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Abstract 

Single-cell RNA sequencing (scRNA-seq) enables specific profiling of cell populations at single-cell 
resolution. The osteoimmunology microenvironment in the occurrence and development of 
periodontitis remains poorly understood at the single-cell level. In this study, we used single-cell 
transcriptomics to comprehensively reveal the complexities of the molecular components and 
differences with counterparts residing in periodontal tissues. 
Methods: We performed scRNA-seq to identify 51248 single cells from healthy controls (n=4), patients 
with severe chronic periodontitis (n=5), and patients with severe chronic periodontitis after initial 
periodontal therapy within 1 month (n=3). Uniform manifold approximation and projection (UMAP) 
were further conducted to explore the cellular composition of periodontal tissues. Pseudotime cell 
trajectory and RNA velocity analysis, combined with gene enrichment analysis were used to reveal the 
molecular pathways underlying cell fate decisions. CellPhoneDB were performed to identify 
ligand-receptor pairs among the major cell types in the osteoimmunology microenvironment of 
periodontal tissues. 
Results: A cell atlas of the osteoimmunology microenvironment in periodontal tissues was characterized 
and included ten major cell types, such as fibroblasts, monocytic cells, endothelial cells, and T and B cells. 
The enrichment of TNFRSF21+ fibroblasts with high expression of CXCL1, CXCL2, CXCL5, CXCL6, CXCL13, 
and IL24 was detected in patients with periodontitis compared to healthy individuals. The fractions of 
CD55+ mesenchymal stem cells (MSCs), APOE+ pre-osteoblasts (pre-OBs), and IBSP+ osteoblasts 
decreased significantly in response to initial periodontal therapy. In addition, CXCL12+ MSC-like pericytes 
could convert their identity into a pre-OB state during inflammatory responses even after initial 
periodontal therapy confirmed by single-cell trajectory. Moreover, we portrayed the distinct subtypes of 
monocytic cells and abundant endothelial cells significantly involved in the immune response. The 
heterogeneity of T and B cells in periodontal tissues was characterized. Finally, we mapped osteoblast/ 
osteoclast differentiation mediators to their source cell populations by identifying ligand-receptor pairs 
and highlighted the effects of Ephrin-Eph signaling on bone regeneration after initial periodontal therapy. 
Conclusions: Our analyses uncovered striking spatiotemporal dynamics in gene expression, population 
composition, and cell-cell interactions during periodontitis progression. These findings provide insights 
into the cellular and molecular underpinning of periodontal bone regeneration. 
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Introduction 
Chronic periodontitis is a common disease 

consisting of chronic inflammation of the periodontal 
tissues. It is a highly prevalent disease in humans, 
affecting about 20%-50% of the worldwide population 
[1, 2]. Patients with chronic periodontitis often suffer 
from alveolar bone loss due to increased osteoclast 
(OC)-mediated bone erosion and decreased osteoblast 
(OB)-mediated bone formation in response to local 
inflammation [3]. Chronic periodontitis can 
predispose individuals to systemic diseases such as 
cardiovascular disease, diabetes, and Alzheimer’s 
disease, as well as gastrointestinal diseases and 
adverse pregnancy outcomes [4-6]. The primary goal 
of periodontitis treatment is to control the infection 
and inflammation, halt the periodontal tissue 
destruction, and prevent alveolar bone loss. Removal 
of microbial biofilms and suppression of 
inflammation by initial periodontal therapy may 
block the periodontal tissue degradation; however, 
only limited regeneration of lost tissues occurs, 
especially the dental alveolar bone [7-9]. 

During periodontitis progression, a large 
number of immune cells activate and modulate the 
immune response by producing cytokines and growth 
factors that affect bone cells, such as osteoclast and 
osteoblast activity [10]. Immune cells including 
macrophages [11], regulatory T cells (Tregs) [12], TH17 
cells [13], memory B cells, and plasma cells [14] have 
established relevance in periodontitis pathogenesis. In 
2000, the term 'osteoimmunology' was coined by 
Arron and Choi to highlight the interaction between 
the immune cells and bone cells, as well as the 
abnormal bone metabolism caused by an immune 
imbalance [15]. Nowadays, osteoimmunology has 
opened the field of bone research to all fields dealing 
with chronic inflammatory diseases that are linked to 
bone loss, such as rheumatoid arthritis, inflammatory 
bowel diseases, and periodontitis [3, 16]. 

