
Theranostics 2022, Vol. 12, Issue 13 
 

 
https://www.thno.org 

5931 

Theranostics 
2022; 12(13): 5931-5948. doi: 10.7150/thno.74281 

Research Paper 

Machine learning-based identification of tumor-infiltrating 
immune cell-associated lncRNAs for improving outcomes 
and immunotherapy responses in patients with low-grade 
glioma 
Nan Zhang1,2,8#, Hao Zhang1,8,9#, Wantao Wu1,3,8, Ran Zhou4, Shuyu Li5, Zeyu Wang1,8, Ziyu Dai1,8, Liyang 
Zhang1,8, Fangkun Liu1,8, Zaoqu Liu6, Jian Zhang7, Peng Luo7, Zhixiong Liu1,8, Quan Cheng1,8 

1. Department of Neurosurgery, Xiangya Hospital, Central South University, China. 
2. One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, China. 
3. Department of Oncology, Xiangya Hospital, Central South University, China. 
4. Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, UK. 
5. Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, China. 
6. Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, China. 
7. Department of Oncology, Zhujiang Hospital, Southern Medical University, China. 
8. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, China. 
9. Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, China. 

#These authors contributed equally to this work. 

 Corresponding authors: Dr. Zhixiong Liu, Department of Neurosurgery, Xiangya Hospital, Center South University, Address: Changsha 410008, Hunan, P. R. China. 
E-mail: zhixiongliu@csu.edu.cn; Dr. Quan Cheng, Department of Neurosurgery, Xiangya Hospital, Center South University, Address: Changsha 410008, Hunan, P. R. China. 
E-mail: chengquan@csu.edu.cn. 

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). 
See http://ivyspring.com/terms for full terms and conditions. 

Received: 2022.04.22; Accepted: 2022.07.28; Published: 2022.08.08 

Abstract 

Rationale: Accumulating evidence demonstrated that long noncoding RNAs (lncRNAs) involved in the 
regulation of the immune system and displayed a cell-type-specific pattern in immune cell subsets. Given the 
vital role of tumor-infiltrating lymphocytes in effective immunotherapy, we explored the tumor-infiltrating 
immune cell-associated lncRNA (TIIClncRNA) in low-grade glioma (LGG), which has never been uncovered 
yet. 
Methods: This study utilized a novel computational framework and 10 machine learning algorithms (101 
combinations) to screen out TIIClncRNAs by integratively analyzing the sequencing data of purified immune 
cells, LGG cell lines, and bulk LGG tissues. 
Results: The established TIIClnc signature based on the 16 most potent TIIClncRNAs could predict outcomes 
in public datasets and the Xiangya in-house dataset with decent efficiency and showed better performance 
when compared with 95 published signatures. The TIIClnc signature was strongly correlated to immune 
characteristics, including microsatellite instability, tumor mutation burden, and interferon γ, and exhibited a 
more active immunologic process. Furthermore, the TIIClnc signature predicted superior immunotherapy 
response in multiple datasets across cancer types. Notably, the positive correlation between the TIIClnc 
signature and CD8, PD-1, and PD-L1 was verified in the Xiangya in-house dataset. 
Conclusions: The TIIClnc signature enabled a more precise selection of the LGG population who were 
potential beneficiaries of immunotherapy. 
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Introduction 
Low-grade glioma (LGG) is a heterogeneous 

group of neuroepithelial tumors derived from 
supporting glial cells [1] and includes grades I and II 

out of four glioma grades classified by the World 
Health Organization (WHO) [2]. Given the superior 
malignancy of glioblastoma (grade IV glioma), The 
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Cancer Genome Atlas (TCGA) database classifies 
grades II and III gliomas as LGG. The outcomes of 
LGG are highly variable, depending on age at 
diagnosis, histological subtype, tumor size, etc. [3]. 
Surgical resection with postoperative radiotherapy 
and chemotherapy is the conventional treatment for 
LGG patients [4]. Despite its relatively benign 
biological characteristics, LGG remains incurable and 
slowly develops till premature death [1]. Numerous 
recent studies have focused on the tumor immune 
microenvironment (TIME) and the interactions 
between tumor and immune cells [5]. Immunotherapy 
based on the immune response, including immune 
checkpoint blockade (ICB) and adoptive cell transfer 
(ACT), has revolutionized the therapeutic outcomes 
for tumor patients. Researchers have made 
unremitting efforts to find more precise targets for the 
further development of immunotherapy. However, 
studies on immunotherapy of LGG remain to be 
enriched. 

Long noncoding RNAs (lncRNAs), a group of 
noncoding RNAs with more than 200 nucleotides, are 
closely related to diversified biological functions [6]. 
Many studies demonstrated that lncRNAs played a 
critical role in regulating cellular biological processes 
through modulating gene expression at 
transcriptional, post-transcriptional, and epigenetic 
levels [7]. Furthermore, the latest research has found 
that lncRNAs participated in the immune system 
modulation and showed a cell-type-specific pattern in 
immune cell subsets [8]. Ranzan et al. investigated 
over 500 lncRNAs and identified T cell-specific 
lncRNAs regulating cell differentiation [9]. Another 
study found lncRNA SATB2-AS1 as an essential 
regulator in colorectal cancer progression and 
immune cell density [10]. Given their close association 
with immune cell infiltration [8, 10], lncRNAs have 
colossal potential to evaluate immunotherapy 
response and predict clinical outcomes. Thus, it is 
promising to incorporate these powerful lncRNAs to 
develop prognostic biomarkers based on 
bioinformatics technology. Besides, as scientific 
research has entered the big data era with the fast 
development of high-throughput sequencing 
technologies, machine learning has been gradually 
widely applied to extract essential knowledge from 
big data bioinformatics. 

This study aimed to screen tumor-infiltrating 
immune cell-associated lncRNA (TIIClnc) through a 
novel computational framework. Via integrative 
analysis of sequencing data of purified immune cells, 
LGG cell lines, bulk LGG tissues, and machine 
learning algorithms, we established a TIIClnc 
signature to stratify LGG patients and predict the 
outcomes of immunotherapy. 

