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Abstract 

Rationale: Transplant rejection is a major impediment to long-term allograft survival, in which the actions of 
immune cells are of fundamental importance. However, the immune cell dynamics and local intercellular 
communication of acute cardiac allograft rejection are not completely clear. 
Methods: Here we performed single-cell RNA sequencing on CD45+ immune cells isolated from cardiac grafts 
and spleens in a model of murine heterotopic heart transplantation. Moreover, we applied unsupervised 
clustering, functional enrichment analysis, cell trajectory construction and intercellular communication analysis 
to explore the immune cell dynamics and local intercellular communication of acute cardiac allograft rejection 
at single-cell level. The effect of CXCR3 antagonist and neutralizing antibody against its ligand on allograft 
rejection and T cell function was evaluated in murine heart transplantation model. 
Results: We presented the immune cell landscape of acute murine cardiac allograft rejection at single-cell 
resolution, and uncovered the functional characteristics and differentiation trajectory of several alloreactive 
cell subpopulations, including Mki67hi CTLs, Ccl5hi CTLs, activated Tregs and alloreactive B cells. We 
demonstrated local intercellular communication and revealed the upregulation of CXCR3 and its ligands in 
cardiac allografts. Finally, CXCR3 blockade significantly suppressed acute cardiac allograft rejection and 
inhibited the alloreactive T cell function. 
Conclusions: These results provide a new insight into the immune cell dynamics and local intercellular 
communication of acute cardiac allograft rejection, and suggest CXCR3 pathway may serve as a potential 
therapeutic target for transplant rejection. 

Key words: Single-cell RNA transcriptomics; Acute rejection; Murine heart transplantation; Immune landscape; Intercellular 
communication 

Introduction 
Allograft rejection is a serious complication 

following heart transplantation that can eventually 
lead to cardiac graft dysfunction and failure [1]. The 
course of allograft rejection is orchestrated by the 
cross-regulation of the adaptive and innate immune 
systems [2, 3]. Various immune cells participate in 
transplant rejection, and the intercellular communi-
cation among immunocytes is also critical for the 
initiation and maintenance of allograft rejection. For 

instance, communication between T cells and 
antigen-presenting cells (APCs) is indispensable for 
the initiation of allograft rejection, and the interactions 
between chemokines and chemokine receptors are 
essential for the chemotaxis and differentiation of 
immunocytes. While traditional high-throughput 
sequencings (RNA and TCR sequencing) have offered 
substantial insight into transplant rejection in the past 
decade, some key questions cannot be addressed with 
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these assays [4]. First, traditional high-throughput 
sequencing does not address phenotypic hetero-
geneity, which is critical for recognizing cell 
subclusters. Second, these approaches do not provide 
a precise description of local intercellular 
communications, which is useful for understanding 
allograft rejection. Recently developed single‐cell 
transcriptomic technology characterizes gene 
expression across cell populations, which presents 
novel opportunities to overcome these limitations and 
study transplants in unprecedented detail [5]. 

Single-cell omic technologies, including 
single-cell RNA sequencing (scRNA-seq), single-cell 
TCR sequencing (scTCR-seq) and single-cell 
combined transcriptome and proteome sequencing 
(scCITE-seq), show great superiority in depicting 
immunological networks. These methods have 
provided much-needed information on immune 
dynamics in the tumour immune microenvironment 
and coronavirus disease 2019 (COVID-19) during 
disease progression and treatment. For example, the 
combination of multiple single-cell omic technologies 
identified various immunophenotypes and associated 
gene sets that were positively or negatively correlated 
with T cell expansion following anti-PD1 treatment in 
breast cancer [6]. Immune responses show dramatic 
changes during the disease progression of COVID-19, 
both in the lungs and the peripheral blood, which 
were elucidated by single-cell omics [7, 8]. In addition 
to its utility in cancer and COVID-19 research, 
single-cell omics also provides a new window into the 
immunological network of transplant rejection [4, 5]. 
Several works have applied single-cell transcriptomic 
techniques in transplantation immunology, and some 
innovative findings have been reported. The 
immunological landscape of transplant arterio-
sclerosis was revealed by single-cell transcriptomics, 
and the CCL21/CXCR3 axis was identified as an 
important regulator of the immune response and 
might serves as a potential therapeutic target in 
disease treatment [9]. However, the immune cell 
dynamics and local intercellular communications in 
acute murine cardiac allograft rejection are not yet 
fully understood, which require specific evaluation at 
single-cell level. 

By analyzing single-cell transcriptomic datasets 
of immune cells isolated from murine heterotopic 
heart transplantation models, we gained insight into 
the dynamic immune activities in acute cardiac 
allograft rejection. First, we elucidated the immune 
cell landscape of acute murine cardiac allograft 
rejection at single-cell resolution, and eighteen 
distinct subclusters and six main cell types were 
identified. The immunological characteristics of 
several alloreactive subpopulations, including Mki67hi 

cytotoxic T lymphocytes (Mki67hi CTLs), Ccl5hi 
cytotoxic T lymphocytes (Ccl5hi CTLs), activated 
regulatory T cells (aTregs), and alloreactive B cells, 
were also uncovered. Second, we compared the local 
intercellular communication between two groups and 
found the upregulation of CXCR3 and its ligands in 
the allografts. Based on bioinformatic analysis, we 
further verified the high expression level of CXCR3 in 
allografts by flow cytometry, and CXCR3 blockade 
significantly suppressed acute cardiac allograft 
rejection. Furthermore, our single-cell transcriptomic 
data could become a useful resource for deeper and 
more comprehensive research on acute cardiac 
allograft rejection, which might allow the discovery of 
new therapeutic targets. 

