). In addition, they demonstrated bifunctional 
cascade catalysis in microfluidics for continuous 
colorimetric detection of glucose with an LOD of 0.8 
μM within 30 s (Figure 6E). However, although this 
study showed a low LOD in microfluidic device that 
is sensitive enough for clinical glucose concentration, 
clinical validation and in vivo test are further required 
for practical application. 

5.3. Colorimetric-based wearable glucose 
biosensors 

With digitization of glucose monitoring, 
wearable systems are a convenient way for diabetes 
patients. Colorimetric-based wearable biosensors 
connected to digital cameras and smartphones can 
allow continuous monitoring by the end-user, while 
sample collection can be performed painlessly, an 
essential advantage for improving patient compliance 
[99]. The development of wearable biosensors 
requires specific functions, such as soft, thin, and 
stretchable features [100]. Therefore, the wearable 
biosensor withstands the physical burden and is in 
close contact with the body surface, making it 
convenient to wear and avoid physical perturbation 
due to skin contact. For example, if the material is 
hard, stabilization may occur during operation, which 
can affect measurement errors.  
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Figure 6. The glucose biosensor of microfluidic paper-based devices (μPADs). (A) The layout of µPAD assays of the enzymatic reaction for glucose detection. 
Adapted with permission from [127]. Copyright 2017, MDPI. (B) Scheme of paper microfluidics and tailored AuNPs, colorimetric multiplex biomarker detection. Adapted with 
permission from [93]. Copyright 2011, American Chemical Society. (C) Illustration of microfluidic paper-based analytical device for glucose colorimetric assay by mass 
spectrometry imaging. Adapted with permission from [128]. Copyright 2018, American Chemical Society. (D) The schematic illustration of the paper-based multiplexed 
colorimetric device with microfluidic pattern for detection of salivary biomarkers. Adapted with permission from [126]. Copyright 2021, MDPI. (E) Comparative enzymatic 
cascade reaction for glucose detection and scheme in a microfluidic device. Adapted with permission from [98], Copyright 2019, Nature Publishing. 

 
Different materials could alter the mechanical 

properties of the wearable glucose biosensors. 
Standard materials are textiles or fabrics, polymer 
composites, and papers that can be transformed into 
tattoos, patches, contact lenses, smartwatches, 
eyeglasses, and e-skin biosensors to act as sensors 
with integrated electronic devices [101]. 

Microneedles (MNs) are introduced in implant-
able wearable devices to achieve instrument-free 
glucose detection and continuous blood glucose 
control. Ensuring the stability and accuracy of 
implantable wearable biosensors is very important for 
commercialization. Yang et al. reported a glucose 
biosensor without a noninvasive instrument [102]. 

They designed a glucose-biosensing microneedle 
patch (GBMP) composed of GOx-conjugated 
MnO2/graphene oxide nanozymes (GOx-MnO2@GO) 
and swollen methacrylate gelatin (MeGel). GBMP is 
demonstrated by inserting into the skin to measure 
glucose concentration in ISF under hyperglycemic 
conditions to generate gluconic acid and H2O2 due to 
the enzymatic reaction of GOx and glucose in the 
body. Color changes are monitored with the naked 
eye or as RGB value with a smartphone camera. Color 
intensity is based on the quantitative analysis of 
glucose concentration and collects 5.1 ± 0.3 μL sweat 
from skin ISF within 3 min. Sun et al. also introduced 
an ultrasensitive optical transducer for wireless 
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glucose monitoring with smartphone (Figure 7A). 
They developed oxygen-sensitive polymer dots 
(Pdots) and implanted subcutaneously on the dorsal 
side of mice for in vivo glucose monitoring [103]. In 
order to clearly distinguish between normoglycemia 
and hyperglycemia, the image acquired with a 
smartphone was processed with an RGB model, and 
the contrast ratios of red and blue were compared. 
This design has the advantages of being easy to use, 
cost effective, high sensitivity, short measurement 
time, sustainability, and pain-free by detecting the 
color change of various samples. However, to increase 
accuracy by reducing measurement noise through 
advanced diagnostic algorithms such as machine 
learning and artificial intelligence, huge demand must 
be met. 

