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Abstract 

KRAS mutation is the most frequent oncogenic aberration in colorectal cancer (CRC). The molecular 
mechanism and clinical implications of KRAS mutation in CRC remain unclear and show high heterogeneity 
within these tumors. 
Methods: We harnessed the multi-omics data (genomic, transcriptomic, proteomic, and phosphoproteomic 
etc.) of KRAS-mutant CRC tumors and performed unsupervised clustering to identify proteomics-based 
subgroups and molecular characterization. 
Results: In-depth analysis of the tumor microenvironment by single-cell transcriptomic revealed the cellular 
landscape of KRAS-mutant CRC tumors and identified the specific cell subsets with KRAS mutation. Integrated 
multi-omics analyses separated the KRAS-mutant tumors into two distinct molecular subtypes, termed 
KRAS-M1 (KM1) and KRAS-M2 (KM2). The two subtypes had a similar distribution of mutated residues in 
KRAS (G12D/V/C etc.) but were characterized by distinct features in terms of prognosis, genetic alterations, 
microenvironment dysregulation, biological phenotype, and potential therapeutic approaches. Proteogenomic 
analyses revealed that the EMT, TGF-β and angiogenesis pathways were enriched in the KM2 subtype and that 
the KM2 subtype was associated with the mesenchymal phenotype-related CMS4 subtype, which indicated 
stromal invasion and worse prognosis. The KM1 subtype was characterized predominantly by activation of the 
cell cycle, E2F and RNA transcription and was associated with the chromosomal instability (CIN)-related 
ProS-E proteomic subtype, which suggested cyclin-dependent features and better survival outcomes. 
Moreover, drug sensitivity analyses based on three compound databases revealed subgroup-specific agents for 
KM1 and KM2 tumors. 
Conclusions: This study clarifies the molecular heterogeneity of KRAS-mutant CRC and reveals new 
biological subtypes and therapeutic possibilities for these tumors. 
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Introduction 
Colorectal cancer (CRC) ranks third in terms of 

new cases and represents the second leading cause of 
cancer-related death worldwide [1]. CRC is widely 
considered a heterogeneous disease, with multiple 
gene alterations and numerous pathways involved in 

its pathogenesis [2]. Kirsten rat sarcoma (KRAS) is one 
of the most frequently mutated oncogenes in CRC, 
with approximately 40% of CRC patients harboring 
activating missense mutations in KRAS, most of 
which occur at codons 12, 13 and 61 [3]. The KRAS 
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gene encodes a guanosine triphosphate (GTP)/ 
guanosine diphosphate (GDP)-binding protein that 
belongs to the guanosine triphosphatase (GTPase) 
RAS family and triggers a diverse range of 
phosphorylation cascades, including the canonical 
RAF/MEK/ERK, PI3K/AKT, and RALGDS/RAL 
pathways [4, 5]. Once KRAS mutations occur, the 
hydrolysis of GTP is disrupted and/or nucleotide 
exchange is enhanced, leading to accumulation of 
KRAS in the active state and contributing to 
constitutive stimulation of downstream signaling 
pathways, thereby promoting tumor cell proliferation 
and survival. It has become more evident that 
oncogenic KRAS mutations mediate the tumor 
microenvironment (TME), particularly by promoting 
inflammation and suppressing the immune response 
and ultimately leading to immune evasion and tumor 
progression [6-8]. However, the landscape of cellular 
heterogeneity in the TME has not been well 
characterized in CRCs with KRAS mutations and 
remains to be investigated. The complexity of the 
signaling network and the heterogeneous features of 
the multiple KRAS-mutant alleles have contributed to 
the difficulty in developing molecular targeted 
therapies against KRAS-mutant tumors. 

Recently, allele-specific covalent inhibitors that 
can specifically bind to the cysteine residue in the 
KRAS-G12C mutant have shown promising outcomes 
in the clinic [9]. However, clinical studies have 
unexpectedly reported that the response rate to these 
drugs is high in patients with non–small cell lung 
cancer (NSCLC) but limited in patients with colorectal 
cancer [10-12], suggesting the intertumor 
heterogeneity in KRAS-mutant cancers. Moreover, 
different mutations in KRAS residues may modulate 
the intrinsic activation (GTP-bound state) of the 
mutant protein and its interaction with downstream 
effectors [13]. Ihle et al. reported that the KRAS-G12V 
and KRAS-G12C mutants preferentially activate RTK 
and RAL signaling and decrease AKT activation, 
whereas the KRAS-G12D mutant is prone to 
activating PI3K and MEK signaling [14]. These 
findings indicate that KRAS-mutant tumors are still 
highly heterogeneous, and further exploration of 
biological subtypes and molecular targets is 
warranted to guide the prognosis and treatment of 
patients with KRAS-mutant CRC. 

 Previous large-scale omics studies on 
KRAS-mutant cancers have greatly advanced our 
understanding of the molecular diversity of 
KRAS-driven cancer [6, 15, 16]. Thus far, the main 
efforts are based largely on genomics and 
transcriptomics. Of note, recent studies have 
demonstrated the importance of proteomic and 
phosphoproteomic characterization in advancing the 

understanding of tumor heterogeneity [17, 18]. In 
addition to reinforcing or complementing 
transcriptomic data, integration of proteogenomic 
data may also correct inaccurate transcriptomic 
data-based inferences and lead to unexpected 
discoveries and therapeutic opportunities. Given that 
the phosphorylation cascade dominates 
KRAS-induced downstream signaling, obtaining a 
comprehensive profile of the proteome and 
phosphoproteome will be particularly informative to 
improve our understanding of the phenotypic 
heterogeneity of KRAS-mutant cancers [19, 20]. In 
addition, the quantitative proteomics of a portion of 
the Cancer Cell Line Encyclopedia (CCLE) reported 
the association between gene expression and the 
growth dependency on these genes [21]. A recent 
study characterized the cellular proteomic and 
phosphoproteomic landscapes of KRAS-mutant 
tumor cell lines from a combined set of lung, 
pancreatic adenocarcinoma, and colorectal tumors 
and identified the therapeutic potential of specific cell 
subsets [22]. However, an integrative large-scale 
proteomic and phosphoproteomic analysis of patients 
with KRAS-mutant CRC is still lacking. 

In this study, we integrated multi-omics 
(genomic, transcriptomic, proteomic, phospho 
proteomic, etc.) data to comprehensively characterize 
the molecular network and biological heterogeneity 
and to refine the molecular stratification of 
KRAS-mutant CRC, which may facilitate the 
development of combination therapies that are more 
suitable for KRAS-mutant CRC. Here, we report that 
KRAS-mutated CRC tumors can be divided into two 
distinct molecular subtypes based on integrated 
transcriptomic, proteomic and phosphoproteomic 
profiling but not on the mutated residues. The two 
subtypes were characterized by different clinical 
features, biological pathways, copy number 
alterations, and phosphorylation cascades associated 
with KRAS signaling activation. Kinase network 
analysis and drug sensitivity prediction also revealed 
potential therapeutic agents that may be helpful to 
treat the specific subtype. Overall, these 
proteogenomic analyses present new avenues for 
biological discoveries and therapeutic development in 
KRAS-mutant CRC tumors. 