Materials and methods 
LGG patient and tumor cell line cohorts 
collection 

Transcriptome data and clinical information of 
LGG patients were accessed from three databases, The 
Cancer Genome Atlas (TCGA, https://portal.gdc. 
cancer.gov) via Illumina-HiSeq platform, Chinese 
Glioma Genome Atlas (CGGA, http://www.cgga. 
org.cn/) via Illumina-HiSeq platform, and Gene 
Expression Omnibus (GEO, http://www.ncbi.nlm. 
nih.gov/geo) via Affymetrix Human Genome U133 
Plus 2.0 Array platform. The total number of samples 
included in this study was 932, including 518 samples 
from the TCGA LGG dataset, 77 samples from the 
Xiangya in-house dataset, 169 samples from the 
CGGA LGG dataset, and 168 samples from the 
GSE108474 dataset. The immune-associated lncRNA 
signature was constructed through the TCGA LGG 
training dataset and subsequently validated using the 
Xiangya in-house dataset (Glioma tissues were 
collected and written informed consent was obtained 
from all patients. The included glioma tissues were 
approved by the Ethics Committee of Xiangya 
Hospital, Central South University). CGGA LGG and 
GSE108474 datasets were used as the external 
validating datasets. Transcriptome data of 10 LGG cell 
lines via the Affymetrix Human Genome U133 Plus 
2.0 Array platform was accessed from GSE36133 
(Cancer Cell Line Encyclopedia project (CCLE). 

Purified immune cell line cohorts collection 
Transcriptome data of 115 purified cell lines 

from 19 major immune cell types via Affymetrix 
Human Genome U133 Plus 2.0 Array platform was 
accessed from 16 datasets, including GSE27291, 
GSE27838, GSE28490, GSE13906, GSE23371, GSE2 
5320, GSE28698, GSE28726, GSE49910, GSE51540, 
GSE59237, GSE37750, GSE39889, GSE42058, GSE6863, 
GSE8059, and processed as previously described [8]. 

Preprocessing of transcriptome data 
The Robust Multi-array Average (RMA) 

algorithm [11] from the R package affy was used to 
perform quantile normalization, background 
correction, and log2 transformation of microarray 
data from the Affymetrix platform. The sequencing 
data fragments per kilobase million (FPKM) values 
were changed into transcripts per kilobase million 
(TPM) values. The probes of microarray data from the 
Affymetrix platform were renamed to obtain lncRNA 
expression profiles. After matching the annotation file 
of GENCODE (release 39) with the NetAffx 
annotation files (release 36), probe sets with Ensembl 
gene IDs as ‘long non-coding RNA’ was picked out. 



Theranostics 2022, Vol. 12, Issue 13 
 

 
https://www.thno.org 

5933 

1711 characteristic lncRNAs matching with 2019 
probes in microarray data from the Affymetrix 
platform were selected for further analysis. 
Correspondingly, lncRNA expression profiles 
(IlluminaHiSeq platform) were accessed from the 
TCGA and CGGA databases. 

Tumor-infiltrating immune cell-associated 
lncRNA signature establishment 

Through integrative lncRNA profiling analysis 
of purified immune cells, LGG cell lines, and bulk 
LGG cancer tissues, a novel computational framework 
was utilized to identify a tumor-infiltrating immune 
cell-associated lncRNA (TIIClnc) signature on account 
of a couple of machine learning algorithms. The 
details are as follows (Figure 1): 
• The top 15% expressed lncRNAs (each immune 

cell line) were taken for candidate 
immune-related lncRNAs. 

• The tissue specificity index (TSI) proposed by 
Yanai et al. [12] was applied to calculate the 
expression specificity of candidate lncRNAs for 
each cell type: 

TSIlnc = ∑ (1−𝑥𝑙𝑛𝑐,𝑖)
𝑁
𝑖=1

𝑁−1
 

where N represents the total number of immune 
cell types and xlnc, i represents the expression level of 
immune cell i normalized by the maximal expression 
intensity of lncRNA in any immune cell type. TSI 
ranges from 0 to 1, in which lncRNA is defined as an 
immune cell-general lncRNA when the value is 0 or 
an immune cell-specific lncRNA when the value is 1. 
The highly expressed lncRNAs in all immune cell 
types were identified as immune-related intrinsic 
lncRNAs (ilncRNA). 
• ilncRNAs differentially expressed between 

immune cell lines (upregulated) and LGG cell 
lines (downregulated) were determined as 
TIIClncRNAs. 

• Univariate Cox regression analysis was 
subsequently used to filtrate the TIIClncRNAs 
with prognostic potential in the TCGA LGG 
dataset. 

• 101 combinations of 10 machine learning 
algorithms, including Lasso, Ridge, stepwise 
Cox, CoxBoost, random survival forest (RSF), 
elastic network (Enet), partial least squares 
regression for Cox (plsRcox), supervised 
principal components (SuperPC), generalized 
boosted regression modeling (GBM), and 
survival support vector machine (survival-SVM) 
based on a 10-fold cross-validation were further 
used to screen out the most valuable TIIClnc 

signature with the highest C-index. 
• The TIIClnc signature was established based on 

the combination of RSF and CoxBoost. CoxBoost 
algorithm was used to screen out the most 
valuable TIIClncRNAs. RSF algorithm was 
further used to filtrate the most reliable model. 
Log-rank score test for splitting survival trees 
was conducted as previously described [13]. First, 
the x-variable x was assumed to be ordered as x1 
≤ x2 ≤ … ≤ xn. Then, the “ranks” for each survival 
time Tj (j ∈ [1, …, n]) were computed. The 
obtained equation is as follows: 

aj = δj - ∑
δ𝑘

𝑛− Γ𝑘 +1
Γ𝑗
𝑘=1  

where Γ𝑘  = #[t : Tt ≤ Tk] and Γ𝑗  represents the 
index of the order for Tj. The log-rank score test came 
as follows: 

TIIClnc signature = S (x, c) =
∑ (𝑎𝑗 −𝑛𝑙𝑎)𝑥𝑘≤c

�𝑛𝑙�1− 
𝑛𝑙
𝑛 �𝑆𝑎

2
 

where 𝑎 and 𝑠𝑎2 represent the sample mean and 
sample variance of [aj : j = 1, . . . , n], respectively. The 
measure of node separation is determined using 
log-rank score splitting by | S (x, c) |. The best split is 
reached by maximizing this value over x and c. 