Materials and methods 
Animals and murine heterotopic heart 
transplantation models 

Eight to ten-week-old male C57BL/6J (B6; H-2b) 
and BALB/c (H-2d) mice were purchased from 
Charles River (Beijing, China). All mouse experiments 
were performed in a specific pathogen-free facility 
according to the guidelines of the animal care and use 
committee of Huazhong University of Science and 
Technology and complied with the National Institutes 
of Health (NIH) Guidelines for the care and use of 
laboratory animals. We established a murine 
heterotopic heart transplantation model as previously 
described [10], animals were anesthetized using 2% 
isoflurane and administered via nose cone mask. All 
animals were euthanized using CO2 asphyxiation, 
followed by cervical dislocation to obtain tissue 
samples. In the allograft group, BALB/c hearts were 
transplanted into fully MHC-mismatched B6 
recipients. In the control group, B6 hearts were 
transplanted into MHC-matched B6 recipients. 

Cell isolation 
Cardiac allografts normally arrest on Day 7 after 

transplantation because of acute rejection. It is 
reasonable to harvest cardiac grafts on Day 5, Day 6 or 
Day 7 before cardiac allografts arrest[11, 12], which 
may depend on the experience of the research group. 
Therefore, we harvested spleens and cardiac allografts 
from allograft group recipients (n = 3) on Day 6 before 
cardiac allograft arrest. At the same timepoint, spleens 
and cardiac isografts were harvested from control 
group recipients (n = 3). CD45+ cells were respectively 
isolated after digestion, centrifugation and flow 
sorting. In brief, cardiac grafts were cut into pieces 
and digested with 1 mg/mL collagenase B (Roche 
11088815001) in Hank’s balanced salt mixture 
(Solarbio H1025, China) at 37 °C for 20 min, digestion 
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solution was harvested and resuspended every five 
minutes. After digestion, the cell suspensions were 
collected and filtered through 70-μm cell strainers. 
Percoll (Solarbio P8370, China) was used to purify 
mononuclear cells through density centrifugation at 
600 g and 25 °C for 25 min without braking. 
Splenocytes were prepared through grinding, 
erythrocyte lysis, washing and centrifugation (600 g, 3 
min). Live CD45+ cells were then sorted by a BD 
FACSAria II flow cytometer after cardiac graft- 
infiltrating cells and splenocytes were stained with 
anti-CD45-APC (BioLegend 103112, USA) and a 
Zombie Green Fixable Viability Kit (BioLegend 
423102, USA). 

scRNA-seq library preparation and sequencing 
Single-cell gel bead-in-emulsions (GEMs) were 

constructed using a Chromium Single Cell 5’ Library 
and Gel Bead Kit following the manufacturer’s 
instructions. Briefly, FACS-sorted cells were washed 
with 0.04% BSA PBS three times and resuspended to a 
concentration of 700 ~ 1200 cells/µL (viability ≥ 85%), 
as determined by a Countess™ II Automated Cell 
Counter. The cells in the samples that reached the 
standard were then captured in droplets. Single-cell 
GEMs consisted of single-cell and specific 16-nt 10× 
barcodes and 10-nt unique molecular identifiers 
(UMIs). Within the single-cell GEMs, the tagged cells 
were lysed, and the released mRNA was barcoded. 
Reverse transcription (RT) was performed in the 
GEMs. After the RT step, the emulsion was broken, 
and amplification of the 10× barcoded cDNA was 
completed. Amplified cDNA was then used for the 
construction of 5′ gene expression libraries. Each 
cDNA library was sequenced on a NovaSeq platform 
(Illumina) to generate 150-bp paired-end reads. 

Preprocessing of scRNA-seq data 
Raw feature counts were generated by the 

function ‘CellRanger count’ of Cell Ranger (10× 
Genomics, version 3.0.2). The input data were fastq 
files, and the mm10 genome was used as the reference 
genome. scRNA-seq expression matrices were 
generated by Seurat (version 4.0.1) [13, 14]. Seurat 
offers functions for quality control, filtering, 
normalization and dimensionality reduction. To filter 
cells with low quality, we used the following 
selection criteria: cells with a gene number greater 
than 500 and less than 5000 and a mitochondrial DNA 
percentage lower than 5%, and genes with at least one 
feature count in more than 5 cells were selected for 
subsequent analysis. 

Cell clustering and cell type annotation 
After preprocessing all scRNA-seq data, we 

integrated 4 groups using the ‘FindIntegration 
Anchors’ and ‘IntegrateData’ functions. The 
abbreviations used to represent these groups were as 
follows: control group spleen (Ctrl-SP), allograft 
group spleen (Allo-SP), control group heart (Ctrl-HT), 
and allograft group cardiac graft (Allo-HT). Among 
them, control group heart was from GSE142564 [15]. 
We used the ‘ScaleData’ function to scale and centre 
the integrated data. After calculation with the 
‘RunPCA’ function, the first 20 principal components 
were used for dimensionality reduction and 
clustering through ‘FindClusters’ functions 
(resolution = 0.6). The clusters were visualized with 
UMAP by seed.use = 3. The marker genes of each 
cluster were selected from differentially expressed 
genes (DEGs) using the ‘FindAllMarkers’ function. 
We annotated cell populations using a combination of 
automated software annotation and reference to 
recent high-throughput studies. The package SingleR 
(version 1.4.1) was used for cell type annotation based 
on the ImmGen database [16]. Violin plots, feature 
plots, dot plots, and heatmaps of gene expression 
were generated with ‘VlnPlot’, ‘FeaturePlot’, 
‘DotPlot’, and ‘DoHeatmap’, respectively. 

Marker gene identification and subsequent 
functional analysis 

The DEGs of each group and marker genes of 
each cell cluster were identified by the Seurat function 
‘FindAllMarkers’, with a minimum log-fold change 
threshold of 0.25, adjusted P values less than 0.05, and 
a minimum 0.25 fraction in cells. Functional 
annotation of DEGs was performed by the gene set 
enrichment analysis (GSEA) function in 
clusterProfiler version 3.18.1 [17], with the threshold 
set to P-adjusted < 0.05. The gene sets used can be 
found in the Molecular Signatures Database (version 
7.4) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG). A volcano plot was generated in R with 
ggplot2 to show the genes with upregulated or 
downregulated expression. 