Materials and methods 
Curation and Preprocessing of Publicly 
Available Datasets 

 Multi-omics sequencing data and clinical 
annotations of colorectal carcinoma samples with 
detected KRAS mutations were retrospectively 
collected from publicly available datasets in the 
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Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) colon cancer database [17], The Cancer 
Genome Atlas-Colon Adenocarcinoma/Rectal 
Adenocarcinoma (TCGA-COAD/READ) cohort in 
cBioPortal, and the Chinese Colorectal Cancer (CCRC) 
cohort [23]. Moreover, KRAS mutation sequenced by 
targeted MSK-IMPACT panel sequencing (MSK 
cohort) [3] and allelic discrimination by TaqMan 
probe sequencing (CIT[GSE39582] [24] and GSE87211 
[25] cohort) were employed to validate the clinical 
outcomes and molecular subtyping results. Finally, a 
total of 2579 CRC samples with available omics and 
clinical data were enrolled in this analysis (Table S1). 
The proteomic and phosphoproteomic data were 
mainly derived from the CPTAC and CCRC cohorts 
and are described in the supplementary files. The 
clinical information and subtype clustering of 
collected cohorts are provided in Table S2. 

Comparison of genomic alterations 
The somatic mutation and copy number 

alteration (SCNA) segment data from the CPTAC 
cohort and TCGA-COAD/READ cohort were 
downloaded and curated for genomic analysis. 
Tumors with nonsynonymous mutations (including 
frameshift mutations, in-frame mutations, missense 
mutations, nonsense mutations and splice site 
mutations) in KRAS were considered KRAS-mutant 
tumors. The significantly mutated genes (SMGs) were 
curated from previous studies [26, 27] and plotted 
with the waterfall function in the ‘GenVisR’ R 
package. We adopted the ‘maftools’ package to extract 
the mutation signatures from the somatic mutation 
data (supplementary files). Next, GISTIC2 (version 
2.0.23) [28] was used to retrieve gene-level copy 
number values and call significant copy number 
alterations in the cohort. The aneuploidy scores of 
TCGA samples were determined and curated from 
previous studies [29]. 

Consensus Molecular Clustering for 
KRAS-Mutant Tumor Samples 

We adopted three types of omics data—mRNA 
transcriptome data, imputed proteomic data and 
imputed phosphoproteomic data (the data imputation 
procedure is described in the supplementary files), to 
a similarity matrix using the R package 
“CancerSubtypes” [15, 30] with default parameters. 
The similarity matrix was used as the input for 
unsupervised clustering performed with the R 
package “ConsensusClusterPlus” [31]. Variable 
selection analysis was used for gene signature 
selection of KRAS-mutant subset and was performed 
with the random forest algorithm. 

Inference of infiltrating cells in the TME of 
CRC 

We utilized the xCell algorithm [32] to infer 
infiltrating immune and stromal cell subpopulations 
in CRC tumors based on bulk RNA-seq datasets. Gene 
expression profiles were prepared using standard 
annotation files, and data were uploaded to the xCell 
web portal (https://xcell.ucsf.edu/), with the 
algorithm run using the xCell signature. 

Single-cell analyses of the cellular landscape in 
CRC 

Single-cell RNA-seq and metadata were curated 
from the Samsung Medical Center (SMC cohort) [33] 
and Katholieke Universiteit Leuven (KUL cohort) [34] 
and are available in the NCBI Gene Expression 
Omnibus (GEO) database under accession codes 
GSE132465 and GSE144735. The scRNA-seq analysis 
pipeline is summarized in the supplementary files. 

Colorectal cancer cell line and drug sensitivity 
analyses 

Available clinical annotations and expression 
profiles of human colorectal cancer cell lines (N=112) 
were obtained from the Broad Institute Cancer Cell 
Line Encyclopedia (CCLE) project (https://portals. 
broadinstitute.org/ccle/) [35]. Three drug sensitivity 
databases (CTRPv2.0, PRISM, and GDSC1) were 
accessed via the Cancer Dependency Map (DepMap) 
portal (https://depmap.org/portal/). 

Statistical analyses 
 The statistical analyses in this study were 

performed with R version 4.0.3. For quantitative data, 
statistical significance for normally distributed 
variables was estimated by Student’s t test, and 
nonnormally distributed variables were analyzed by 
the Wilcoxon rank-sum test. For comparisons among 
more than two groups, the Kruskal–Wallis test and 
one-way analysis of variance were used as 
nonparametric and parametric methods, respectively. 
The chi-square test and Fisher’s exact test were used 
to analyze contingency tables based on the specific 
grouping condition. Kaplan–Meier survival analysis 
and a Cox proportional hazards model were used to 
analyze the association between the TME 
modification pattern and prognosis. All comparisons 
were two-sided with an alpha level of 0.05, and the 
Benjamini–Hochberg method was applied for 
multiple hypothesis testing to control the false 
discovery rate (FDR). 
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Results 
Molecular comparison of KRAS-mutant versus 
KRAS-wild-type colorectal cancer 