Annotation of immune-related characteristics 
for the TIIClnc signature 

Seven types of immune modulators were 
collected [14]. T cell-inflamed gene expression profile 
(GEP), Cytotoxic activity (CYT), and interferon γ 
(IFN-γ) were calculated [15, 16]. Tumor mutation 
burden (TMB), microsatellite instability (MSI), T cell 
receptor (TCR) richness, TCR Shannon, and SNV 
Neoantigen were collected from the TCGA database. 
GATK4 was used to search for the SNPs and indels 
from the RNA sequencing data of the Xiangya 
in-house dataset. ANNOVAR was used to annotate 
the mutation information based on CRCh38 [17]. The 
tmb function of the R package maftools was applied 
further to calculate the TMB value of the Xiangya 
in-house dataset. The R package PreMSIm was used 
to predict the MSI value of the Xiangya in-house 
dataset. Six immune subtypes and 
immunophenoscore (IPS) were determined as 
previously described [14, 18]. The Tumor Immune 
Estimation Resource (TIMER) algorithm [19], single 
cell gene set enrichment analysis (ssGSEA) algorithm 
[18], Microenvironment Cell Populations-counter 
(MCPcounter) algorithm [20], and Estimation of 
STromal and Immune cells in MAlignant Tumours 
using Expression data (ESTIMATE) algorithm [21] 
were applied for calculating the abundance of 
immune infiltrating cells and ESTIMATE score. 
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Cancer immunity cycle, displaying the functional 
status of chemokines and immunomodulators, and 
114 metabolic pathways were collected and calculated 
using gene set variation analysis (GSVA) [22-24]. 
TIME signatures independently developed by 
Kobayashi [25] and Bagaev [26] were collected and 
calculated using GSVA. Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
terms were also quantified using GSVA and gene set 
enrichment analysis (GSEA). 

Predictive value of the TIIClnc signature for 
immunotherapy response 

The GSE35640 (melanoma) [27], GSE91061 
(melanoma) [28], GSE78220 (melanoma) [29], Allen 
(melanoma) [30], Nathanson (melanoma) [31], 
IMvigor (urothelial carcinoma) [32], Braun (renal cell 
carcinoma) [33], GSE179351 (colorectal adenocarci-
noma and pancreatic adenocarcinoma) [34], 
GSE165252 (esophageal adenocarcinoma) [35], and 
PRJNA482620 (glioblastoma) [36] datasets were used 
to predict the immunotherapy response, while the 
TIIClnc signature was calculated in each dataset. The 
GSE103668 (triple-negative breast cancer) [37] dataset 
was used to predict the targeted therapy response 
(cisplatin & bevacizumab). The subclass mapping was 
utilized to predict anti-PD-1 and anti-CTLA-4 
immunotherapy responses [38]. The Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm was also 
used in this section [39]. 

RNA sequencing 
RNAstore-fixed tumor tissues of 77 LGG 

samples from the Xiangya in-house dataset (Table S1) 
were collected for RNA sequencing as previously 
described [40]. Briefly, total RNA was extracted from 
the tumor tissues using TRIzol (Sigma-Aldrich, CA, 
USA). RNA purity and RNA integrity were checked 
using the NanoPhotometer spectrophotometer 
(IMPLEN, CA, USA) and the RNA Nano 6000 Assay 
Kit of the Bioanalyzer 2100 system (Agilent 
Technologies, CA, USA), respectively. A total amount 
of 1 μg RNA per sample was used as input material 
for the RNA sample preparations. Sequencing 
libraries were generated using NEBNext® UltraTM 
RNA Library Prep Kit for Illumina® (NEB, USA). 

Immunohistochemistry staining 
Paraffin-embedded tumor tissues of 20 of 77 

LGG samples used for RNA sequencing from the 
Xiangya in-house dataset were further collected for 
immunohistochemistry (IHC) staining. Briefly, tissue 
sections were placed in citric acid antigen repair 
buffer (pH 6.0) in a microwave oven for antigen 
retrieval. Slices were placed in a 3% hydrogen 
peroxide solution to block endogenous peroxidase. 

3% bovine serum albumin (BSA) was used as a 
blocking reagent. The sections were incubated with 
primary antibodies against CD8 (Mouse, 1:1000, 
66868-1-Ig, Proteintech, China), PD-1 (Rabbit, 1:800, 
18106-1-AP, Proteintech, China), PD-L1 (Mouse, 
1:1000, 66248-1-Ig, Proteintech, China). The sections 
were then incubated with a horseradish 
peroxidase-conjugated secondary antibody (1:200, 
GB23303, Servicebio, China). 3-3’-diaminobenzidine 
(G1211, Servicebio, China) was finally used for 
coloration, and hematoxylin was used for 
counterstaining cell nuclei. 

RT-qPCR assay 
The primers of GAPDH (F ACAGCCTCAAG 

ATCATCAGC; R GGTCATGAGTCCTTCCACGAT), 
LOC101928134 (F GAGCGAGGGTGATTGTCCA; 
R GAAGAGGGGAAGGGGTTCTC), and 
LOC100133461 (F GAGAGACCTGCCCAAGCATT; R 
TCCAGGTTCTGCATGTGTCC) were designed using 
the primer 5.0. Total RNAs were extracted and 
reversely transcribed into cDNA by HiScript Q RT 
SuperMix for RT-qPCR. The expression levels of 
LOC101928134 and LOC100133461 were quantified 
using 2-ΔΔCT. 

Cell Counting Kit-8 (CCK-8) assay 
The THP-1 cells were cultured in 1640 medium 

with 10% fetal bovine serum (FBS). The THP-1 cells 
were seeded in a 96-well plate at 104 cells/hole 
density. Three groups of the THP-1 cells transfected 
with siRNAs were cultured for 24 h, 48 h, and 72 h, 
respectively. Each group has four duplicated holes. 
The absorbance at 450 nm was measured after 
hatching under the condition of 37 ℃ and 5% CO2. 

EdU assay 
The EdU (5-ethynyl-2'-deoxyuridine) assay was 

performed according to the manufacturer's 
instructions (BeyoClick™ EdU Cell Proliferation Kit 
with Alexa Fluor 488, China). Three groups of the 
THP-1 cells transfected with siRNAs were incubated 
overnight with 50 μL 50 μM EdU medium and then 
fixed with 50 μL 4% paraformaldehyde. 100 μL 1x 
Apollo reaction solution was added for incubation for 
30 min. Finally, the cells were incubated with 1 mL 1 × 
Hoechst 33342 reaction solution for 10 min and 
observed with a confocal microscope. 

Transwell assay 
Three groups of the THP-1 cells transfected with 

siRNAs were centrifuged and resuspended using the 
serum-free medium. The density was adjusted to 105 
cells/mL. 100 μL cell suspension was added to the 
upper chamber, and 500 μL 1640 with 10% FBS was 
added to the lower chamber. After culturing for 48 h, 
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the migrated THP-1 cells in the lower chamber were collected and counted by flow cytometry. 
 