Construction of cell trajectories along the 
pseudo-time axis 

After the cell data were passed through quality 
control, the R package monocle2 (version 2.18.0) was 
utilized to construct the pseudo-time trajectories of 
each cell type obtained from Seurat objects [18]. 

Intercellular communication analysis 
CellChat [19] is a new tool that is able to 

quantitively infer and analyse intercellular 
communication networks from scRNA-seq data. We 
used CellChat (version 1.0.0) to predict major 
signalling inputs and outputs for cells and how those 
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cells and signals coordinated for functions using 
network analysis and pattern recognition approaches. 

Flow cytometry 
Typically, surface staining was performed at 

room temperature for 15 min. Dead cells were 
excluded using a Zombie Aqua Fixable Viability Kit 
(BioLegend 423102, USA). For intracellular staining of 
cytokines, cells were restimulated with phorbol 
12-myristate 13-acetate (PMA; 50 ng/ml, Abmole 
M4647, China) and ionomycin (500 ng/ml, 
Sigma-Aldrich 407951, USA), and cytokine secretion 
was blocked with GolgiStop (BD Biosciences 554724, 
USA) for 6 h according to the manufacturer’s 
instructions. The cells were then fixed and 
permeabilized with a Fixation/Permeabilization 
Solution Kit (BD Biosciences 554715, USA), followed 
by staining with fluorochrome-labelled antibodies 
against cytokines according to the manufacturers’ 
instructions. All samples were run on a BD 
LSRFortessa X-20 flow cytometer, and the results 
were analysed using FlowJo version 10 software. All 
antibodies and reagents used in our experiment are 
listed in Table S1. 

In vivo blockade of the CXCR3 pathway 
For the in vivo CXCR3- and CXCL9-neutralizing 

experiments, heart transplant recipient mice received 
different treatments after surgery. In the anti-CXCL9 
group, recipient mice were treated by intraperitoneal 
injection (i.p.) of 200 µg anti-CXCL9 monoclonal 
antibody (mAb) (BioXCell BE0309, clone: MIG-2F5.5, 
USA) every 2 days. In the anti-CXCR3 group, 
recipient mice were treated by i.p. injection of 200 µg 
anti-CXCR3 mAb (BioXCell BE0249, clone: 
CXCR3-173, USA) every 2 days. In the anti-CXCL9 + 
anti-CXCR3 group, recipient mice were treated by i.p. 
injection of 200 µg anti-CXCL9 mAb and 200 μg 
anti-CXCR3 mAb every 2 days until complete 
cessation of graft beating. In the isotype control 
group, recipient mice were treated by i.p. injection of 
200 μg Armenian hamster IgG (BioXCell BP0091, 
USA). 

Statistical analysis 
Data are expressed as the mean ± standard 

deviation (SD) and were analyzed by using GraphPad 
Prism 8 software. Two-tailed unpaired Student’s t-test 
was used for comparisons between two groups. 
One-way ANOVA was used for comparisons among 
multiple groups. The P value for graft survival was 
determined by the Mann–Whitney test. The 
significance level was set at P < 0.05. 

Results 
scRNA-seq analysis reveals distinct cellular 
compositions in cardiac grafts and spleens 

As shown in Figure 1A, murine heterotopic heart 
transplantation models were established, including 
allograft group and control group. Among the mice, 
cardiac allografts (cardiac grafts in the allograft 
group) suffered acute rejection after transplantation 
because of MHC mismatching, but cardiac isografts 
(cardiac grafts in the control group) were free from 
rejection. This pattern was further confirmed by 
histological examination (Figure S1A-S1B). To 
characterize the immunocyte landscape, CD45+ cells 
were respectively isolated on Day 6 after 
transplantation. The gating strategy for flow sorting is 
depicted in Figure S1C. scRNA-seq analysis of the 
isolated CD45+ cells was then performed. After batch 
effect correction, the four datasets were well 
integrated (Figure S1D-S1G). 

Unsupervised clustering results revealed various 
cell types in cardiac grafts and spleens, with a total of 
18 cell subclusters and 6 main cell types identified 
based on typical marker genes and the top 5 variable 
genes (Figure 1B-1D, Figure S2A). As expected, we 
observed several distinct clusters in the allograft 
groups compared with the control groups (Figure 1C). 
The typical marker genes of 6 main cell types 
including Cd3g (T cells), Cd79a (B cells), S100a8 
(Neutrophils), Ncr1 (NK cells), Lyz2 (Myeloid cells), 
and Clec3b (Fibroblasts) are shown in Figure 1C. 
Significant changes and differences in cellular 
composition existed between the allograft group and 
control group for both the heart and spleen samples 
(Figure 1E, Figure S2B and S2C). Myeloid cell clusters 
accounted for over 80% of the total cells in the Ctrl-HT 
group; however, the proportion of myeloid cell 
clusters distinctly declined, ranging from 80.02% to 
16.50%. Furthermore, the proportion of T cells 
increased from 8.74% to 20.37%, and the percentage of 
B cell clusters increased from 5.82% to 54.93% in the 
Allo-HT group. These great changes suggested central 
roles for T cell- and B cell-mediated adaptive immune 
responses in the complicated progression of acute 
heart transplant rejection. B cells and T cells 
represented over 90% of the total cells in the Ctrl-SP 
group. Although B cells and T cells remained the 
major cell types in the Allo-SP group, their 
percentages were decreased because of the infiltration 
of neutrophils. Distinct changes in the cellular 
compositions of cardiac grafts and spleens were 
uncovered by clustering analysis. Additional 
interesting phenomena may yet be revealed in further 
functional analyses of different cell types. 
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Figure 1. Single-cell transcriptomics analysis reveals distinct cellular compositions in cardiac grafts and spleens. (A) Schematic depicting heart transplantation 
model establishment and sample processing for single-cell RNA-seq. (B) Initial UMAP visualization of all cells (18,678) in 18 color-coded subclusters and 6 major cell types. (C) 
UMAP plots showing color-coded cell clusters in different groups. The abbreviations used to represent these groups were as follows: control group spleen (Ctrl-SP), allograft 
group spleen (Allo-SP), control group heart (Ctrl-HT), and allograft group cardiac graft (Allo-HT). (D) Feature plots of typical marker genes for 6 major cell types. (E) Bar chart 
demonstrating the proportions of major cell types among different groups. 