 We summarized the KRAS activation signaling 
pathway and relevant inhibitors of each node (Figure 
1A). Once KRAS is mutated, the intrinsic GTP-GDP 
cycling in KRAS is disrupted, allowing the mutant 
KRAS protein to accumulate in an active state and 
thereby constitutively activate downstream MAPK 
and PI3K signaling cascades, which results in cell 
proliferation and survival. The various KRAS 
inhibitors listed in the box were developed to target 
each node of the KRAS signaling pathway and then 
evaluated in preclinical or clinical studies (Figure 1A). 
The lollipop plot shows that the most common KRAS 
mutations were KRAS-G12D/V/S/C, followed by 
G13D/C in the TCGA and CPTAC datasets (Figure 
S1A-S1B). We conducted survival analysis to 
investigate the prognostic value of KRAS mutation in 
CRC patients. Kaplan-Meier analysis indicated worse 
outcomes in the KRAS-mutant groups identified by 
whole-exome sequencing (TCGA cohort: HR, 1.46 
[95% CI, 1.03 to 2.08], P = 0.016; Figure 1B, Table S3), 
and the association remained significant in the 
multivariable regression model after adjusting for 
age, sex, clinical stage, and MSI status (HR, 1.50 [95% 
CI, 1.05 to 2.14], P = 0.027; Figure 1C). We also 
validated the results in independent targeted panel 
sequencing cohorts (CIT cohort: HR, 1.42 [95% CI, 1.03 
to 1.95], P = 0.023; MSK cohort: HR, 1.32 [95% CI, 1.16 
to 1.49], P = 0.011; Figure S1C). To obtain mechanistic 
insights into the different clinical outcomes in the 
KRAS-mutant (Mut) and KRAS-wild-type (WT) 
groups, we carried out gene set enrichment analysis 
(GSEA) based on transcriptomic expression profiles. 
The KRAS-Mut group exhibited higher enrichment in 
oncogenic signaling pathways, such as 
epithelial-mesenchymal transition and Wnt signaling 
in tumors (Figure 1D, upper panel). However, the 
KRAS-WT group exhibited enrichment mainly in the 
gene sets of chemokine receptors bind chemokines, 
immunoregulatory interactions between a lymphoid 
and a nonlymphoid cell, PD-1 signaling, etc., 
indicating stronger immune activation (Figure 1D, 
lower panel). We also utilized proteomic data to 
identify the differentially regulated proteins and 
overrepresented pathways. Tumor malignant 
phenotype related IGFBP2 and KRT18 were 
significantly enriched in KRAS-Mut subtype, whereas 
neutrophils and macrophages related CD177, MMP1 
and ARG1 were enriched in WT subtypes (Figure 
S1D-S1E). Next, we curated transcriptomic, proteomic 
and phosphoproteomic data from the CPTAC cohort 

and compared the global differential regulation in 
KRAS-Mut versus KRAS-WT tumors. KRAS-Mut 
tumors showed significant upregulation of tumor 
migration (TGFBR2-S553 and EPHB3) and PI3K/AKT 
activation (PIP4K2C and PIK3R1), while the 
KRAS-WT group was enriched in immune regulation 
(TAP1/2, IFITM1, and IFIH1-S301) and cellular 
metabolism (DGAT1 and HINT3) (Figure 1E, Table 
S4). 

Accumulating evidence has focused on the 
genomic mutations that are implicated in 
tumorigenesis and immune evasion and confer 
selective advantages during the evolution of cancer. 
We first compared the tumor mutation load in 
KRAS-Mut versus KRAS-WT and observed that there 
was no difference in the TCGA and CPTAC cohorts 
(Figure S1F-S1G). Immune response ratio in most 
types of tumors who received immune checkpoint 
inhibitors was not significantly different between the 
KRAS-Mut and -WT groups (Figure S1H). We further 
compared the somatic copy number alterations 
(SCNAs) and aneuploidy scores in KRAS-Mut and 
KRAS-WT samples. At the chromosomal level, 
KRAS-Mut tumors showed a lower degree of 
arm-level SCNAs than WT tumors, and the alterations 
were mainly concentrated on chr5q, chr9q and chr12 
(Figure 1F). Moreover, we observed significantly 
lower aneuploidy scores (total number of arm-level 
gains and losses in a tumor) in KRAS-Mut versus WT 
tumors (P = 0.038, Figure 1G). Using the somatic 
interactions function, we performed a pairwise 
Fisher’s exact test to detect the relationships between 
KRAS mutation and the 25 most commonly mutated 
genes in CRC (Figure 1H). ARID1A and ACVR2A 
mutations were mutually exclusive with KRAS 
mutations in tumors, further indicating the genetic 
aberrations in CRC. 

Profiling the single-cell transcriptomic 
landscape of KRAS-Mut colorectal cancer 

Numerous studies have shown that the TME 
plays a crucial role in tumor progression and immune 
escape and has an effect on the response to 
immunotherapy[36, 37]. Here, we utilized the xCell 
algorithm based on bulk RNA-seq data to quantify 
stromal and immune cell infiltration, and investigated 
the variation of cell subpopulations in CRC. Most of 
the cell subpopulations were significantly different 
between the KRAS-Mut and KRAS-WT tumors. 
Tumors with KRAS mutation were characterized by 
increases in epithelial cells and Treg cells, whereas 
KRAS-WT tumors were distinguished by CD4+ T 
cells, macrophages, pDCs, etc. (Figure 2A). 
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To delineate the cell subpopulation landscape of 
KRAS-Mut CRC more accurately, we collected and 
curated 10x single-cell RNA-seq transcriptome data 
from the SMC and KUL datasets and integrated them 
into a combined scRNA-seq dataset via a reciprocal 
PCA workflow (Methods section, Figure S2A). 
Finally, a total of 55539 single cells derived from 16 

KRAS-WT and 13 KRAS-Mut colorectal tumors were 
obtained and analyzed by Seurat 4.0 (Figure 2B, left 
panel). We adopted a graph-based clustering 
approach (K-nearest neighbor) based on the 
Euclidean distance in PCA space and performed 
modularity optimization with the Louvain algorithm 
to cluster the CRC cells into 29 clusters with 

 

 
Figure 1. Molecular Comparison on KRAS-Mut versus-wild type colorectal cancer. (A) A schematic plot summarized the KRAS signaling pathway and relevant 
inhibitors of each node. (B) Kaplan-Meier curves for patients with KRAS-Mut and KRAS-WT groups in the TCGA-COAD/READ cohort. (C) Subgroup analysis estimating clinical 
prognostic value between KRAS-WT and KRAS-Mut type in TCGA cohort and cancer stage by univariate Cox regression. The length of the horizontal line represented the 95% 
confidence interval for each group. The vertical dotted line represented the hazard ratio (HR) of all patients. (D) Top enriched gene pathways with RNA expression profile in 
KRAS-Mut and –WT subgroups from TCGA cohort as assessed by using the GSEA algorithm. (E) Scatterplots showing significance of RNA, protein (red), phosphorylation site 
(blue) (signed -log10 p-value) abundance changes between KRAS-Mut and WT tumors in CPTAC cohort as determined using the Wilcoxon rank-sum test. All identified sites are 
represented and statistically significant gene (FDR < 0.05) specified by triangles. (F) Arm-level somatic copy-number alteration (SCNA) events in KRAS-Mut versus -WT. Red 
denotes amplification and blue denotes deletion. (G) Comparison of the aneuploidy score between KRAS-Mut and WT subtype in TCGA. (H) The relationships among the top 
25 mutated genes (including KRAS) with different somatic mutations frequency. 
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differential expressed features (Figure S2A-S2B). Via 
marker-based annotations from Lee et al. [33, 38], six 
major cell types were identified, namely, 
lymphocytes/plasma cells, epithelial cells, 
fibroblasts/endothelial cells, myeloid cells, T/natural 
killer (NK)/NK T lymphocytes, and mast cells (Figure 
2B, right panel). We found that T cells, B cells, 
myeloid cells, and stromal cells were significantly 
differentially distributed in KRAS-Mut versus 
KRAS-WT tumors based on the chi-square test (Figure 
2B, right panel). Therefore, we extracted the four 
major cell types and further subdivided them into 
specific cell subpopulations. We employed the same 

workflow described above and classified the T cells, B 
cells, myeloid cells, and stromal cells into eight, five, 
eight, and eleven subpopulations, respectively (Figure 
2C). Comparative analyses showed that the cell 
subcluster distributions of CD4+ T cells, CD8+ T cells 
and regulatory T cells were significantly elevated in 
KRAS-WT tumors, whereas IgG+ plasma cells (B 
cells), SPP1+ macrophages (myeloid cells) and 
myofibroblasts (stromal cells) were significantly 
increased in KRAS-Mut tumors (Figure 2C-2D). 
Representative markers of these key cell subclusters 
on the UMAP plot are shown in Figure S2C. 