Single-cell RNA sequencing (scRNA-seq) 
enables specific profiling of cell populations at 
single-cell resolution, which greatly revolutionizes 
our ability to study the immune microenvironment 
[17]. scRNA-seq will pave the road for understanding 
deregulated osteoimmune interactions and more 
specific targeting of cells participating in pathological 
bone loss [18]. In this study, we used single-cell 
transcriptomics to comprehensively resolve the 
osteoimmunology microenvironment that is involved 
in periodontal tissues. We used periodontal tissues 
from human chronic periodontitis before and after 
initial periodontal therapy, as well as from clinically 
healthy controls. This allowed unbiased assessment of 
many heterogeneous cells at the single-cell level, 

hence revealing the complexities of the molecular 
components and differences with counterparts 
residing in periodontal tissues. 

Results 
scRNA-seq and cellular constitution of human 
periodontal tissues 

To preliminarily probe the constitution of the cell 
populations in human periodontal tissues, we 
performed scRNA-seq analysis on human periodontal 
tissues from four healthy controls (HCs), five patients 
with severe chronic periodontitis (PDs), and three 
patients with severe chronic periodontitis after initial 
periodontal therapy within 1 month (PDTs) (Figure 
1A). The clinical information of all the samples is 
shown in Table S1. After standard data processing 
and quality filtering (Method), we obtained single-cell 
transcriptomes from a total of 51248 single cells, 
including 14552 cells from HCs, 19865 cells from PDs, 
and 16831 cells from PDTs (Table S1). 

Unbiased clustering of the cells identified ten 
clusters based on uniform manifold approximation 
and projection (UMAP) analyses. Each cluster was 
annotated based on the top principals and the marker 
genes were calculated (Figure 1B and Figure S1A). In 
particular, they were as follows: (1) T cell cluster, (2) B 
cell cluster, (3) plasma cell cluster, (4) endothelial cell 
cluster, (5) neutrophil cell cluster, (6) monocytic cell 
cluster, (7) fibroblast cell cluster, (8) mast cell cluster, 
(9) epithelial cell cluster, and (10) myeloid-derived 
suppressor cell cluster (MDSC) [19-22]. The profiles of 
the expression differences of the representative 
marker genes in the cell populations were 
demonstrated by statistical quantification to match 
the biological annotation (Figure 1C, Figure S1B, and 
Table S2). 

We next compared the proportion of each cell 
cluster in the different sample sets (Figure 1D). Of 
note, we observed significant reductions in the 
fraction of the T cell cluster in the PD group compared 
with the HC group, which was partly rescued after 
treatment (PDT group). The percentage of endothelial 
cells was clearly increased in the PD group compared 
with the HC group. Interestingly, the abundance of 
fibroblasts was significantly decreased in the PDT 
group compared with the PD group, which was even 
lower than that of the HC group. The percentage of 
epithelial cells was increased in the PD group 
compared with the HC group, which was even higher 
in the PDT group than the PD group. In addition, the 
distribution of MDSCs was almost specific to the HC 
group, which may be due to a very small amount of 
MDSCs causing variation (Figure 1D and Table S3). 
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Figure 1. Overview of the 51248 single cells from periodontal tissues of HCs, PDs, and PDTs. A. Study overview. B. Uniform Manifold Approximation and 
Projection (UMAP) of the 51248 cells, colored by cell-type annotation from left to right: the total corresponding donors and the different conditions (HC, PD, and PDT). MDSCs: 
Myeloid-derived suppressor cells. C. UMAPs as in (B) but colored by expression of key cell-type marker genes. D. The box plots showing the percentage of cells for each of ten 
clusters as in (C) from HC (blue, n=14552), PD (red, n=19865), and PDT (green, n=16831) samples with plot center, box, whiskers and point corresponding to the median, IQR, 
1.5 × IQR, and >1.5 × IQR respectively. Statistical analysis was performed using unpaired two-tailed t-tests. 

 

The heterogeneity of fibroblasts and the 
proinflammatory phenotype of TNFRSF21+ 
fibroblast subsets 

We further identified the cell populations of the 
fibroblast cluster by UMAP analyses. Fibroblast cells 
detected in Figure 1B were heterogeneous and 
clustered into four groups, including six clusters of 
fibroblasts (cluster 1/2/3/5/8/9), two clusters of 
pericytes (cluster 4/7), one cluster of myofibroblasts 

(cluster 6), and one cluster of proliferative cells 
(cluster 10) [23] (Figure 2A, Figure S2A, and Table S2). 
Concretely, the following cells were further identified 
from fibroblasts (cluster 1/2/3/5/8/9): four 
subclusters (sC) pertained to fibroblasts with unique 
phenotypes and functions (sC 1, 5, 6, 7) and three 
subclusters of osteoblastic lineage cells, including 
CD55+ MSCs (sC 2), APOE+ pre-OBs (sC 3), and IBSP+ 
OBs (sC 4) [24] (Figure 2B and Table S2). 