 
Figure 1. The computational framework for establishing the TIIClnc signature. The top 15% expressed lncRNAs were taken for candidate immune-related lncRNAs 
for each immune cell line. TSI was applied to calculate the expression specificity of candidate immune-related lncRNAs for each cell type. The highly expressed lncRNAs in all 
immune cell types were identified as immune-related ilncRNA. ilncRNAs significantly upregulated in immune cell lines and downregulated in LGG cell lines were defined as 
TIIClncRNAs. Univariate cox regression analysis was further used to screen out the prognostic TIIClncRNAs. All combinations of 10 machine learning algorithms, including RSF, 
Enet, Lasso, Ridge, stepwise Cox, CoxBoost, plsRcox, SuperPC, GBM, and survival-SVM, based on a 10-fold cross-validation were further used to screen out the most valuable 
TIIClnc signature with the highest C-index. The TIIClnc signature was finally generated based on the combination of RSF and CoxBoost. The association between the TIIClnc 
signature, prognosis, tumor immune microenvironment, and immunotherapy response was comprehensively investigated. 



Theranostics 2022, Vol. 12, Issue 13 
 

 
https://www.thno.org 

5936 

Statistical analysis 
Differentially expressed lncRNAs between 

immune and LGG cell lines were extracted by R 
packages ‘limma’. Samples were grouped based on 
the cutoff value of the TIIClnc signature determined 
by the R package ‘survminer’. The Kaplan-Meier 
survival plots were applied to estimate overall 
survival (OS) between the two TIIClnc signature 
groups using the R package ‘survival.’ C-index of OS 
was performed on the individual clinical variables, 
including the TIIClnc signature. The calibration 
curves of the TIIClnc signature were generated using 
the R package ‘pec’. The predictive value of the 
TIIClnc signature for prognosis was measured with 
time-dependent receiver operating characteristic 
(ROC) curves using the R package ‘timeROC.’ For 
normally distributed variables, statistical differences 
between groups were determined by a two‐tailed 
t-test while a one‐way ANOVA test determined 
statistical differences among groups. For nonnormally 
distributed variables, statistic differences between 
groups were determined by a Wilcoxon test while a 
Kruskal–Wallis test determined statistic differences 
among groups. All the statistical analyses were 
performed in the R project, version 4.1.2. 

Results 
Identification of TIIClncRNAs 

To comprehensively evaluate the immune 
cell-related lncRNA, 115 purified cell lines from 19 
major immune cell types from 16 datasets were 
collected by searching for literature from 2007 to 2022 
(Figure 1). 546 lncRNAs (top 15% expressed lncRNAs) 
were taken for candidate immune-related lncRNAs 
selection in each immune cell line. TSI score of the 546 
lncRNAs was calculated to identify the ilncRNAs 
generally expressed in all 19 immune cell types (Table 
S2). Note that lncRNAs with a lower TSI score are 
generally highly expressed in different immune cell 
types, indicating their fundamental roles in immunity. 
308 ilncRNAs were confirmed to be critical for 
regulating elemental immunity with the threshold of 
TSI < 0.2. By comparing the expression of 308 
ilncRNAs in immune cell lines and LGG cell lines, 136 
ilncRNAs were further found to be significantly 
upregulated in 115 immune cell lines and 
downregulated in 10 LGG cell lines. These 136 
ilncRNAs were defined as LGG TIIClncRNAs. 

Development of the TIIClnc signature 
To develop a prognostic TIIClnc signature, 

univariate Cox regression analysis regarding OS 
confirmed 46 prognostic TIIClncRNAs from 136 
ilncRNAs in the TCGA LGG dataset. 10 machine 

learning algorithms, including RSF, Enet, stepwise 
Cox, CoxBoost, plsRcox, Lasso, Ridge, SuperPC, 
GBM, and survival-SVM, were combined based on a 
10-fold cross-validation to identify the most robust 
TIIClnc signature with the highest C-index in the 
TCGA LGG training dataset, Xiangya in-house 
validating dataset, and two external validating 
datasets (CGGA LGG and GSE108474) (Figure 2A). A 
final TIIClnc signature with the best performance was 
established based on the combined RSF and CoxBoost 
algorithms, which CoxBoost algorithm identified the 
16 most valuable TIIClncRNAs (C7orf13, LINC00628, 
LINC01121, LOC100133461, LINC01134, TP53TG3HP, 
SLCO4A1-AS1, C1RL-AS1, LOC284395, TMEM72- 
AS1, PSMB8-AS1, DKFZp779M0652, LOC100506142, 
RPARP-AS1, CARD8-AS1, LOC101928134) (Figure 
2B, Table S3) and RSF algorithm filtrated the most 
reliable model (Figure 2C). In accordance with our 
previous analyses, 16 TIIClncRNAs were generally 
expressed in all 19 immune cell types (Figure S1A). 
Besides, 16 TIIClncRNAs were significantly 
differentially expressed in immune cell lines 
(upregulation) and LGG cell lines (downregulation) 
(Figure S1B). Notably, LGG patients with high 
expression of 5 TIIClncRNAs had increased survival 
time, while LGG patients with high expression of 11 
TIIClncRNAs had decreased survival time in the 
TCGA LGG dataset (Figure S2). 

In vitro validation of TIIClncRNAs 
Among the 16 TIIClncRNAs, LOC100133461 and 

LOC101928134, with relatively higher expression in 
immune cell lines, were selected to further validate 
their potential roles in the TIME. RNA expression of 
LOC100133461 and LOC101928134 was significantly 
inhibited in three siRNAs groups of THP-1 cells, 
respectively (Figure S3A). The CCK-8 assay revealed 
the increased proliferation ability of THP-1 cells with 
inhibited expression of LOC100133461 and 
LOC101928134, respectively (Figure S3B and S3C). 
The EdU assay further proved the significantly 
increased proliferation ability of THP-1 cells with 
inhibited expression of LOC100133461 and 
LOC101928134, respectively (Figure S3D, S3E, S3F, 
S3G). Moreover, the Transwell assay revealed the 
significantly increased migration ability of THP-1 cells 
with inhibited expression of LOC100133461 and 
LOC101928134, respectively (Figure S3H, S3I, S3J, 
S3K). 