 

 
Figure 2. Profiling single-cell transcriptomes landscape of KRAS-Mut colorectal cancer. (A) Comparison of xCell algorithm inferred cell infiltration level based on 
bulk RNA-seq between the KRAS-Mut and WT tumors. Within each group, the thick line represents the median value. The bottom and top of the boxes are the 25th and 75th 
percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The range of P values are labeled above each boxplot with asterisks (*P < 0.05, **P 
< 0.01, ***P < 0.001). (B) UMAP plots showing the 55539 colorectal cancer cells derived from scRNA-seq and color-coded by KRAS-Mut and WT (left panel); The CRC single 
cells were clustered into six major cell types (right panel). Bar plot represented the cell population counts (left bottom) and proportions (right bottom) in KRAS-Mut and WT 
colorectal cancer tissues. (C) Cell subpopulations of T cells, B cells, Myeloid cells, and stromal cells in KRAS-Mut and WT tumors with color-coded by cell subtype and cluster 
numbers (Upper). Bar plot of cell counts and proportions in KRAS-Mut and WT colorectal cancer tissues (Lower). (D) Alterations of cellular subpopulations dynamics between 
KRAS-Mut and WT tumors are shown. Dot size represents Pearson’s residual of the chi-squared test and the color represents the degree of positive or negative association from 
Pearson’s residual of the chi-squared test. 
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Figure 3. Identifying the genomic and prognostic characterizations of colorectal cancer patients by the molecular subtypes of KRAS-Mut subsets. (A) The transcriptomic, 
proteomic and phosphoproteomic data of KRAS-Mut tumors in CPTAC cohort were integrated by SNF fusion and divide into KM1 subtype and KM2 subtype with unsupervised 
clustering. (B) Consensus matrix of unsupervised clustering based on the integrative multi-omics data and identify the best cluster number with k=2. (C) The silhouette width of 
unsupervised clustering based on SNF method in integrated omics data when k = 2. (D) The most discriminative signatures of each datatype (mRNA, protein, and 
phosphoprotein) selected by random forest. (E) Comparison of the common KRAS mutated residues between KM1 and KM2 subtypes in CPTAC cohort. (F) Comparison of the 
common KRAS mutated residues between KM1 and KM2 subtypes in TCGA cohort. (G) Kaplan-Meier curves for patients with KM1 and KM2 groups in the CPTAC cohort. (H) 
Kaplan-Meier curves for patients with KM1 and KM2 groups in the TCGA cohort. 

 

Identifying the molecular subtypes of 
KRAS-Mut subsets 

 We further integrated publicly available 
transcriptomic, proteomic and phosphoproteomic 
data from the CPTAC dataset to investigate the 
consensus molecular subtype and therapeutic 
vulnerability underlying the KRAS-Mut tumors 
(Figure 3A, Table S5). Unsupervised clustering based 
on three types of omics data with the similarity 
network fusion (SNF) approach was performed, and 
KRAS-mutant CRC was classified into two robust 

subsets (designated KM1 and KM2; Figure 3B, Figure 
S3A-S3B). Unsupervised clustering was also applied 
to each separate layer of omics data and showed that 
the average silhouette width of the subsets from the 
transcriptome, proteome, or phosphoproteome alone 
was smaller than that of the subsets from the 
integrated multi-omics (Figure 3C, Figure S3C), 
suggesting that integration of the three types of omics 
data could more accurately classify KRAS-Mut 
colorectal cancer. To identify the most discriminative 
molecular signatures between the KM1 and KM2 
subtypes, we extracted the most important molecular 
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features to distinguish the subtypes using a random 
forest learning model. This analysis identified 5 
mRNAs, 10 proteins, and 19 phosphoproteins as 
subtyping signatures at the mRNA, protein, and 
phosphoprotein levels, respectively (Figure 3D, 
Figure S3D). To further explore the discrimination 
ability of the identified features in other independent 
colorectal cancer datasets, we utilized the identified 
mRNA signatures in the TCGA, CIT, and GSE87211 
cohorts and the protein signatures in the CCRC cohort 
to perform unsupervised clustering in KRAS-Mut 
tumors. The expression of the signatures in 
independent cohorts (TCGA, CIT, GSE87211, and 
CCRC cohorts) was largely similar to that in the 
CPTAC cohort (Figure S3E-S3J). We further compared 
the mutated residues in KRAS (G12D/V/C, G13D, 
etc.) between the KM1 and KM2 subgroups in CPTAC 
and TCGA and found no statistically significant 
differences between the two subtypes (P > 0.05, 
Fisher’s exact test; Figure 3E-3F). 

To explore the potential clinical utility of the 
subtyping signatures, we compared the prognosis 
between the two molecular subsets. The KM1 subtype 
in the CPTAC cohort was associated with better 
prognosis and there are no death outcomes relative to 
the KM2 subtype, although the survival analysis was 
not statistically significant considering the small 
sample size (log-rank test, P = 0.075; Figure 3G). We 
also compared the prognosis based on KRAS 
molecular subtype in the independent cohort and 
determined that the KM1 subtype was significantly 
associated with better survival in the TCGA, CIT, 
GSE87211 and CCRC cohorts (Figure 3H, Figure 
S4A-S4C). Multivariate Cox proportional hazards 
regression analysis further demonstrated that the 
KRAS mutation subtype was associated with patient 
survival outcomes in these KRAS-Mut samples after 
adjusting for clinicopathologic factors (HR, KM2 vs. 
KM1; TCGA: 1.87 [95% CI, 1.11 to 3.15], P = 0.019; CIT: 
2.01 [95% CI, 1.19 to 3.40], P = 0.009; GSE87211: 6.22 
[95% CI, 1.40 to 27.59], P = 0.016; CCRC: 3.81 [95% CI, 
1.20 to 12.08], P = 0.023; Figure S4D-S4G). 