In 2019, Choi et al. developed a sweat-based 
stretchable microfluidic device for the development of 
a patch types wearable device [21]. It is the most 
advanced colorimetric-based biosensor platform for 
commercialization by optimizing microfluidic 
designs, chemistry and device layouts to enable 
precise evaluation. This platform is capable of 
measuring sweat, sweat rate, sweat temperature, pH, 
glucose concentration, chloride, and lactate in a 
physiologically relevant range (Figure 7B). To reduce 
errors in this work, they adopted a reference marker 
and measured glucose concentrations of ~0.1 μM. The 
integrated color reference markers can provide 
accurate colorimetric estimation of body fluids under 
various lighting conditions, and it is demonstrated at 
the different smartphone models in a remote setting. 
Koh et al. also reported that sweat is harvested and 
stored from human skin to measure glucose 
concentration, chloride, sweat rate, lactate, and pH 
levels [104]. As shown in Figure 7C, tortuous channels 
within the microfluidic automatically collect sweat 
and image combined with a smartphone camera for 
RGB information. This allows the glucose 
concentration to be quantitatively determined from 
the RGB values. One distinct advantage of a sweat 
colorimetric-based wearable biosensor is that the 
wearer can interpret the qualitative analysis of the 
analytes in real-time without the need for an external 
device. However, wider use of the device requires the 
introduction of uncalibrated sensors associated with 
colorimetric glucose sensing systems. In addition, in 
vivo and clinical validation for meaningful medical 
applications is needed to monitor the association of 
sweat glucose concentration with blood readings. 

Tear-based continuous enzyme sensing of a 
contact lens type, a wearable device, centers around 
glucose sensing, and current designs of intraocular 
nanozyme sensing have been incorporated into 
polymer matrix-forming contact lenses [105]. In 2011, 
Yao et al. reported a contact lens sensing platform to 
measure glucose concentration by applying a 
GOD/titania sol-gel film immobilized glucose 
oxidase [106]. They used Nafion® to decrease 
potential interference from the tear film and 
demonstrated real-time monitoring with a loop 
antenna, a wireless communication chip embedded in 
a polymeric contact lens. This kind of biosensor has 
fast response time (20 s) and dynamic range (0.1 - 0.6 
mM). The 2014 Google glucose-sensing contact lens 
project was based on this work. In 2017, Kim et al. 
incorporated silver nanowires and graphene hybrid to 
improve the stretchability, conductivity, transpa-
rency, and contact lens-based biosensor [107]. They 
designed a graphene/nanowire hybrid source-drain 
and graphene channel supported by biocompatible 
parylene substrate. This contact lens-based biosensor 
was in vivo demonstrated in rabbit and further ex vivo 
monitored glucose on a bovine eyeball. From this 
point of view, colorimetric detection using nanozyme 
is a promising method without requiring electrodes, a 
bulky system, energy storage capacity or detectors. 
However, the biosensors in this device are not 
generally biocompatible. 

Moreddu et al. reported a paper-based 
microfluidic approach with contact lens [108]. The 
glucose detection biosensor was a lab-made 
poly-HEMA contact lens combined with paper to 
detect multiple components, such as pH, ascorbic 
acid, glucose, proteins, and nitrite ions, in 2 μL of 
artificial tear in less than 35 s. In addition, they 
applied a smartphone application for glucose 
detection, converted to the CIE XYZ in 1931 
chromaticity diagram to compare color changes, and 
used nearest-neighbor color search to return density 
values corresponding to the corrected color in the 
plot. These techniques can expand the number of 
calibration points and improve specificity by 
combining them within machine learning algorithm. 
Their paper-based microfluidic contact lens provided 
high sensitivity (3.9 nM/L) and LOD (1.1 mM/L) with 
reduced error under various lighting conditions. 
However, although this biosensor was not associated 
with toxicity issues, it is not evaluated in animal 
models in vivo and in vitro to understand body 
responses. 
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Figure 7. Colorimetric-based wearable glucose biosensors. (A) An implantable optical transducer using ultrasensitive luminescence signal detection for wireless glucose 
monitoring. Adapted with permission from [103]. Copyright 2018, American Chemical Society. (B) A wearable microfluidic device using sweat on skin for colorimetric analysis. 
Adapted with permission from [21], Copyright 2019, ACS publication. (C) The images of wearable biosensor with glucose-responsive of the transparent nanofiber hydrogel 
patches. Adapted with permission from [129], Copyright 2020, Nature Publishing. (D) Schematic illustration of tear glucose measurement by the reflectance spectrum of a 
nanoparticle embedded contact lens (NECL) and configuration of the integrating sphere with external light source and spectrometer. Adapted with permission from [38], 
Copyright 2019, Nature Publishing. (E) Schematic illustration of colorimetric NECL and optical monitoring system. Adapted with permission from [24], Copyright 2019, ACS 
publication. 