Prognostic value of the TIIClnc signature 
LGG patients with high TIIClnc signature scores 

had decreased survival time in the TCGA LGG, 
Xiangya in-house, CGGA LGG, and GSE108474 
datasets (Figure 2D). Consistently, time-dependent 
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ROC curves of 1-year, 2-year, 3-year, 4-year, and 
5-year OS in the TCGA LGG dataset (AUC values, 
0.913, 0.932, 0.960, 0.947, 0.938, respectively), Xiangya 
in-house dataset (AUC values, 0.755, 0.772, 0.827, 
0.810, 0.861, respectively), CGGA LGG dataset (AUC 
values, 0.749, 0.779, 0.816, 0.800, 0.812, respectively), 
and GSE108474 dataset (AUC values, 0.656, 0.707, 
0.715, 0.645, 0.642, respectively) confirmed the 
prognostic value of the TIIClnc signature (Figure 2E). 
The C-index of clinical factors in LGG patients was 
calculated. The univariate and multivariate Cox 
regression analysis was performed on clinical factors. 
The TIIClnc signature was found to be an 
independent prognostic factor like age, gender, grade, 
isocitrate dehydrogenase (IDH) status, 1p/19q status, 
methylation of O6-methylguanine-DNA methyltrans-
ferase (MGMT) status, with an advantage over all 
these clinical factors (Figure 3A, Table S4). Notably, 
the combination signature incorporating the TIIClnc 
signature, age, gender, grade, IDH status, 1p/19q 
status, and MGMT status showed better predictive 
efficacy in prognosis (Figure 3A). The calibration 
curves further proved the predictive accuracy of the 
TIIClnc signature (Figure 3B). 

Comparison of prognostic signatures in 
gliomas 

Thanks to the development of next-generation 
sequencing and technologies for mining big data, 
predictive gene expression-based signatures have 
been widely explored and developed. For a 
comprehensive comparison of the performance of the 
TIIClnc signature with other signatures, the published 
signatures over the past ten years were systematically 
retrieved. Ultimately, 95 signatures (including mRNA 
and lncRNA signatures) were enrolled in this study 
(Table S5). These 95 signatures were closely related to 
different biological features, including immuno-
therapy response, immune infiltration, autophagy, 
ferroptosis, pyroptosis, stemness, epithelial-mesen-
chymal transition, hypoxia, glycolysis, epigenetics, 
N6-methyladenosine, and aging. Notably, the TIIClnc 
signature displayed better performance regarding 
C-index in the TCGA LGG (Figure 3C), Xiangya 
in-house (Figure 3D), CGGA LGG (Figure 3E), and 
GSE108474 (Figure 3F) datasets than almost all 
models. 

Immune characteristics related to the TIIClnc 
signature 

To assess the role of the TIIClnc signature in the 
TIME of LGG, the relationship between the TIIClnc 
signature and immune cell infiltration and immune 
modulators was explored. Based on the TIMER 
algorithm, MCPcounter algorithm, and ssGSEA 

algorithm, the TIIClnc signature score was found to be 
positively correlated with almost all tumor immune 
infiltrating cells, such as T cells, T helper (Th) cells, 
natural killer (NK) cells, B cells, dendritic cell (DC), 
mast cells, myeloid-derived suppressor cell (MDSC), 
fibroblasts, macrophages, and regulatory T (Treg) 
cells in the TCGA LGG (Figure S4A), Xiangya 
in-house (Figure 4A), CGGA LGG (Figure S6A), and 
GSE108373 (Figure S7A) datasets. Based on the 
ESTIMATE algorithm, the TIIClnc signature score 
was positively correlated with a stromal score, 
immune score, and ESTIMATE score except for tumor 
purity in the TCGA LGG (Figure S4A), Xiangya 
in-house (Figure 4A), CGGA LGG (Figure S6A), and 
GSE108373 (Figure S7A) datasets. In addition, the 
TIIClnc signature score positively correlated with 
most immune modulators categorized into antigen 
presentation, cell adhesion, co-inhibitor, co-stimu-
lator, ligand, receptor, and others in the TCGA LGG 
(Figure S4B), Xiangya in-house (Figure 4B), CGGA 
LGG (Figure S6B), and GSE108373 (Figure S7B) 
datasets. Notably, a strong correlation was observed 
between the TIIClnc signature score and classical 
immune checkpoint molecules, including IDO-1, 
LAG-3, PD-1, PD-L1, PD-L1, CTLA-4, BTLA, and 
TIGIT (Figure 4B, S4B, S6B, S7B). 

The TIIClnc signature is a predictive 
biomarker for immunotherapy response 

To further explore the role of the TIIClnc 
signature in immunotherapy response, the 
relationship between the TIIClnc signature and 
several immunotherapy predictors was explored 
(Table S6). Notably, the MSI (Figure S5A), TMB 
(Figure S5B), CYT (Figure S5C), GEP (Figure S5D), 
TCR richness (Figure S5E), TCR Shannon (Figure S5F), 
SNV Neoantigen (Figure S5G), and IFN-γ (Figure 
S5H) levels were all significantly higher in the high 
TIIClnc signature score group in the TCGA LGG 
dataset, all of which were determinants of better 
immunotherapy response. The significant expression 
differences of CYT (Figure 4C, S6C, S7C), GEP (Figure 
4D, S6D, S7D), and IFN-γ (Figure 4E, S6E, S7E) 
between two TIIClnc signature score groups were also 
verified in the Xiangya in-house, CGGA LGG, and 
GSE108474 datasets. Furthermore, the MSI high group 
was significantly associated with high TIIClnc 
signature scores (Figure 4F), and the TMB had a 
substantially higher level in the high TIIClnc 
signature score group (Figure 4G). Besides, a high 
TIIClnc signature score was more associated with 
lymphocyte depleted and inflammatory immune 
subtypes and high IPS score in the TCGA LGG dataset 
(Figure S5I), which the significant expression 
difference of IPS score between the two TIIClnc 
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signature score groups was also verified in the 
Xiangya in-house, CGGA LGG, and GSE108474 

datasets (Figure 4H, S6F, S7F). 

 