Tumor genomic variation in KRAS-Mut 
colorectal cancer 

To gain further insights into the genomic 
landscape in KRAS-mutated colorectal cancer 
patients, we parsed the somatic mutation data from 
WES-seq and SNP array analysis. We performed SMG 
analysis in the CPTAC and TCGA cohort and 
compared the gene mutation frequency in the KM1, 
KM2 and KRAS-WT subsets. The mutational profile in 
both the TCGA and CPTAC cohorts showed that 
ARID1A and BRAF had higher mutation rates in the 
KRAS-WT subgroup than in the KRAS-Mut subgroup 

(adjusted chi-square test, P < 0.05; Figure 4A, Figure 
S5A). In the larger-sample-size TCGA cohort, it also 
showed a higher mutation frequency of APC and 
PCBP1 in KRAS-Mut samples than in WT tumor 
samples (adjusted chi-square test, P < 0.05; Figure 
S5A). Then, we analyzed the single-nucleotide 
variants (SNVs) in the matrix of 96 possible mutations 
occurring in a trinucleotide context among the KM1, 
KM2 and KRAS-WT subtypes in CRC tumors (Figure 
4B). The pie chart shows that compared with 
KRAS-WT tumors, KM1 and KM2 tumors had a slight 
increase in C>A transitions (Figure 4B, top). The Lego 
plot shows that the predominant mutations in CRC 
were C>T transitions at ApCpN trinucleotide sites, 
whereas the C>A transition at GpCpG sites was 
specifically highlighted in the KM2 subtype (Figure 
4B, bottom), suggesting the specific mutation 
processes operative in KRAS mutation heterogeneity. 

Subsequently, we extracted five mutational 
signatures from the genomic data (Figure S5B, Figure 
4C), including defects in DNA mismatch repair- 
related signatures (SBS15 and SBS44), spontaneous or 
enzymatic deamination of 5-methylcytosine (SBS1), 
and polymerase epsilon exonuclease domain 
mutation (SBS10b) (Figure 4C). Mutation counts 
attributed to the SBS44 signature showed a significant 
increase in KRAS-WT tumors, whereas the SBS15 
signature showed a significant decrease in the KM1 
subtype (P < 0.05, Figure 4D). We also analyzed the 
SCNA level in the KM1 and KM2 subgroups and 
found an obvious elevation in KM1 tumors (Figure 
S5C). Arm-level SCNA results indicated that the 
cytobands in chr2, chr5p, chr7q, chr8p, chr12 and 
chr16 contained the most frequently amplified or 
deleted regions (Figure S5D). The focal level SCNAs 
revealed that the cytobands in 2q31.2, 5p15.33, 7q36.3 
in KM1 subtype, and 12p13.33 in KM2 subtype 
contained the markedly amplified focal regions; and 
cytobands in 16p13.3 in KM1subtype and 
1p35.3-36.32, 8p11.22, 18q11.2 in KM2 subtype 
contained the frequently deleted regions (FDR < 0.05; 
Figure 4E). The genomic alteration in CNA 
contributed to the molecular heterogeneity of the 
KRAS-mutant subtype. Similar genetic variants in 
SCNA cytobands were also identified in TCGA 
KRAS-mutated subtype (Figure S5E). 

KRAS mutation patterns characterized by 
specific clinical features and molecular 
processes 

The relationships of KRAS mutational patterns 
with clinical characteristics and molecular subtypes 
were further explored in CRC tumors. The top 50 
differential expressed mRNA transcripts, proteins, 
and phosphoproteins of KRAS-mutant subtypes are 
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shown in a heatmap (Figure 5A). Interestingly, all the 
MSI-positive tumors were clustered into KRAS-WT 
subgroup, and resulted in the aggregation of 
hypermutated phenotype, MSI and immune-related 
CMS1 transcriptomic subtype, and BRAF and 
ARID1A mutation. KM2 was associated with 
advanced tumor stage, the mesenchymal phenotype, 
the CMS4 transcriptomic subtype, ProS-C proteomic 
subtype and immune subtype 2 (Figure 5A-5B), which 
indicated stromal invasion, angiogenesis, and worse 
prognosis. The KM1 subtype was mainly 
characterized by early tumor stage, the CIN 
phenotype, the epithelial and metabolic-related CMS3 
transcriptomic subtype, the ProS-E proteomic 
subtype, and immune subtype 1 (Figure 5A-5B), 
which suggested epithelial features and better 
survival outcomes. Similar results were ascertained in 
the TCGA cohort (Figure 5C).  

We further analyzed the tumor biological 
signatures [39] to explore the representative immune 
and cancer-related processes within the KRAS-Mut 

subsets. Among the top six differential molecular 
signatures, the KM2 subset exhibited the highest 
enrichment of macrophages, MDSCs, hypoxia 
signature, EMT signature, Pan-F-TBRs, and stromal 
score, followed by the KM1 subset and KRAS-WT 
subset, in the CPTAC cohort (Kruskal–Wallis H test, P 
< 0.0001, Figure 5D). The ImmuneScore and T cell 
exhaustion level were also differentially distributed 
among the KRAS subsets, while there was no 
statistical significance in the mutation load (Figure 
S6A). We also performed the identical analyses in the 
TCGA cohort and obtained the similar results (Figure 
S6B-S6C). We further adopted the xCell algorithm to 
digitally portray and dissect the landscape of cellular 
heterogeneity in tissues of the three KRAS subsets. 
KM2 was characterized by augmentation in activated 
dendritic cells (aDCs), adipocytes, astrocytes, M2 
macrophages, mesenchymal stem cells (MSCs), etc., 
and the KM1 subgroup was distinguished by memory 
B cells and NK cells (Figure 5E). 

 