 
Recently, Park et al. developed a biocompatible 

biosensor of a nanoparticle-embedded contact lens 
(NECL) composed of complexes of cerium oxide 
nanoparticles (CNPs), glucose oxidase (GOx), and a 
polyethylene glycol (PEG) [20]. After reacting with 
tear glucose and H2O2, NECLs are oxidized and 
changed into a yellowish color. A spectrometer was 

used for quantitative analysis of color change to 
measure glucose concentration using NECL. A 
detectable change in the reflection spectrum of NECL 
was found in relation glucose concentration (Figure 
7D) [38]. However, current spectrometers are 
expensive and require pre- and post-processing steps. 
Thus, they developed a simple RGB camera and 
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smartphone-based optical monitoring system 
utilizing the NECL in animal models and clinical 
human tears [19]. To reduce the environmental errors 
and enable continuous monitoring of the NECL in 
animal models, they developed an image processing 
algorithm that automatically optimizes the 
measurement accuracy even when images are 
obscured by motion artifacts (Figure 7E). This 
algorithm would be of great benefit to patients by 
enabling near real-time visualization and 
measurement of tear glucose concentration. In fact, 
they conducted blind evaluation of human tears 
provided by normal person and diabetic patients, and 
as a result, using the developed system, they were 
able to accurately discriminate between diabetic 
patients and normal person with a probability of over 
90%. Furthermore, they evaluated the cytotoxicity of 
NECLs in human umbilical vein endothelial cells 
(HUVECs) and human corneal epithelial cells 
(HCECs). The cytotoxicity of NECLs was not 
noticeable, indicating that no problems occurred 
during contact lens fabrication. 

6. Future direction 
Recent research on nanozymes with enzyme- 

mimicking activity has overwhelmingly increased, 
expanding the scope of application of colorimetric- 
based glucose detection. Nanozymes integrated with 
colorimetric-based glucose biosensors have several 
advantages over natural enzymes as key functional 
components for analyte detection, including higher 
efficiency, greater versatility, lower cost, and higher 
stability. However, despite these significant advances, 
some research gaps and hurdles remain at these 
boundaries, and some work remains to realize the 
great potential of nanozymes in the development of 
colorimetric-based biosensors. First, although many 
nanomaterials have been used to mimic various 
natural enzymes in terms of material, oxidoreductase 
mimetics are mainly peroxidase mimics, because of 
their low-cost, easy storage, rapidity, and high 
sensitivity. Given the diversity of natural enzymes, 
additional efforts are needed to develop novel strate-
gies for designing nanozyme with novel catalytic 
properties and machine learning based algorithms for 
quantitatively measure of glucose concentration. This 
increases the flexibility of nanozyme applications in 
biosensor development and provides affordability for 
detecting a wider range of analytes. Second, the 
sensitivity of colorimetric-based biosensors depends 
mainly on the catalytic efficiency of nanozymes. 
However, more attention should be paid to rational 
design of high-performance nanozymes to achieve the 
desired sensitivity-based colorimetric biosensors. For 
example, natural enzymes work together as enzyme 