 
Figure 2. The prognostic value of the TIIClnc signature. A. A total of 101 combinations of machine learning algorithms for the TIIClnc signatures via a 10-fold 
cross-validation framework. The C-index of each model was calculated across validation datasets, including TCGA LGG, Xiangya in-house, CGGA LGG, and GSE108474 datasets. 
B. The exhibition of the 16 most valuable TIIClncRNAs based on the CoxBoost algorithm. C. The number of trees for determining the TIIClnc signature with minimal error and 
the importance of the 16 most valuable TIIClncRNAs based on the RSF algorithm. D. Kaplan-Meier survival curve of OS between patients with a high score of TIIClnc signature 
and with a low score of TIIClnc signature in the TCGA LGG, Xiangya in-house, CGGA LGG, and GSE108474 datasets. E. Time-dependent ROC curves of 1-year, 2-year, 3-year, 
4-year, and 5-year OS in the CGGA LGG, Xiangya in-house, TCGA LGG, and GSE108474 datasets. 
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Figure 3. Comparison between the TIIClnc signature and other models. A. The C-index of the TIIClnc signature, other clinical factors, and the combination signature 
in the TCGA LGG, Xiangya in-house, CGGA LGG, and GSE108474 datasets. B. The 1-year, 2-year, and 3-year calibration curves of the TIIClnc signature in the TCGA LGG, 
Xiangya in-house, CGGA LGG, and GSE108474 datasets. C. The C-index of the TIIClnc signature and other models developed in the TCGA LGG dataset. D. The C-index of the 
TIIClnc signature and other models developed in the Xiangya in-house dataset. E. The C-index of the TIIClnc signature and other models developed in the CGGA LGG dataset. 
F. The C-index of the TIIClnc signature and other models developed in the GSE108474 dataset. 
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Figure 4. Immune-related characteristics of the TIIClnc signature in the Xiangya in-house dataset. A. Heatmap displaying the correlation between the TIIClnc 
signature and immune infiltrating cells. B. Heatmap displaying the correlation between the TIIClnc signature and immune modulator molecules. C. Box plot displaying the CYT 
levels between two TIIClnc signature score groups. D. Box plot displaying the GEP levels between two TIIClnc signature score groups. E. Box plot displaying the IFN-γ levels 
between two TIIClnc signature score groups. F. Box plot displaying the TIIClnc levels between two MSI groups. G. Box plot displaying the TMB levels between two TIIClnc 
signature score groups. H. Box plot displaying the IPS levels between two TIIClnc signature score groups. 
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Moreover, the TIIClnc signature was directly 
established in immunotherapy datasets to evaluate its 
predictive value. In the IMvigor dataset, urothelial 
carcinoma patients with high TIIClnc signature scores 
had a prolonged survival time (Figure 5A). As 
expected, urothelial carcinoma patients with high 
TIIClnc signature scores were more likely to respond 
to anti-PD-L1 immunotherapy (Figure 5B). In the 
Braun dataset, renal cell carcinoma patients with high 
TIIClnc signature scores had prolonged survival time 
(Figure 5D). As expected, renal cell carcinoma patients 
with high TIIClnc signature scores tended to respond 
to anti-PD-1 immunotherapy (Figure 5E). In addition, 
patients in the GSE179351 (colorectal adenocarcinoma 
and pancreatic adenocarcinoma) (Figure 5C), and 
GSE165252 (esophageal adenocarcinoma) (Figure 5G) 
datasets with high TIIClnc signature scores were also 
more likely to respond to immunotherapy. Notably, 
patients in the GSE103668 (triple-negative breast 
cancer) dataset with high TIIClnc signature scores 
were more likely to respond to targeted therapy 
(Figure 5F). In the Allen dataset, melanoma patients 
with high TIIClnc signature scores had prolonged 
survival time (Figure 5H). As expected, melanoma 
patients with high TIIClnc signature scores tended to 
respond to anti-CTLA-4 immunotherapy (Figure 5I). 
In the GSE78220 dataset, melanoma patients with 
high TIIClnc signature scores had prolonged survival 
time (Figure 5J). As expected, melanoma patients with 
high TIIClnc signature scores tended to respond to 
anti-PD-1 immunotherapy (Figure 5K). In the 
Nathanson dataset, melanoma patients with high 
TIIClnc signature scores had prolonged survival time 
(Figure 5L), and melanoma patients with high TIIClnc 
signature scores tended to respond to anti-CTLA-4 
immunotherapy (Figure 5M). In addition, patients in 
the GSE35640 (melanoma) (Figure 5N) and GSE91061 
(melanoma) (Figure 5O) datasets with high TIIClnc 
signature scores were also more likely to respond to 
immunotherapy. Based on the TIDE algorithm, a high 
TIIClnc signature score was significantly associated 
with immune checkpoint inhibitors response in the 
TCGA LGG (Figure S8A), Xiangya in-house (Figure 
5P), CGGA LGG (Figure S8C), and GSE108474 (Figure 
S8E) datasets. Based on the submap analysis, a high 
TIIClnc signature score was related to anti-CTLA-4 
and anti-PD-1 immunotherapy responses in the 
Xiangya in-house dataset (Figure 5Q). In contrast, a 
high TIIClnc signature score was mainly associated 
with anti-PD-1 immunotherapy response in the 
TCGA LGG (Figure S8B), CGGA LGG (Figure S8D), 
and GSE108474 (Figure S8F) datasets. Notably, in an 
immunotherapy dataset of glioblastoma patients, 
PRJNA482620, patients with high TIIClnc signature 
scores also had prolonged survival time (Figure 5R). 

The insignificant statistical analysis could be 
attributed to the small sample size. 

Subsequently, the predictive value of the TIIClnc 
signature in immunotherapy response was explored 
in the Xiangya in-house dataset. Scatter plots of the 
TIIClnc signature score and CD8, PD-1, and PD-L1 
demonstrated a significant positive correlation 
(Figure 6A). IHC images (Figure 6B) and H-scores 
(Figure 6C) further proved that the protein 
expressions of CD8, PD-1, and PD-L1 were 
dramatically higher in the high TIIClnc signature 
score group. Our research verified that patients with a 
high TIIClnc signature score could benefit more from 
immunotherapy than those with a low TIIClnc 
signature score. 

Potential biological mechanisms related to the 
TIIClnc signature 

The cancer immunity cycle was calculated to 
explore the potential biological mechanisms related to 
the TIIClnc signature. Of note, all of the seven steps in 
the cancer immunity cycle were more activated in the 
high TIIClnc signature score group, including antigen 
release (Step 1), cancer antigen presentation (Step 2), 
priming and activation (Step 3), tumor immune 
infiltrating cells recruitment (Step 4), immune cells 
infiltration (Step 5), cancer cells recognition by T cells 
(Step 6), and cancer cells killing (Step 7) in the TCGA 
LGG (Figure S9A), Xiangya in-house (Figure 7A), 
CGGA LGG (Figure S10A), and GSE108474 (Figure 
S11A) datasets. The TIIClnc signature score positively 
correlated with the metabolic activity of metabolites, 
such as retinoid, glycan, galactose, or glutathione, in 
the TCGA LGG (Figure S9B), Xiangya in-house 
(Figure 7B), CGGA LGG (Figure S10B), and 
GSE108474 (Figure S11B) datasets. In the GSVA of GO 
and KEGG terms, the TIIClnc signature score 
positively correlated with T cell activity, macrophage 
activity, Treg differentiation, regulation of fibroblast 
proliferation, DC migration, and pathways in cancer 
(Figure S9B, 7B, S10B, S11B). In the analysis of TIME 
signatures, a high TIIClnc signature score was 
associated with higher levels of innate immunity, T 
cells, IFN-γ response, Treg, MDSC, recognition of 
tumor, proliferation, glycolysis developed by 
Kobayashi and antigen presentation, cytotoxic T and 
NK cells, anti-tumor microenvironment, checkpoint 
inhibition, Treg, granulocytes, MDSC, tumor 
promotive immune infiltrate, CAF, angiogenesis, 
tumor features developed by Bagaev in the TCGA 
LGG (Figure S9C and S9D), Xiangya in-house (Figure 
7C and 7D), CGGA LGG (Figure S10C and S10D), and 
GSE108474 (Figure S11C and S11D) datasets. 
Additionally, in the GSEA of GO (Figure S9E, 7E, 
S10E, S11E) and KEGG (Figure S9F, 7F, S10F, S11F) 
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terms, T cell chemotaxis, T cell migration, response to 
IFN-γ, regulation of macrophage activation, PD-L1 
expression and PD-1 checkpoint pathway in cancer, 