 
Figure 4. Tumor genomic landscapes in KRAS-Mut colorectal cancer. (A) Mutational landscape of SMGs in CPTAC tumors and stratified by KM1, KM2 and WT 
subgroups. Individual patients were represented in each column. The upper barplot showed mutational load, the right bar plot showed the mutation frequency of each gene in 
separate groups. Age, stage, gender, MSI status, and survival outcome were shown as patient annotations. (B) Lego plot representation of 96 nucleotide mutation patterns in 
colorectal cancer samples. Single-nucleotide substitutions were divided into six categories with 16 surrounding flanking bases. The pie chart in upper left showed the proportion 
of six major categories of nucleotide variation. (C) The mutational activities of corresponding extracted mutational signatures (signature SBS15, SBS44, SBS1/6, SBS1 and SBS10b, 
named as COSMIC-V3 database). (D) Distribution of mutational counts attributed to corresponding mutational signatures in different KRAS mutation subtypes. (E) Focal peaks 
with significant somatic copy-number amplification (red) and deletions (blue) (GISTIC2 Q-values < 0.1) are shown. The top ten amplified and deleted cytobands are labeled. 
Representative genes encoded from these focal peaks are highlighted in approximate positions across the genome. 
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Figure 5. KRAS-Mut patterns characterized by specific clinical features and molecular processes. (A) The relationship of clinical characteristics and molecular 
subtypes among KM1 and KM2 and KRAS-WT in colorectal cancer from CPTAC cohort. The heatmap shows the top 50 differential mRNA transcripts, proteins, and 
phosphoproteins, for each multi-omics cluster. (B) Comparison of the proportion of CPTAC integrated phenotype, transcriptomic subtype, immune subtype, chromosome 
instability, proteomic subtype, and MSI status among KM1, KM2 and WT subgroups. (C) The relationship of clinical characteristics and molecular subtypes among KM1 and KM2 
and KRAS-WT in colorectal cancer from TCGA cohort. (D) Distribution of curated Immuno-oncology related signatures from Zeng et al study, including Macrophages, MDSC, 
hypoxia signature, EMT signature, Pan F TBRs, and Stromal score among KRAS-WT, KM1 and KM2 subgroups in CPTAC cohort. (E) Comparison of TME cellular level inferred 
by xCELL algorithm among KRAS-WT, KM1 and KM2 groups in CPTAC cohort. Within each group, the thick line represents the median value. The bottom and top of the boxes 
are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The range of P values are labeled above each boxplot with 
asterisks (*P < 0.05, **P < 0.01, ***P < 0.001). 

 

Functional annotation of KRAS mutation 
patterns by proteomic and phosphoproteomic 
analyses 

Next, to further clarify the biological 
implications of the KRAS mutation subtype, we 
performed ssGSEA/post-transcriptional modification 
(PTM) and Metascape analyses in the KM1 and KM2 
tumor subsets at the RNA, protein, and 
phosphoprotein levels. The pathway enrichment at 
the RNA and protein levels indicated that KM1 was 

mainly enriched in the peroxisome, MYC targets, and 
Wnt β-catenin pathways, whereas KM2 was mainly 
enriched in the EMT, coagulation, angiogenesis, 
KRAS signaling-up, and myogenesis processes 
(Figure 6A). PTM analysis of the phosphoprotein 
dataset revealed that KM2 was characterized by 
upregulation of the kinase activity of PKACA, VEGF, 
PI3K (LY-294002), and JAK (tofacitinib), while KM1 
tumors were featured by drug target of MEK 
(trametinib), PI3K/mTOR (dactolisib), and Taxol. The 
proteomic data of KRAS-Mut tumors in the CCRC 



Theranostics 2022, Vol. 12, Issue 11 
 

 
https://www.thno.org 

5148 

cohort were collected and subjected to ssGSEA, and 
the results were similar to those in the CPTAC cohort 
(Figure S7A). Furthermore, the representative 
proteins of the EMT process (COL3A1, VIM, ECM1, 
and LAMC1) and angiogenesis pathways (POSTN, 
VCAN, and ITGAV) were significantly overexpressed 
in the KM2 subtype (Figure 6B). However, RBM15 
and HNRNPM (representative genes related to RNA 
transcription and modification) and RFC4 and 
CDK11B (representative genes related to the cell cycle 
and mitosis) were obviously overexpressed in the 
KM1 subtype (Figure 6B). We also identified the 
differentially expressed proteins between KM1 and 
KM2 tumors and performed protein–protein 
interaction analysis with the Metascape tool. The 
resulting network contained the subset of proteins 
that participate in physical interactions. According to 
the MCODE algorithm, 18 subclusters of proteins 
were identified, as shown in Figure S7B; the proteins 
in each cluster shared the same GO terms and KEGG 
pathways. Then, we compared the expression of 
phosphorylation sites in the KM1 and KM2 subgroups 
in the CPTAC cohort. We found that phosphorylation 
at the adhesion signaling-related phosphorylation 
sites FLNA-S1630 and MYO1F-S1023 and the 
mesenchymal phenotype-related sites VIM-S5, 
COL1A1-S176, and TFB1I1-S143 was significantly 
upregulated in the KM2 subgroup. Moreover, the 
levels of the tyrosine-protein kinase receptor 
EPHB2-S776 and cell cycle-related proteins 
CDK11A-S577 and CDK13-S432 were markedly 
elevated in the KM1 subgroup (Figure 6C, Table S6). 
Then, we performed pathway and process enrichment 
analyses based on the differentially phosphorylated 
sites. We found that many pathways and functions 
were significantly enriched, such as actin 
filament-based process, focal adhesion, and signaling 
by Rho GTPases, and that most of these functions and 
pathways were mediated by KRAS subtypes (Figure 
6D). The proteomic and phosphoproteomic data in the 
CCRC cohort were retrieved and subjected to 
Metascape analysis, and the results were similar to 
those in the CPTAC cohort (Figure S7C-S7F). Further 
kinase-substrate enrichment analysis (KSEA) [40-42] 
in the CPTAC and CCRC cohorts revealed that the 
CDC-like kinases CLK1/2, cyclin-dependent kinases 
CDK1/7 and extracellular signal-regulated kinases 
(ERKs) MAPK1/3 were significantly enriched in the 
KM1 subgroup; however, the apoptosis-related 
kinases PAK2 and PAK5 and the AKT 
serine-threonine protein kinase were markedly 
enriched in the KM2 subgroup (Figure 6E, Figure S7G, 
Table S7). 

Correlation analysis between molecular 
features and drug sensitivity reveals 
subset-specific therapies for KRAS-Mut 
colorectal cancer 

To explore the potential vulnerability of 
KRAS-Mut subtypes in CRC, we compared the gene 
dependencies based on large-scale RNAi screening 
among the colorectal cancer cell lines in the Cancer 
Dependency Map (DepMap) dataset. Forty-one 
KRAS-mutant CRC cell lines were curated and 
classified into the KM1 or KM2 subset. We identified 
31 genes with significantly different dependency 
scores (mean dependency score difference < -0.25, 
Wilcoxon rank-sum test, P < 0.05) between the KM1 
and KM2 subsets (Figure 7A). Using a mean 
dependency score of less than -0.3 as a cutoff, we 
identified 13 genes as subset-specific cancer 
dependency genes (Figure 7B). Among of them, the 
KM2 subtype included the PI3K/AKT signaling- 
related ZFP36L1 and the VEGF signaling-related 
COL5A1 and TLN1; the KM1 subtype featured the cell 
cycle/mitosis-dependent CCNB3, RAD21 and the 
core Wnt signaling molecule CTNNB1. 