clusters to provide high catalytic efficiencies within a 
confined environment for cascade reactions. For better 
sensitivity, nanozyme assembly is a good option, such 
as aggregation of other nanozymes or nanozymes 
with native enzymes. In addition, researchers have 
introduced several new materials with outstanding 
performance, such as the metal-doped composite 
materials or perovskite materials [14, 72, 74]. 
Perovskite is a ceramic oxide with the molecular 
formula ABX3. The A is usually rare earth metal such 
as lanthanide and the B is a transition metal. Both A 
and B can be replaced by other metal ions of similar 
radius to form various compounds. There are studies 
that perovskite nanocomposites have high 
oxidase-like catalytic activity by a simple and accurate 
colorimetric detection method [109]. Third, some 
studies have used other biosensing mechanisms 
instead of colorimetric signals for the growth of 
portable biosensors. However, the lack of portability 
and the existence of sophisticated and complex 
instruments limit the versatility of nanozymes using 
fluorescence or other sensing methods that rely on 
optical properties. Lastly, it has not been highly 
reported that studies on the toxicological mechanisms 
or potential toxicity of nanozymes identified so far. 
Since most of nanozymes are nanomaterials produced 
through metal-based bottom-up chemical synthesis, 
research on the toxicity of nanozymes is very 
important. For example, a previous study investi-
gated the toxic effects of CeO2, a type of metal oxide 
constituting nanozymes [110]. In that study, 
morphological-dependent cytotoxicity was confirmed 
by increased serum concentrations of lactate 
dehydrogenase (LDH) and tumor necrosis factor 
alpha (TNF-α) in rod-shaped CeO2 compared to 
cubic/octahedral CeO2. As shown in this example, a 
close toxicity analysis is required because there is a 
change in toxicity depending on the form, 
concentration, and degree of oxidation of the 
nanozyme even with the same component. The 
integration of nanozymes with wearable, implantable, 
and collectable biosensors requires careful control of 
the effective window to avoid potential toxicity, and 
systematic studies are required to evaluate the toxicity 
of nanozymes. Although previous reports have 
highlighted the therapeutic importance of several 
nanozymes in animal models, translating drugs into 
clinical applications remains a challenge [111]. In 
addition, a thorough mechanism and understanding 
of the experimental phenomena under the practical 
application of nanozymes limits their rapid develop-
ment for practical applications. The reason for this is 
that the relatively low catalytic activity and potential 
toxicity issues of nanozymes compared to natural 
enzymes make it very difficult to meet the practical 
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application requirements of nanozymes. Therefore, 
this challenge remains a major hurdle to overcome in 
nanozyme applications in biosensing and will 
undoubtedly become an active area for future 
research. More research may be done in the future, 
especially to address issues above the processing step, 
simplify complex physical fabrication, reduce 
potential toxicity, and combine nanozyme monitoring 
systems with other technologies that continue to 
improve. 

In terms of colorimetric analysis, naked eye 
detection is the simplest detection method. However, 
visual perception varies from person to person and 
depends on ambient conditions such as lighting. 
Therefore, in order to accurately and quantitatively 
measure the colorimetric change, a simple scanner or 
a digital camera that can accurately measure the 
colorimetric change is required. The advantage of 
digital devices is that no skilled manpower is 
required, high-resolution images can be generated, 
and color change can be quantitatively measured. 
Many colorimetric-based studies using smartphones 
to monitor glucose concentration have been heavily 
introduced due to their convenience and portability. 
However, there are several issues that need to be 
addressed using smartphones. First, images acquired 
from smartphone cameras are easily distorted and 
compressed, resulting in low correlation with 
real-world signals. The result is low repeatability, low 

accuracy, and low sensitivity in colorimetric-based 
glucose detection. These limitations are caused by 
ambient or environmental conditions, including 
varying lighting conditions, shooting distance, angle 
of the acquired image, and motion artifacts such as 
breathing and subtle movements. Second, different 
smartphone models have different RGB responses, so 
that different colors can be obtained from images 
processed by different smartphones. To reduce 
interference and increase accuracy, color correction 
methods using polynomial or linear regression 
algorithms using a color checker have been developed 
as basic information for color intensity [112]. Accurate 
correction is performed by processing the acquired 
images through image normalization and white 
balance, brightness correction, saturation correction, 
and color transformation steps. Finally, accurate 
evaluation algorithms have been developed to 
improve the detection performance of in vivo models. 
Nowadays the application of machine learning in 
nanozyme will increase rapidly in the next few years, 
especially in material sciences and related fields as 
shown in Table 7. Because machine learning is great 
option, a subfield of artificial intelligence (AI) that 
uses statistics to improve accuracy techniques. It 
provides computer models with the ability to learn 
from a dataset, allowing models to perform specific 
tasks without explicit programming. 

 
 

Table 7. The summary of recent machine learning based colorimetric analysis. 