Theranostics 2022, Vol. 12, Issue 3 
 

 
https://www.thno.org 

1077 

 
Figure 2. Distinct subclusters of the osteoblastic lineage in fibroblast cells cluster. A. Left panels: Uniform Manifold Approximation and Projection (UMAP) of 2194 
fibroblasts (as in Figure 1A), annotated and colored by the sample type of origin (HCs, PDs, and PDTs) and clustering. Right panels: UMAPs color-coded for expression (gray to 
red) of key cell-type markers to define the clusters. Red contours (from left to right): Fibroblasts (cluster 1/2/3/5/8/9), Pericytes (cluster 4/7), Myofibroblasts (cluster 6), and 
Proliferative cell (cluster 10). B. Left panel: UMAP of 1358 fibroblasts (cluster 1/2/3/5/8/9 in A), annotated and colored by clustering. Center panels: violin plots showing distinct 
expressions of the selected marker genes (Row) in each subcluster. Right panel: identified subpopulations of Fibroblasts (subcluster 1-7) with the percentages shown. PLF: 
Periodontal Ligament Fibroblasts; MSC: Mesenchymal Stem Cell; pre-OB: pre-Osteoblast; OB: Osteoblast; FB: Fibroblast. C. The box plots showing the percentage of cells for 
each of seven subclusters as in (B) from HC (blue, n=655), PD (red, n=1095), and PDT samples (green, n=158) with plot center, box, whiskers, and points corresponding to the 
median, IQR, 1.5 × IQR and >1.5× IQR, respectively. Statistical analysis was performed using unpaired two-tailed t-tests. D. Representative images of in vitro assays to determine 
multiple differentiation potential of CD55+NT5E+LepR+ cells. Periodontal cells of a clinically healthy donor were collected and stained with various antibodies and subjected to 
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flow cytometry sorting. CD55+NT5E+LepR+ cells were collected and subjected to the following assays. For osteogenic induction, colony-forming units (CFU-F, left)/alkaline 
phosphatase (ALP)-positive colony-forming units (CFU-ALP, middle)/nodules (right) formation were examined. For adipogenic induction, Oil red staining was performed to 
examine adipocytes. For chondrogenic induction, Alcian blue staining was performed to examine chondrocytes. E. Representative images of immunofluorescence staining (left 
panels) and the quantification (right panel) of periodontal tissues from HC (left) and PD samples (right) for double fluorescent analysis of CD55 (green) and LepR (red) expression. 
Top panel: Merged; bottom left: CD55; bottom right: LepR. Scale bar = 100µm. F. Upper panel: RNA velocity analysis of MSCs (subcluster 2), pre-OBs (subcluster 3), and OBs 
(subcluster 4) with velocity field projected onto the UMAP plot of fibroblast subclusters from Figure 2B. Arrows show the local average velocity evaluated on a regular grid and 
indicate the extrapolated future states of cells. Bottom panel: Monocle pseudotime analysis revealing the progression of MSCs (subcluster 2), pre-OBs (subcluster 3), and OBs 
(subcluster 4). Trajectory reconstruction of all single cells revealing three branches: Pre-branch, Fate 1, and Fate 2. G. Heatmap showing the scaled expression of differently 
expressed genes in three branches as in (F), cataloged into three major gene clusters (labels on left) that vary as a function of pseudotime, highlighting specific representative genes 
in each gene cluster along the right margin. From the center to the left of the heatmap, the kinetic curve from the pre-branch along the trajectory to fate 2 branch. From the 
center to the right, the curve from pre-branch to successful branch. H. GO analysis of differently expressed genes associated with three gene clusters as in (G) identified unique 
response pathways for each branch. 

 
A considerable amount of literature has been 

published to confirm the important roles of fibroblasts 
in regulating tissue homeostasis, coordinating 
inflammatory responses, and mediating tissue 
damage [25, 26]. Four distinct fibroblast subclusters 
gained from Figure 2B are consistent with the theory 
that fibroblasts show different identities and have 
different roles in the extracellular matrix [27]. 
Periodontal ligament fibroblasts (PLF, sC 1) occupied 
the most fibroblasts annotated by the expression of 
ASPN, an extracellular connective tissue marker 
intensely expressed within the PDL (Figure 2B and 
Figure S2B) [28]. Intriguingly, three others of four 
subclusters expressed inflammatory-associated genes 
(CXCL1, CXCL13, LAMP5) (Figure 2B). An abundance 
of CXCL1+, CXCL13+, and LAMP5+ subclusters was 
observed in periodontal tissues from PD samples 
(Figure 2C). Besides, TNFRSF21, which encodes 
CD358 protein and exerts crucial functions 
in inflammatory diseases [29], was detected in these 
three subclusters (Figure S2C). Immunofluorescence 
staining confirmed that collagen I+CD358+ fibroblasts 
were significantly increased in the periodontal tissues 
from PD samples compared with the HC samples 
(Figure S2D). Further, these TNFRSF21+ subclusters 
also displayed high expression of genes involved in 
neutrophil trafficking factors (CXCL1, CXCL2, CXCL5, 
CXCL6), B cell and TFH positioning (CXCL13), and 
upregulation of the immune system (IL24) (Figure 
S2E). Therefore, TNFRSF21+ fibroblast subsets might 
contribute to the activation of the proinflammatory 
transcriptome in periodontal tissue. 