To further identify the subset-specific 
therapeutic agents for KRAS-mutant CRC subtypes, 
we applied three drug response databases (CTRP-v2, 
PRISM and GDSC1) to investigate the potential 
therapeutic agents of KM1 and KM2 cell subsets 
(Figure 7C). Differential drug response analysis 
between the KM1 and KM2 subgroups was conducted 
to identify specific compounds with lower estimated 
AUC values in each group (adjusted P < 0.05). These 
analyses yielded 8 CTRP-derived compounds (3 for 
KM1, 5 for KM2) and 10 PRISM-derived compounds 
(7 for KM1, 3 for KM2) and 11 GDSC-derived 
compounds (5 for KM1, 6 for KM2) (Figure 7C). 
Among the common drug targets between the three 
drug repositories, PI3K inhibitors were identified in 
both the CTRP and GDC databases for the KM2 
subtype (Figure S8A). 

Multiple perspective analyses were 
subsequently conducted to investigate the therapeutic 
potential of these compounds in CRC. We first used 
Connectivity Map (CMap) dataset to identify 
compounds for which the gene expression patterns 
were opposite the KRAS subtype-specific expression 
patterns (i.e., gene expression was increased in KM1 
or KM2 subtype tumor tissues but decreased after 
treatment with the compound). Six compounds for 
the KM2 subtype and three compounds for the KM1 
subtype had a CMap score of less than -90 (Figure 
7D). We further compared the protein expression 
patterns of candidate drug targets and retrieved the 
experimental and clinical evidence to filter the 
potential drugs (Supplementary Files). Representative 
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results are presented in Figure 7D and Table S8. In 
general, PI3K/AKTi, MEKi and FGFRi, which had 
robust in vitro and in silico evidence, were considered 
to hold the most promising therapeutic potential in 
patients with KM2 CRC. Moreover, floxuridine and 
CDKi hold the promising therapeutic potential in 
patients with KM1 CRC. We also explored the 
potential gene regulators that highly correlated with 
sensitivity to MEKi, ERKi or AKTi in each KRAS 
subtype, which may be potential indicators for the 
response to such inhibitors (Figure S8B). Finally, we 
generated a schematic summarizing the signaling 
pathways in the KRAS-Mut subtype to outline our 

findings in KRAS-mutant CRC (Figure 7E). 

Discussion 
KRAS is frequently mutated in CRC and is 

involved in the occurrence, progression, immune 
evasion, and treatment resistance of CRC. Due to the 
broad heterogeneity of KRAS mutations, this group of 
CRC patients requires more precise and personalized 
treatment. In this study, genomic, transcriptomic, 
proteomic and phosphoproteomic analyses were 
leveraged to explore the clinicopathologic features 
and molecular networks in KRAS-Mut CRC tumors. 
Single-cell RNA-seq was also employed to delineate 

 

 
Figure 6. Functional annotation of KRAS-Mut subtypes by phosphoproteome analysis. (A) Heatmap shows the representative biological pathways among KM1, 
KM2 and KRAS-WT subgroups in RNA, protein, phosphoprotein level of CPTAC cohort. (B) The representative differential proteins expression level in KM1 or KM2 versus 
KRAS-WT, respectively. The color represents the ratio of level in different subgroup. (C) The volcano plot of differential phosphorylation sites in KM1 versus KM2. Blue and red 
points represented significantly differential phosphoprotein in M1 and M2 subtype, respectively. X-axes showed log2 (fold change) and y-axes showed -log10 (adjusted P value). 
(D) The expression of phosphorylated protein sites in KM1 and KM2 groups were applied to perform pathway and process enrichment analysis via Metascape. (E) Enriched 
kinases in KM1 and KM2 subsets using KSEA with a significance of P < 0.05. Blue bars represent enriched in KM1; Red bars enriched in KM2. 
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the TME cellular landscape of KRAS mutant CRC 
tumors. Our integrative analysis intrinsically 
separated KRAS-mutant tumors into two subtypes, 
KM1 and KM2, which are characterized by different 
genomic variations, survival outcomes and biological 
phenotypes. We further utilized a large-scale drug 
screening system based on KRAS-mutant CRC cell 

lines and identified potential therapeutic agents for 
the specific KRAS-Mut subtypes. Our study 
confirmed the value of proteogenomic integration in 
uncovering novel cancer biological implications of 
oncogenic driver KRAS mutations and further 
demonstrated the utility of proteogenomics in 
guiding therapeutic regimens. 

 

 
Figure 7. Correlation between molecular feature and drug sensitivity reveals subsets-specific agents for KRAS-Mut colorectal cancer. (A) Dot plot showing 
the differences of gene dependencies between KM1 and KM2 groups. The genes with statistically different dependency scores in each subset are highlighted in blue (M1), and red 
(M2), respectively. Genes with FDR＜0.05 are shown in the dot plot. Right shows the dependency scores for subset specific genes. (B) KRAS subgroup specific genes with 
dependency scores less than -0.3 were shown. (C) Three drug sensitivity databases (CTRP-V2, PRISM, GDSC1) were used to identify the sensitive of KM1 and KM2 cell line 
subsets to specific agents. Agents with lower AUC values on the x-axis of boxplots imply greater drug sensitivity. (D) Identification of most promising therapeutic agents for KM1 
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and KM2 subtype patients according to the evidence from multiple sources. (E) Scheme of signaling cascade and drug targets that are modulated in KRAS-Mut subtypes. The lower 
left panel displays the cell-cycle and checkpoints pathway that is dysregulated in KM1 patients and the lower right panel displays the epithelial-mesenchymal transition pathway 
that is dysregulated in KM2 patients. 

 
 Previous studies reported that cytotoxic T cells, 

neutrophils and the interferon gamma pathway were 
suppressed in KRAS-Mut tumors [7, 8]. Our 
preliminary analyses also found similar results and 
further indicated that Tregs, MDSCs and epithelial 
cells were increased in KRAS-Mut tumors. The 
mutational profiles at the single-cell level were more 
precise in evaluating the cellular landscape of 
KRAS-mutated CRC. However, the current 
technology bottleneck of simultaneous sequencing of 
genome and transcriptome in individual cells limits 
the accurate exploration of cellular heterogeneity. 
Therefore, this study utilized a compromise approach 
in which the tissues were divided into two parts: half 
of the tissues were used for single-cell isolation, and 
the other half were prepared for DNA extraction and 
mutation testing. Finally, we utilized the single-cell 
RNA-seq data to compare the difference of TME 
cell-infiltrating landscape based on bulk 
WES-identified KRAS-WT and KRAS-Mut colorectal 
tumors. The scRNA-seq analyses revealed alterations 
in specific cell subpopulations (including SPP1+ 
macrophages, myofibroblasts and IgG+ plasma cells) 
related to KRAS mutation and suggested the roles of 
genetic alterations in tumor cells that determine the 
formation of these unique tumor microenvironments 
in CRC. Giopanou et al. found that lung macrophages 
and epithelium-secreted SPP1 drove tumor-associated 
inflammation, while SPP1 promoted early 
tumorigenesis by promoting the survival of 
KRAS-mutated cells, especially in KRAS-G12D-driven 
tumors [43]. Stromal myofibroblasts were reported to 
promote the development of pancreatic cancer via 
collaboration with the epithelial compartment 
harboring oncogenic Kras mutations [44]. The 
characterization of cellular profiles in the TME of CRC 
implies the immunomodulatory effect of KRAS 
mutation, particularly via promotion of inflammation 
and evasion of the immune response, ultimately 
leading to tumor progression, invasion, and 
progression. 