Learning 
type 

Purpose Image format Machine learning model Software Training data  Color space Sample Ref 

Supervised 
learning 

Classification RAW 
JPEG 

Least-Squares Support-Vector Machine (LS-SVM)  MATLAB 385 images RGB, HSV, 
LAB 

Hydrogen 
peroxide 

[208] 

Supervised 
learning 

Classification JPEG Linear Discriminant analysis (LDA), Gradient 
Boosting Classifier (GBC), Random forest RF)  

Python, MATLAB 224 images  RGB, HSV, 
LAB 

Artificial 
Saliva 

[94] 

Supervised 
learning 

Classification JPEG LDA, SVM, ANN MATLAB, Python, 
Android studio 

- RGB, HSV, 
YUV, Lab 

Alcohol 
solution 

[209] 

Supervised 
learning 

Classification JPEG LDA 
Ensemble bagging classifier (EBC) 

Matlab, Android 
studio 

616 images RGB, HSV, 
YUV, LAB 

Artificial 
saliva 

[210] 

Supervised 
learning 

Classification JPEG Convolutional neural network (CNN) MATLAB 1600 images RGB Glucose 
solution 

[211] 

Supervised 
learning 

Classification Spectrum  Support vector machine-radial basis function 
(SVM-RBF) 

- - - Glucose 
solution 

[212] 

Supervised 
learning 

Classification JPEG Multi-Layer Perceptron (MLP), Residual Network 
(ResNet), CNN 

- 490 images RGB C-reactive 
protein 
(CRP) 

[212] 

Supervised 
learning 

Classification JPEG, RAW LS-SVM MATLAB 450 images RGB prepared 
PH solution 

[213] 

Supervised 
learning 

Classification JPEG, 
Spectrum 

Faster region-based (CNN) - 1500 images RGB Urine [102] 

Supervised 
learning 

Classification RAW Artificial neural networks (ANNs) MATLAB 160 and 54 
data points 

CMYK  Artificial 
urine 

[62] 

Supervised 
learning 

Classification NIR 
Spectrum 

Deep neuronal network (DNN) - 1024 dataset - Serum 
glucose 

[39] 

Supervised 
learning 

Classification Spectrum  Multi-Channel -CNN - - - Glucose 
solution 

[214] 
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Artificial neural network (ANN) or 
convolutional neural network (CNN), and support 
vector machine (SVM) are very powerful ML model 
that can learn continuous functions using linear or 
non-linear systems with or without hidden layers. 
They show fast computation and easy 
implementation because they has fascinating features 
of learning [113]. They only require input-output 
variables and identification of the relationship 
between processing parameters. Although they can 
adapt to real-time operations and calculate the fast 
result, they have little application in biosensors for 
colorimetric-based glucose detection. Additionally, 
the optical hyperspectral image (HSI) can provide 
more detailed color information, because it covers 
narrow spectral bands in the visible, NIR, and IR 
range instead of assigning primary colors (Red, 
Green, and Blue). Therefore, more detailed 
information can be achieved from colorimetric 
detection than the primary colors [114]. However, 
spectrophotometers are bulky and expensive, making 
it challenging to apply glucose monitoring in various 
conditions. Recently low-cost hyperspectral imaging 
with smartphone techniques has been introduced 
[115]. This is statistical learning-based image 
processing algorithms to be included in machine 
learning. They can convert RGB into hyperspectral 
image by training between actual measurements of 
spectral reflectance obtained from a hyperspectral 
camera or handheld spectrometer and RGB image 
captured by smartphone. Obviously, the 
reconstructed hyperspectral images computed on the 
smartphone allow for accurate glucose detection and 
are very useful. However, since the nanozyme-based 
colorimetric biosensor has not yet been integrated as a 
standard, additional work is required to apply clinical 
purpose, and it should be possible to calibrate the 
smartphone image obtained through it. Therefore, we 
argue that developing nanozymes with different 
enzymatic activities and developing various 
algorithms that can accurately detect color values are 
excellent options for improving the accuracy of 
colorimetric-based glucose sensing. 

7. Conclusion 
The success of colorimetric-based biosensors 

utilizing nanozymes for glucose detection in diabetic 
patients requires high accuracy, user-friendly device 
portability, biocompatibility, and ease-of-use in image 
acquisition. Collectively, the challenges faced in 
design of colorimetric-based glucose biosensor 
applications are development of nanozymes. Rather 
than hindering future research, essential information 
collected from the current state-of-the-research is 

introduced along with detailed analyses to suggest 
future research directions. 
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