PI3K-Akt pathway, and NF-kappa B pathway, 
JAK-STAT pathway was more enriched in the high 
TIIClnc signature score group. 

 

 
Figure 5. Predictive value of the TIIClnc signature in immunotherapy response. A. Kaplan-Meier survival curve of OS between patients with a high score of TIIClnc 
signature and a low score of TIIClnc signature in the IMvigor dataset. B. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in the 
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IMvigor dataset. C. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in the GSE179351 dataset. D. Kaplan-Meier survival curve 
of OS between patients with a high score of TIIClnc signature and a low score of TIIClnc signature in the Braun dataset. E. Box plot displaying the TIIClnc signature score in 
patients with different immunotherapy responses in the Braun dataset. F. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in 
the GSE103668 dataset. G. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in the GSE165252 dataset. H. Kaplan-Meier 
survival curve of OS between patients with a high score of TIIClnc signature and a low score of TIIClnc signature in the Allen dataset. I. Box plot displaying the TIIClnc signature 
score in patients with different immunotherapy responses in the Allen dataset. J. Kaplan-Meier survival curve of OS between patients with a high score of TIIClnc signature and 
a low score of TIIClnc signature in the GSE78220 dataset. K. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in the GSE78220 
dataset. L. Kaplan-Meier survival curve of OS between patients with a high score of TIIClnc signature and a low score of TIIClnc signature in the Nathanson dataset. M. Box plot 
displaying the TIIClnc signature score in patients with different immunotherapy responses in the Nathanson dataset. N. Box plot displaying the TIIClnc signature score in patients 
with different immunotherapy responses in the GSE35640 dataset. O. Box plot displaying the TIIClnc signature score in patients with different immunotherapy responses in the 
GSE91061 dataset. P. Contingency table between immunotherapy responses and TIIClnc signature score groups based on TIDE algorithm in the Xiangya in-house dataset. Q. 
Contingency table between immunotherapy responses (anti-PD-1 and anti-CTLA-4) and TIIClnc signature score groups based on submap analysis in the Xiangya in-house dataset. 
R. Kaplan-Meier survival curve of OS between patients with a high score of TIIClnc signature and a low score of TIIClnc signature in the PRJNA482620 dataset. 

 
Figure 6. A. Scatter plot displaying the correlation between the TIIClnc signature score and CD8, PD-1, and PD-L1 in the Xiangya in-house dataset. B. Box plot displaying the 
H-score levels of CD8, PD-1, and PD-L1 based on IHC staining between two TIIClnc signature score groups in the Xiangya in-house dataset. The H-score was calculated by 
intensity score * quantity score. As for intensity scores, 0, 1, 2, and 3 were considered negative, weak, moderate, and strong, respectively. As for quantity scores, 0, 1, 2, 3, and 
4 represented <10%, 10-25%, 25-50%, 50-75%, >75% proportion of stained cells, respectively. H-score ranges from 0 to 12. C. Representative IHC staining images of CD8, PD-1, 
and PD-L1 in two TIIClnc signature score groups in the Xiangya in-house dataset. 

 

Discussion 
Compared with glioblastoma patients, LGG 

patients experienced a relatively prolonged survival 
time of 5-10 years. However, the treatment options for 
LGG are still limited to chemoradiotherapy and target 
therapy of tyrosine kinase receptor pathway [41]. The 
insufficient treatment options could sometimes lead 
to the overtreatment or undertreatment of LGG 
patients. Immunotherapy has become a leading star in 
the treatment of solid tumors. Although PD-1 has 
been widely detected among LGG patients, anti-PD-1 
and anti-PD-L1 immunotherapies have not widely 
entered clinical trials of LGG patients partly due to the 
poor immunotherapy response and the results of 
several clinical trials (NCT03718767) remain to be 
announced [42]. For this reason, establishing reliable 
prognostic biomarkers to stratify LGG patients who 

might benefit from immunotherapy is urgently 
needed. 

This study utilized a novel computational 
framework to identify a robust and stable TIIClnc 
signature. Firstly, TSI was applied to screen out the 
ilncRNAs generally expressed in immune cells, 
indicating their fundamental roles in immune system 
regulation. Secondly, 101 combinations of 10 machine 
learning algorithms were used to identify the 
combination of CoxBoost and RSF as the optimal 
model based on the prognostic TIIClncRNAs, 
significantly reducing the dimensionality of variables 
and revealing underlying patterns, contributing to a 
more simplified and translational model. Therefore, 
the established TIIClnc signature conceivably 
precisely predicts LGG patients’ prognosis and 
immune characteristics. 
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Figure 7. Functional annotation of the TIIClnc signature in the Xiangya in-house dataset. A. Box plot displaying the cancer immunity cycle differences between two 
TIIClnc signature score groups. B. Butterfly plot displaying the correlation between the TIIClnc signature score and metabolic pathways, immune-related pathways based on 
GSVA of GO and KEGG terms. Immunogram radar plot displaying the correlation between the TIIClnc signature score and TIME signatures developed by C. Kobayashi and D. 
Bagaev. E. GSEA of GO terms for the TIIClnc signature score. F. GSEA of KEGG terms for the TIIClnc signature score. 