Considering the inferior clinical outcomes of 
KRAS-mutant CRC tumors, we performed an 
integrative clustering analysis to better stratify 
patients for therapeutic interventions and provide a 
more precise assessment of phenotypic heterogeneity. 
The KM2 subtype was associated with the 
mesenchymal phenotype-related CMS4 subtype and 
enriched in EMT, TGF-β and angiogenesis pathways, 
which indicated stromal invasion and worse 
prognosis. Studies have revealed that EMT-related 
molecules promote KRAS-driven tumor development 

and suppress sensitization to MEK inhibitors [44, 45]. 
Moreover, Adachi et al. confirmed that EMT is a cause 
of both intrinsic and acquired resistance to KRAS 
G12C inhibitors in KRAS G12C-mutant non-small-cell 
lung cancer [46], suggesting that the EMT process 
plays a critical role in KRAS mutation-driven 
tumorigenesis and therapeutic resistance. The KM1 
subtype was mainly characterized by the 
metabolism-related CMS3 subtype and exhibited high 
activation of cell cycle, MYC and RNA transcription 
pathways, suggesting cyclin-dependent features and 
better survival outcomes. Kazi et al. utilized global 
phosphoproteomic screening and found that CDK 
was a therapeutic target and that CDK inhibitors can 
be utilized into the treatment of KRAS-Mut tumors 
[47]. Our KRAS molecular subtyping was also 
validated in independent KRAS-Mut datasets of 
CRCC, TCGA and CIT. These results provide 
instructive molecular insights and indicate the 
prognostic utility of the identified subtype signature 
in KRAS-Mut colorectal cancer. 

 Interestingly, the two KRAS mutational 
molecular subtypes exhibited few differences in 
driver gene mutations. However, the copy number 
variations in cytobands of chr2p, chr5p, chr12p, etc. 
indicated significant alteration of amplification or 
deletion between the two KRAS subtypes. Cytoband 
amplification in the chr5p15.33 region contained the 
TERT gene, which is related to the cell cycle and 
regulation of Wnt-beta catenin signaling. Chr5q22.2 
contains the tumor suppressor gene APC, whose 
deletion or inactivation leads to activation of the Wnt 
signaling pathway and loss of a tumor-suppressive 
function. Overexpression of WNT5B and FOXM1, 
located on chr12p13.33, has been reported to be 
associated with cancer cell migration and 
proliferation [48, 49]. Deletion of chr18q11.2 is 
predictive of survival in patients with metastatic 
colorectal cancer treated with VEGFR inhibitors [50]. 

Despite the breakthroughs in allele-specific 
inhibitors targeting KRAS-G12C mutant cancer [9], 
direct targeting of KRAS remains extremely difficult 
[5, 51]. Moreover, KRAS-G12D and KRAS-G12V 
remain the most common mutations in CRC and are 
found in the largest patient populations [4]. Therefore, 
we utilized three drug sensitivity prediction resources 
and further filtering with molecular perturbation 
datasets and clinical/experimental evidence to 
investigate potential treatment strategies for KRAS 
mutant CRC. Previous whole-genome CRISPR 
screening demonstrated the fibroblast growth factor 
receptor 1 (FGFR1) as the top-ranked target that 
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promoting the survival of mesenchymal phenotype- 
related cancer cells [52]. Manchado et al. indicated 
that genetic or pharmacological inhibition of FGFR1 
in combination with MEKi enhances tumor cell death 
in vitro and in vivo [53]. Moreover, the combination of 
floxuridine and CDKi (palbociclib) has promising 
therapeutic potential in patients with KM1 CRC. 
Oncogenic KRAS mutations have been demonstrated 
to trigger a diverse range of phosphorylation 
cascades, including canonical MAPK, PI3K/AKT and 
RALGDS/RAL pathways, and inhibitors targeting 
these molecules have been utilized and combined in 
clinical practice to suppress these signaling cascades 
in colorectal cancer [54, 55]. Recent studies reported 
that CDK inhibitors served as the vulnerability and 
therapeutic targets to KRAS-Mut cancers [47, 56, 57]. 
Testing of colorectal patient-derived xenograft (PDX) 
models further showed that combination of MEKi and 
palbociclib (CDKi) was well tolerated and highly 
efficacious in KRAS-Mut models [56]. Recent studies 
have revealed that phosphorylation of SHP2 
(PTPN11) contributes to its interaction with growth 
factor receptor-bound protein 2 (GRB2) and that it acts 
as a scaffold protein to recruit the GRB2-SOS complex, 
thereby promoting RAS nucleotide exchange and cell 
proliferation [58]. In our drug prediction system, 
inhibitors targeting SHP2 or SOS1 were not 
statistically significant in KRAS mutational subtype 
(KM1 vs. KM2), possibly because the compound 
screening was based on KRAS-Mut samples and the 
discriminatory effect between KRAS-Mut and WT 
was weakened. 

The clinical relevance of the identified molecular 
signatures for subtyping was largely validated at the 
mRNA level but not at the protein/phosphoprotein 
level because of the limited clinical proteomics data 
for KRAS-Mut patients. Therefore, further validation 
of the molecular subtype classification in a large-scale 
prospective clinical cohort of patients with CRC is 
required. Furthermore, potential drug combination 
intervention strategies in specific KRAS-mutant CRC 
subsets are expected to be further explored in 
xenograft models and clinical trials. The 
representativeness of the signatures and drug 
sensitivities for CRC in situ remains to be further 
validated in large-scale primary samples. 

In summary, our integrated proteogenomic 
characterization revealed new molecular subtypes 
and therapeutic opportunities for targeting signaling 
proteins, phosphosites, and genomic alterations in 
KRAS-mutant colorectal cancer. Although validation 
of these therapeutic hypotheses is beyond the scope of 
our current study, our characterization of molecular 
phenotypes and mutation profiles may enable 
substantial advances in revealing the molecular 

heterogeneity of KRAS-Mut tumors. We hope that 
both the specific observations and hypotheses 
delineated in this manuscript may lead to the 
development of more promising KRAS-targeted 
approaches. 
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