 

T cells and NK cells mediate cellular immune 
responses in acute cardiac allograft rejection 

Current studies commonly agree that the 
responses of T cells to alloantigen determine the 
short-term and long-term outcomes after solid organ 
transplantation [20, 21]. It is valuable to explore the 
dynamic changes in T cell subsets and functionality in 
acute cardiac allograft rejection. Therefore, we 
reclustered 3605 T cells together with 496 NK cells at a 
higher resolution and identified nine T cell clusters (T 

cell subsets) and one NK cell population (Figure 2A). 
According to the transcriptomic characteristics of T 
cells and NK cells (Figure 2B), the ten cell subsets 
could be preliminarily divided into CD8+ T cells 
(Clusters 1, 2, 5, 8, and 9), CD4+ T cells (Clusters 0, 4, 6, 
and 7) and NK cells (Cluster 3). To correlate each 
cluster with a known T cell subset, we screened the 
top 10 variable genes of each cluster and compared 
them to those of previously reported T cell subsets 
and canonical markers [22] (Figure 2C and 2E). 



Theranostics 2022, Vol. 12, Issue 14 
 

 
https://www.thno.org 

6247 

 
Figure 2. Single-cell transcriptomics analysis present the dynamic of T and NK cells in acute murine cardiac allograft rejection. (A) UMAP plots displaying ten 
color-coded subclusters of T and NK cells. (B) Violin plots showing the expression levels of typical marker genes (columns) defining T cell (Cd3d, Cd3e, Cd3g, Cd4, Cd8a, and 
Cd8b1) and NK cell (Ncr1) clusters (rows). (C) Heatmap depicting the expression of the top 10 enriched genes across cell clusters (columns), with typical enriched genes and 
putative biological identity. (D) Bar chart showing the proportion of each cell cluster among different groups. (E) Violin plots showing normalized expression levels of selected 
genes (columns) among ten clusters (rows). 

 
For the four CD4+ T cell clusters, there was a 

population of naïve CD4+ T cells expressing high 
levels of naïve T cell-associated genes (Lef1, Ccr7, and 
Igfbp4) [22] (Cluster 0); a population of Tregs, labelled 
on the basis of their classic expression of the Foxp3, 
Il2ra, and Lag3 (encoding the CD25 protein) genes 
(Cluster 4); a population of 𝛾𝛿T cells overexpressing 
the Tcrgc1, Tcrgv4, and Trdv4 genes (Cluster 7); and the 

Ctrl-HT-specific resident CD4+ T cell subpopulation, 
which showed high expression of the Ccr8, Rora, and 
Gata3 genes (Cluster 6). Compared to that in the 
Ctrl-HT group, the Treg subpopulation in the Allo-HT 
group showed slight changes in absolute counts and 
relative proportions (Figure 2D, Figure S3B). 
However, the functional differences between the two 
groups were great. Compared to the Tregs in the 
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Ctrl-HT group, the Tregs in the Allo-HT group 
overexpressed Foxp3 and Il2ra, together with activated 
regulatory T cell (aTreg)-associated genes such as 
Cd81 and Cst7 [23, 24] and coinhibitory (Pdcd1 and 
Ctla4) and costimulatory genes (Tnfrsf4 and Tnfrsf9). 
The population of Tregs in the Ctrl-HT group was 
labelled on the basis of their classic expression of the 
Foxp3 and Il2ra genes, together with the expression of 
the naïve-associated genes Lef1 and Sell [22] (Figure 
3D). The above results indicate that the Tregs in the 
Ctrl-HT group showed a resting Treg (rTreg) 
phenotype, while the Tregs in the Allo-HT group 
showed an aTreg phenotype. GSEA results also 
confirmed our conclusion (Figure 3C). 

We next focused on CD8+ T cells, the most 
enriched T cell population in the Allo-HT (63.81%) 
and Allo-SP (53.19%) groups (Figure 2D, Figure S3B). 
Cluster 1 was defined as the naïve CD8+ T cell cluster, 
which expressed high levels of naïve T cell-associated 
genes (Plac8, Dapl1, Lef1, and Igfbp4) [22]. Cluster 8 
was defined as spleen-special CD8+ T cells. Cluster 9 

appeared to be effector CD8+ T cells that highly 
express Il7r, Statb1 and Cd28 [25]. Allograft 
group-enriched CD8+ T cells (Clusters 2 and 5) 
displayed high expression of granzyme genes (Gzma, 
Gzmb, Gzmk, and Gzmm) and expressed other cell 
cytotoxicity-related gene (Prf1), indicating that these 
subsets were CD8+ CTLs with potential cytotoxic 
ability [26]. Cluster 2 also showed high expression of 
Mki67, Ccna2, and Ccnb2 and was further annotated as 
Mki67hi CTLs, while Cluster 5, which displayed high 
Ccl5 expression, was annotated as Ccl5hi CTLs [27]. 
Further functional analysis and differential gene 
expression analysis suggested that showed stronger 
proliferative and cytotoxic killing abilities, whereas 
Ccl5hi CTLs showed a stronger migratory capacity 
(Figure 3A and 3B). 