 
Among the 16 most valuable TIIClncRNAs 

identified for the TIIClnc signature, nine lncRNAs 
have been reported. C7orf13 was proved with an 

inverse correlation with DNA methylation in 
glioblastoma [43]. LINC00628 contributes to lung 
adenocarcinoma by epigenetically interacting with the 
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LAMA3 promoter [44]. LINC01121 promotes cell 
proliferation, migration, and invasion of breast cancer 
via miR-150-5p/HMGA2 axis [45]. LINC01134 
dictates hepatocellular carcinoma progression by 
interplaying with YY1 [46]. SLCO4A1-AS1 could 
predict poor prognosis and promote proliferation and 
metastasis of colorectal cancer via the EGFR/MAPK 
axis [47]. C1RL-AS1 drives the malignant phenotype 
of gastric cancer via the AKT/β-Catenin/c-Myc axis 
[48]. PSMB8-AS1 leads to pancreatic cancer 
progression via miR-382-3p/STAT1/PD-L1 axis [49]. 
RPARP-AS1/miR125a-5p axis promoted prolifera-
tion, migration, and invasion of colon Cancer [50]. 
CARD8-AS1 was found to regulate the metastasis of 
glioma [51]. The detailed reports of other 7 lncRNAs 
are lacking. Our research revealed that these 16 
TIIClncRNAs were highly expressed in immune cells. 
Notably, LOC100133461 and LOC101928134 were 
found to inhibit the proliferation and migration ability 
of THP-1 cells, which was in accordance with the 
finding that they were hazardous markers in LGG 
patients. Thus, LOC100133461 and LOC101928134 
were likely to facilitate tumor progression by 
suppressing the activity of monocytes in the TIME of 
LGG. 

The predictive analysis demonstrated that the 
TIIClnc signature was a hazardous marker of OS in 
LGG patients. The ROC analysis further proved that 
the TIIClnc signature possessed high accuracy in 
predicting 1-year, 2-year, 3-year, 4-year, and 5-year 
OS of LGG patients. The stable performance of the 
TIIClnc signature in the TCGA LGG training dataset, 
Xiangya in-house dataset, and CGGA LGG, 
GSE108474 external validating datasets indicated the 
massive potential for the clinical application of the 
TIIClnc signature. IDH, 1p/19q, and MGMT status 
have long been determined as risk biomarkers for 
evaluating clinical strategies and outcomes of glioma 
patients [52, 53]. Notably, the TIIClnc signature was 
an independent risk factor with significantly superior 
performance than the above three risk biomarkers and 
clinical factors: age, grade, and gender. In addition, 95 
published signatures of various functional gene 
combinations were retrieved for comparison. Few of 
these 95 signatures have been put into clinical practice 
[54]. Besides, many models displayed exemplary 
performance in the training dataset but weak 
performance in the validating datasets, indicating 
these models’ poor universality and generalizability. 
Notably, according to the C-index assessment, the 
TIIClnc signature performed better than almost 95 
signatures. It was conceivable that the feature gene 
selection and statistical prediction based on the best fit 
model performed by two combined machine learning 
algorithms ensured the stability and potential of our 

TIIClnc signature. 
The TIME is closely associated with the 

prognosis of brain tumors and the efficacy of 
immunotherapy [55, 56]. LGG patients with high 
TIIClnc signature score presented abundant immune 
cell infiltration, including T cells, Th cells, NK cells, B 
cells, DC, mast cells, MDSC, fibroblasts, macrophages, 
and Treg cells, all of which were related to anti-tumor 
or pro-tumor immunity in immunotherapy [57-62]. 
Immunotherapy has demonstrated considerable 
benefits in cancer patients with MSI-H [63]. TMB 
could enhance tumor immunogenicity and activate 
cytotoxic T cells; cancer patients with high TMB also 
benefit more from immunotherapy [64]. In this study, 
LGG patients with high TIIClnc signature scores were 
prone to higher MSI and TMB. Meanwhile, LGG 
patients with high TIIClnc signature scores were also 
associated with higher levels of predictors for better 
immunotherapy responses, including CYT, GEP, TCR 
richness, TCR Shannon, SNV Neoantigen, IFN-γ, and 
IPS score. Moreover, the TIIClnc signature score was 
positively associated with classical immune 
checkpoint molecules, including IDO-1, LAG-3, PD-1, 
PD-L1, PD-L1, CTLA-4, BTLA, and TIGIT. For this 
reason, LGG patients with high TIIClnc signature 
scores are expected to benefit more from 
immunotherapy. 

The TIIClnc signature was directly established in 
immunotherapy datasets to verify this hypothesis. 
The predictive analysis demonstrated that the TIIClnc 
signature was a favorable marker of OS in urothelial 
carcinoma (IMvigor dataset), renal cell carcinoma 
(Braun dataset), and melanoma (Allen, GSE78220, and 
Nathanson datasets) patients. As expected, urothelial 
carcinoma, renal cell carcinoma, and melanoma 
patients with high TIIClnc signature scores were 
prone to benefit more from anti-PD-1, anti-PD-L1, or 
anti-CTLA-4 immunotherapy, respectively. Consis-
tently, melanoma patients in the GSE35640 and 
GSE91061 datasets, colorectal adenocarcinoma and 
pancreatic adenocarcinoma patients in the GSE179351 
dataset, and esophageal adenocarcinoma patients in 
the GSE165252 dataset with high TIIClnc signature 
scores also benefit more from immunotherapy. 
Besides, triple-negative breast cancer patients in the 
GSE103668 dataset with high TIIClnc signature scores 
benefit more from targeted therapy. More 
importantly, glioblastoma patients with high TIIClnc 
signature scores in the PRJNA482620 dataset were 
related to relatively reduced survival time, which the 
small sample size could partly explain the 
insignificant results. Furthermore, in our Xiangya 
in-house dataset, the protein expression level of CD8, 
PD-1, and PD-L1 also increased in the high TIIClnc 
signature score group, suggesting that the TIIClnc 
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signature could potentially predict the response rate 
of immunotherapy in LGG. 

Although the clinical significance of the TIIClnc 
signature in LGG is remarkable, some limitations in 
this study need to be issued. First, all included 
datasets were from single-center retrospective studies, 
and future TIIClnc signature validation should be 
performed in prospective multicenter cohorts. 
Second, the in-depth molecular mechanisms of how 
16 identified most valuable TIIClncRNAs could 
influence the TIME and immunotherapy response of 
LGG should be further explored. Third, more 
immunotherapy cohorts of glioma patients are 
urgently needed to validate the TIIClnc signature in 
predicting immunotherapy response. 

In conclusion, by integrative analysis of 
sequencing data of purified immune cells, LGG cell 
lines, and bulk LGG tissues based on a wealth of 
machine learning algorithms, a stable and robust 
TIIClnc signature to stratify LGG patients and predict 
the outcomes of immunotherapy was developed. A 
TIIClnc signature is a promising tool for personalized 
treatment and clinical management for individual 
LGG patients. 
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