Features of alloreactive B cells in cardiac 
allografts 

B cells were initially considered to be antibody- 
producing cells in the pathological process of 

 

 
Figure 3. Functional characteristics of alloreactive Mki67hi CTLs, Ccl5hi CTLs and Tregs in allografts. (A) Violin plots showing normalized expression levels (Z 
scores) of selected genes in Cluster 2 and Cluster 5. (B) Gene set enrichment analysis (GSEA) comparing Ccl5hi CTL (C5) to Mki67hi CTL (C2) for T cell migration signature 
genes (C) GSEA comparing Treg cells in Allo-HT with Treg cells in Ctrl-HT for the regulatory T cell signature. (D) Violin plots showing the expression levels (Z scores) of 
selected genes among Treg cells in Ctrl-HT (blue) and Allo-HT (red). ns, not statistically significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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transplant rejection [28], but it has been recognized 
that B cells also act as APCs, capable of immune 
regulation and cytokine secretion [29, 30]. To clearly 
describe the role of B cells in acute cardiac allograft 
rejection, high-resolution clustering analyses were 
performed. B cells were separated into nine 
subpopulations: two alloreactive B cell clusters 
(Clusters 1 and 2) were primarily enriched in the 
Allo-HT groups, and four clusters (Clusters 0, 3, 4, 
and 6) were identified as SP-enriched B cells that were 
mainly enriched in the Ctrl-SP and Allo-SP groups 
(Figure 4A and Figure 4B, Figure S4A). Differential 
gene expression analysis allowed us to define specific 
cell populations (Figure 4C, Figure S4B). Cluster 4 was 
characterized by marker genes of naïve B cells (Ebf1, 
Dusp2, Fcmr, and Ms4a1). Cluster 0 comprised a mix of 
naïve and activated cells expressing Ms4a1, Ebf1, Fcmr, 
Ccr7, and Dusp2 [31, 32]. It is possible that these cells 
were also partially activated in vivo. Marginal zone B 
cells (Cluster 3) showed high expression of the marker 
genes Cd9 and Cr2 [32]. In Cluster 6, marker genes of 
germinal centre B cells (Eif5a, Mif, and Tuba1b) were 
highly expressed [33, 34]. We identified two Allo-HT 
group-enriched clusters (Clusters 1 and 2) that 
expressed genes associated with activated B cells 
(Fcgr3, Fcer1, Nr4a1, Ccl4, Ier3, and Ccnb2) [32, 35]. 
Plasma cell clusters (Clusters 5, 7 and 8) were 
identified by canonical markers (Jchain, Sdc1, Xbp1, 
and Slpi) [36].  

The B cell compositions in the Allo-SP and 
Ctrl-SP groups were similar, and spleen-enriched 
clusters were the most abundant B cell subsets in 
these two groups (Figure 4B and 4D). However, 
plasma cells (Clusters 5 and 7) were significantly 
increased in the Allo-SP group, which indicated a 
possible continuous humoral immune response in 
acute cardiac allograft rejection. Two clusters 
(Clusters 1 and 2) existed almost exclusively in the 
Allo-HT group and could be considered alloreactive B 
cells in cardiac allografts. To better understand the 
transcriptional dynamics of different B cell 
populations, we constructed the cell trajectory of each 
cell type over pseudo-time (Figure 4E and 4F, Figure 
S4C). Significantly, we found that the SP-enriched 
clusters (Clusters 0, 3, 4 and 6) were placed early in 
the trajectory, whereas alloreactive B cell clusters 
(Clusters 1 and 2) and plasma cell clusters (Clusters 5, 
7, and 8) were placed at the two terminals of the 
trajectory. This confirmed that the majority of the B 
cells in the Allo-SP group were still quiescent in an 
acute cardiac allograft rejection environment but that 
alloreactive B cells infiltrating cardiac allografts were 
activated. The pathway enrichment results also 
demonstrated the activity state of alloreactive B cells. 
Alloreactive B cells showed a stronger migratory 

ability and might play an important role in leukocyte 
differentiation regulation (Figure 4G). 

High-resolution analyses reveal distinct cell 
populations involved in the innate immune 
response 

Decades of research have established that the 
adaptive immune system is critical in acute transplant 
rejection, but accumulating evidence indicates that the 
innate immune system also plays an important role in 
acute transplant rejection [2]. Our previous results 
suggested that myeloid cells (including monocytes, 
macrophages, and dendritic cells (DCs) accounted for 
the majority of immune cells in the Ctrl-HT group, 
and the proportion of myeloid cells in the Allo-HT 
group was significantly decreased (Figure 1E). To 
obtain more information on the dynamic changes in 
myeloid cells, we performed focused clustering 
analysis of these cells at a higher resolution and 
separated them into eleven clusters (Figure S5A, 
Figure 5A). The difference between the Ctrl-HT and 
Allo-HT groups was large, and the quantity of 
myeloid cells decreased dramatically in the Allo-HT 
group, with the exception of Cluster 1 and Cluster 10 
(Figure 5A). Differential gene expression analysis 
allowed us to define cell populations (Figure 5B, 
Figure S5C). Cluster 1 was most similar to an 
interferon-responsive (ISGhi) population because it 
showed strong expression of interferon-responsive 
signature-associated genes (Ifitm2, Ifitm3, Ifitm6, and 
Irf7) and the proinflammatory genes S100a6 and 
S100a11. Seven clusters (Clusters 0, 2, 3, 4, 5, 6, and 9) 
were identified as heart-resident macrophages that 
were mainly observed in the Ctrl-HT group. Cluster 0 
was identified as antigen-presenting macrophages 
(AP MΦ-1) and was characterized by high expression 
of antigen presentation-associated genes (H2-DMb2, 
Cd83, H2-Ab1, H2-Eb1, H2-Aa, Cd74, and Cd40). 
Cluster 9 was also defined as antigen-presenting 
macrophages (AP MΦ-2) with high expression of 
H2-DMa, H2-Ab1, H2-Eb1, H2-Aa, and Cd74. Cluster 2 
was characterized by high expression of immediate 
early genes (Jun, Fos, Egr1, Klf2, and Aft3) encoding 
transcription factors [37] and annotated as immediate 
early response macrophages (IER MΦs). Cluster 3 was 
suggested to be Vcam1+ macrophages (Vcam1+ MΦ) 
[38], with high expression of Vcam1. Cluster 4 was 
defined as Cd14+ macrophages without other highly 
expressed genes. Cluster 5 was characterized by high 
expression of heat shock protein (HSP) genes (Hspa1a, 
Hspa1b, and Hsph1) and annotated as HSPhi MΦ [39]. 
Cluster 6 was defined as Ccl5-high macrophages 
(Ccl5hi MΦs) with high expression of Ccl5 and Rsad2. 
Two clusters (Clusters 7 and 8) were defined as DC 
clusters that overexpressed Cst3 and Flt3. Cluster 7 
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was suggested to be Cd209+ DCs, with high 
expression of Cd209 [40]. Cluster 8 was annotated as 
Clec9ahi DCs, which exhibited high expression of 

Clec9a [41]. Cluster 10 was most similar to 
inflammatory monocytes, with expression of Ly6i and 
the monocyte markers CD14 and Fcgr3. 

 

 
Figure 4. Single-cell transcriptomics analysis present the dynamic of B cells in acute murine cardiac allograft rejection. (A) UMAP plots displaying nine 
color-coded subclusters of B cells and three main cell types. (B) UMAP plots showing nine color-coded cell clusters in different groups. (C) Dot plot showing the expression 
levels (color-scaled, columnwise Z scores) of selected genes (columns)) and the percentage of expressing cells (dot size) among nine cell clusters (rows). (D) Pie charts 
demonstrating the proportion of nine subclusters in different groups. The colors of the pie charts are consistent with those in the UMAP plots. (E) Monocle pseudotime 
inference traces a path of three main cell types, with each color coded for pseudotime (top). (F) Differentiation trajectory of three main cell types, with each color coded for 
clusters (bottom). (G) Gene Ontology (GO) enrichment analysis of alloreactive B cells. BP: biological process; CC: cellular component; MF: molecular function. 
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Figure 5. Focused analyses of ISGhi macrophages enriched in allografts. (A) UMAP plots showing eleven color-coded cell subclusters in different groups. (B) Heatmap 
demonstrating the expression of the top 10 enriched genes across cell clusters (columns), with typical enriched genes and putative biological identity. (C) Monocle pseudotime 
inference traces a path along three main cell types, with each color-coded by pseudotime (top). (D) Differentiation trajectory of three main cell types, with each color-coded by 
cluster (bottom). (E) Volcano plots showing gene features between ISGhi macrophages and heart-resident macrophages. DEGs (with −log10P > 4; logFC (fold change) > 0.5 or 
logFC (fold change) < −0.5) are highlighted in red or blue. (F) Differences in the top 10 enrichment pathways between ISGhi macrophages (red) and heart-resident macrophages 
(blue). 

 
Cell trajectory analysis demonstrated that ISGhi 

macrophages (Cluster 1, enriched in the Allo-HT 
group) represented the terminal stage of the 
trajectory, and most heart-resident macrophages were 
placed early in the trajectory (Figure 5C and 5D). This 

result traced a putative differentiation path from 
heart-resident macrophages to ISGhi macrophages. 
Further analysis of the DEGs between ISGhi 
macrophages and heart-resident macrophages also 
confirmed the proinflammatory and interferon- 
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responsive phenotype of ISGhi macrophages (Figure 
5E). In addition, macrophage migration-associated 
genes (Ccl6, Ccr2, and Ccr1) were upregulated in ISGhi 
macrophages. The top 10 enriched Gene Ontology 
biological process terms (GOBPs) in ISGhi 
macrophages further supported the identity of this 
cluster, as these genes were involved in allograft 
rejection, myeloid leukocyte migration, leukocyte 
chemotaxis, response to interferon-gamma, and 
response to interferon-beta (Figure 5F). 

Local intercellular communication analysis 
identifies the CXCR3 pathway as a potential 
therapeutic target 

Compared to bulk RNA-seq, scRNA-seq has the 
advantage of allowing the exploration of cellular 
signalling at the individual cell level and 
consequently the identification of potentially novel 
intercellular communications. To explore local 
intercellular communication changes during acute 
cardiac transplant rejection, we compared cellular 
signalling between the Allo-HT and Ctrl-HT groups 
(Figure 6A). We found that CXCL - CCL signalling 
pathways were more abundant in the Allo-HT group 
(Figure 6B and 6C, Figure S6A and S6B). Further 
analysis of CXCL-CCL signalling pathway networks 
revealed that Cxcr3 and its ligands Cxcl9 and Cxcl10 
were significantly highly expressed in the Allo-HT 
group (Figure 6D). Cxcl9 and Cxcl10 were mainly 
enriched in myeloid cell clusters and B cell clusters in 
the Allo-HT group, but Cxcr3 was mainly enriched in 
T cell clusters in this group. The high expression level 
of CXCR3 in allograft-infiltrating T cells was also 
confirmed by flow cytometry (Figure 6E-6G). We also 
assessed the expression level of CXCR3, CXCL9, 
CXCL10, and CXCL11 in clinical database which 
including 331 human heart transplant 
endomyocardial biopsies [42], and these genes were 
also upregulated in rejection group (Figure 6H). These 
results indicate that the CXCR3 pathway is 
significantly involved in acute heart transplant 
rejection and might be a potential therapeutic target.  

Blocking the CXCR3 pathway prolongs 
allograft survival and inhibits T cell activation 
in a murine heart transplantation model 

CXCR3, the receptor for the chemokines CXCL9, 
CXCL10 and CXCL11, is highly expressed on 
activated T cells. However, there is no commercially 
available antibody that can completely block it. The 
CXCR3-173 mAb is a monoclonal antibody that 
recognizes an epitope of CXCR3 and significantly 
inhibits binding to CXCL10 (IP-10) and CXCL11 
(ITAC) but not to CXCL9 (MIG) [43]. Thus, the CXCR3 
pathway could not be completely blocked by the 

CXCR3-173 mAb. To verify the effect of blocking the 
CXCR3 pathway in acute murine cardiac allograft 
rejection, we combined the CXCR3-173 mAb with the 
MIG-2F5.5 mAb to completely block the CXCR3 
pathway (Figure 7A). After murine allograft heart 
transplantation models were established, recipients 
were randomly divided into four groups that received 
different treatments. The four groups included one 
isotype control group (IgG control group) and three 
experimental groups (anti-CXCL9 group, anti-CXCR3 
group, and anti-CXCL9 + anti-CXCR3 group). 
Compared with those in the control group, the 
recipients in the three experimental groups had longer 
allograft survival (Figure 7B). The median survival 
times of the anti-CXCL9 group, anti-CXCR3 group 
and anti-CXCL9 + anti-CXCR3 group were 14 days, 21 
days and 32 days, respectively (Figure 7C). These 
results indicated that targeting the CXCR3 pathway 
could protect against acute heart transplant rejection 
and that blocking the CXCR3 pathway completely 
achieved better results. Histological evaluation of 
cardiac allografts harvested from recipients also 
showed that the anti-CXCL9 + anti-CXCR3 group had 
a minimal acute cellular rejection grade (Figure 7D 
and 7E). Next, we analyzed splenocytes from 
recipients in the four groups by using flow cytometry 
(Figure S7A). Before further analyses, we determined 
the relative proportions and absolute counts of CD4+ 
and CD8+ T cells, which could affect related statistical 
indicators (Figure S7B-S7F). As shown in Figure 7F, 
effector (CD44+CXCR3+) CD4+ T cells and effector 
(CD44+CXCR3+) CD8+ T cells were notably reduced in 
the three experimental groups in comparison with the 
control group, in terms of both relative proportions 
(Figure 7G and 7I) and absolute numbers (Figure 7H 
and 7J), and the anti-CXCL9 + anti-CXCR3 group 
showed the most remarkable reductions among the 
three experimental groups. These results indicated 
that targeting the CXCR3 pathway significantly 
suppressed T cell activation. 

In addition, we detected the effector function of 
T cells, including IFN-γ+CD4+ T cells and IFN-γ+CD8+ 

T cells, in different groups (Figure S8A). Compared 
with the IgG control group, the anti-CXCL9 + 
anti-CXCR3 group exhibited significant reductions in 
IFN-γ+CD4+ T cells (Figure S8B and S8E) and 
IFN-γ+CD8+ T cells (Figure S8D and S8G). We next 
assessed the impact of targeting the CXCR3 pathway 
on Tregs (CD4+FOXP3+), and the results were 
negative (Figure S8C and S8F). Taking all the above 
results together, we propose that completely blocking 
the CXCR3 pathway significantly prolongs allograft 
survival and inhibits T cell activation. 
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Figure 6. Local intercellular communication analysis discloses the activation of CXCR3 pathway in acute murine cardiac allograft rejection. (A) All 
significant signaling pathways were ranked based on their differences in overall information flow within the inferred networks between Ctrl-HT and Allo-HT. The top signaling 
pathways (colored blue) are more enriched in Ctrl-HT, and the bottom signaling pathways (colored red) are more enriched in Allo-HT. (B) CXCL signaling pathway network in 
Ctrl-HT. (C) CXCL signaling pathway network in Allo-HT. (D) Expression distribution of CXCR3 signaling genes (Cxcr3, Cxcl9, and Cxcl10) at Ctrl-HT (blue) and Allo-HT (red). 
(E) The expression level of CXCR3 in T cells was assessed by Flow cytometry (F) Bar plots show the mean fluorescence intensity (MFI) of CXCR3 in T cells (n = 3). (G) Bar 
plots show the positive proportion of CXCR3+ T cells in different groups (n = 3). (H) Bar plots show the relative expression level of CXCR3, CXCL9, CXCL10, and CXCL11 in 
human heart transplant endomyocardial biopsies (n = 210 in No-rejection group, n = 38 in rejection group). All data are representative of three independent experiments at least. 
One-way ANOVA was used for comparisons among multiple groups. Two-tailed unpaired Student’s t-test was used for comparisons between two groups. Data represented as 
the mean ± SD. * p < 0.05, ** p < 0.01, **** p < 0.0001. 
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Figure 7. Blockade of the CXCR3 pathway prolongs allograft survival and reduces CD44+CXCR3+ T cells in the murine heart transplantation model. (A) 
Table shows the axis blocked by CXCR3-173 mAb or MIG-2F5.5 mAb. (B) Kaplan-Meier curves of cardiac allograft survival in different groups (n = 5). (C) Representative 
H&E-stained sections of cardiac allografts at day 6 post-transplant (n = 5, 200×, Scale bars: 100 µm). (D) Bar plots show the acute cellular rejection grade of cardiac allografts in 
different groups at day 6 post-transplant. (E) The total number of splenocytes in different groups at day 6 post-transplant (n = 5). (F) Representative FCM plots showing the 
percentage of activated T cells (CD44+ CXCR3+) in CD4 and CD8 T cells. Samples are splenocytes harvested at day 6 post-transplant. (G) Bar plots show the percentage of 
CD44+ CXCR3+ T cells in CD4 T cells (n = 5). (H) Bar plots show the number of CD4+ CXCR3+ CD44+ T cells (n = 5). (I) Bar plots show the percentage of CD44+ CXCR3+ 
T cells in CD8 T cells (n = 5). (J) Bar plots show the number of CD8+ CXCR3+ CD44+ T cells (n = 5). All data are representative of three independent experiments at least. 
One-way ANOVA was used for comparisons among multiple groups. The Mann-Whitney test was used for Kaplan-Meier curve comparisons. Data represented as the mean ± 
SD. ns, not statistically significant. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Discussion 
In this study, we performed scRNA-seq to 

characterize the heterogeneous immune cell 
populations in cardiac grafts and spleens using a 
murine heterotopic heart transplantation model. 
Single-cell transcriptomic analysis identified various 
subpopulations of T cells, B cells and myeloid cells. 
We described dynamic changes in the proportions of 
cell subsets and further analyzed features of specific 
alloreactive subpopulations. The details of immune 
cell dynamics and intercellular communications 
provided by scRNA-seq could be helpful for further 
understanding transplant rejection and exploring 
therapeutic targets. 

Single-cell omic techniques provide new 
approaches to explore critical and challenging 
questions in transplantation: the definition of crucial 
cell clusters involved in protective or pathogenic 
responses, the identification of donor- and 
recipient-derived immune cell infiltrates in the 
allograft, and the detection of the mechanisms 
underlying allograft rejection [4]. Several researchers 
have applied single-cell omics in transplant research 
for different scientific purposes, such as 
characterizing the cell atlas of transplant rejection [15, 
44-46], describing the features of graft-infiltrating 
cells[47], detecting potential targets in transplant 
rejection[48, 49], and revealing the dynamic immune 
features of transplant recipients receiving 
immunosuppressive treatment [50]. Our research 
filled this gap by utilizing single-cell transcriptomics 
to explore graft-infiltrating cell dynamics and local 
intercellular communication during acute murine 
cardiac allograft rejection. We annotated the 
transcriptomic features of T, B and myeloid cell 
clusters during acute heart transplant rejection in 
detail. Further functional and cell trajectory analyses 
also revealed the differentiation sources and 
functional features of alloreactive cell clusters. Among 
the T cell clusters, there were two alloreactive CD8+ 
clusters (Mki67hi CTLs and Ccl5hi CTLs) that were 
markedly increased in the allograft groups. These two 
clusters both possessed a cytotoxic ability but with 
different features. Mki67hi CTLs showed stronger 
proliferative and cytotoxic killing abilities, while 
Ccl5hi CTLs showed a stronger migratory capacity. 
Among the B cell clusters, two clusters (activated B 
cells 1 and 2) existed almost exclusively in cardiac 
allografts and could be considered alloreactive B cells. 
Alloreactive B cells showed a stronger migratory 
ability and might play an important role in leukocyte 
differentiation regulation. In the myeloid cell clusters, 
the macrophage cluster enriched in allografts was an 
interferon-responsive population that showed a 

proinflammatory and migratory phenotype. 
In addition to describing immune cell 

population dynamics and gene expression changes, 
single-cell transcriptomics can support the 
exploration of local intercellular communication at the 
individual cell level. The pathway changes in local 
intercellular communication provide a reference for 
designing therapies to suppress allograft rejection. We 
compared the local intercellular communication 
between allografts and isografts and found the 
upregulation of the CXCR3 pathway in the murine 
cardiac allografts. The same upward trend also exited 
in human heart transplant endomyocardial biopsy 
specimens which suffered acute transplant rejection. 
CXCR3, the receptor for the chemokines CXCL9, 
CXCL10 and CXCL11, is highly expressed on 
activated T cells. The CXCR3 signaling pathway plays 
essential roles in the cellular differentiation and 
migratory function of T cells [51]. The role of the 
CXCR3 signaling pathway in allograft transplant 
rejection has been explored in several previous 
studies [43, 52-56]. In several clinical researches, 
CXCR3 and its ligands were considered as potential 
diagnostic markers of allograft rejection. For example, 
Dany Anglicheau investigated that the urinary 
chemokines CXCL9 and CXCL10 are promising 
noninvasive diagnostic markers of acute rejection in 
kidney recipients. John A. Belperio and colleagues 
evaluated the correlation between bronchoalveolar 
lavage fluid CXCR3 chemokines with episodes of 
acute rejection, acute lung injury in lung transplant 
recipients. In addition, the majority of basic studies 
suggest that blocking the CXCR3 pathway suppressed 
acute cardiac allograft rejection, but there is one 
exception. Zerwes et al. reported that Cxcr3 deficiency 
in recipients did not diminish graft infiltration or 
rejection, suggesting that passenger leukocytes 
expressing CXCR3 might be involved in rejection or 
that other effector molecules support compensatory 
proliferation to compensate for the deficiency in 
CXCR3. Nevertheless, all previous research targeted 
only one molecule (receptor or ligand) in the CXCR3 
signaling pathway, which is insufficient to fully block 
the CXCR3 pathway. To compensate for this 
experimental defect, we combined the CXCR3-173 
mAb and MIG-2F5.5 mAb to completely block this 
pathway in our murine heart transplantation model. 
The results demonstrated that the combination of the 
CXCR3-173 mAb and MIG-2F5.5 mAb could limit 
acute rejection significantly more than a single 
neutralizing antibody. This provides a new approach 
for rejection treatment and drug development, and a 
fully blocking antibody targeting the CXCR3 pathway 
is urgently needed. 
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However, our study had some limitations. We 
harvested grafts and spleens only on day 6, so our 
observations cannot be generalized across the whole 
dynamic process (from day 0 to cardiac allograft 
arrest) of acute heart transplant rejection. Clearly, 
further studies are required to describe the dynamic 
immune profiles of acute heart transplant rejection. 

In conclusion, this study provides a new 
perspective for understanding acute cardiac 
transplant rejection at single-cell resolution. Our 
single-cell transcriptomic data could become a useful 
resource for deeper and more comprehensive research 
on acute heart transplant rejection, which might 
enable the discovery of new therapeutic targets. 
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