Depletion of the osteoblastic lineage and 
failure of osteogenesis in response to initial 
periodontal therapy 

In the osteoimmunology microenvironment, 
MSCs are characterized by a fibroblast-like 
morphology that can differentiate into a variety of cell 
types, including osteoblastic lineage cells [30]. 
Subcluster 2, which was annotated as CD55+ MSCs, 
also expressed other classical MSC markers, NT5E 
[31-33] and LepR [34, 35] (Figure S3A). We next used 
flow cytometry sorting to isolate CD55+NT5E+LepR+ 

or CD45−CD55+ cells from human periodontal tissues 
of clinically healthy donors. As expected, 

CD55+NT5E+LepR+ cells were shown to possess the 
characteristics of MSCs and exhibited in vitro 
multilineage differentiation potential (Figure 2D). 
Similar to CD55+NT5E+LepR+ cells, CD55 alone also 
could be used to label MSCs in human periodontal 
tissues. In contrast to CD45−CD55− cells, CD45−CD55+ 
cells from periodontal tissues exhibited in vitro OB 
differentiation potential and further differentiated 
into osteoblast-like cells depositing mineralized 
matrix upon transplantation into immunodeficient 
mice (Figure S3B-C). Furthermore, the fractions of 
CD55+ MSCs, APOE+ pre-OBs, and IBSP+ OBs 
decreased significantly in response to initial 
periodontal therapy (Figure 2C). Importantly, MSCs, 
pre-OBs, and OBs were almost depleted in the PDT 
group. We also confirmed the expression of 
CD55+LepR+ MSCs by immunofluorescence staining 
using periodontal tissues from HC and PD samples. 
As expected, the intense expression of CD55 on the 
surface of the LepR+ population was detected in 
periodontal tissues from HC samples, accompanied 
by relatively low expression of the CD55+LepR+ 
population in the PD samples (Figure 2E). 

We further examined the impact of disease 
progression on osteoblastic differentiation in 
periodontal tissues. Because of the undetected MSCs 
in PDT, data from all participants were merged, and 
single-cell trajectories analysis was performed to 
model the lineage relationships among MSCs (sC 2), 
pre-OBs (sC 3), and OBs (sC 4). We utilized scVelo to 
determine the transcriptional fate of osteoblast- 
lineage cells. Projection of the velocity field arrows 
onto the UMAP plot extrapolated future states of 
CD55+ MSC to Pre-OB and OB population (Figure 2F). 
Monocle pseudotime analysis further corroborated 
the MSC to Pre-OB and OB transition. Interestingly, 
the pseudotime trajectory began with MSCs and then 
split into two main branches with OBs and pre-OBs 
placed at opposite divergent ends as two terminally 
differentiated cell types (Figure 2F). OBs were found 
at one terminal end of the trajectory, representing a 
successful transition from MSCs to OBs (fate 1 
branch). In contrast, part of pre-OBs were found at 
another terminal end of the trajectory (fate 2 branch). 
With this in mind, we tried to elucidate the molecular 
dynamics that distinguished the two branches. The 
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analyses of the gene expression dynamics revealed 
that along with fate 1 branch, cluster 2 genes activated 
at the end of the transition were predominantly 
involved in the GO terms “skeletal system 
development”, “ossification”, and “OB differ-
entiation” (POSTN, BMP3, BMP5, and BMP8B) which 
are consistent with the features of osteoblastic 
differentiation. The fate 2 branch expressed higher 
levels of cluster 3 genes enriched for the GO terms 
“collagen catabolic process” (CTSK, ADAMTS2, and 
COL6A2) and “extracellular matrix disassembly” 
(MMP14, COL3A1, and COL6A1) (Figure 2G-H and 
Table S4). Therefore, these unique gene expression 
patterns characterized a successful OB differentiation 
path and a functional difference at the pre-OB 
subcluster. 
Multilineage differentiation capacity of 
pericytes 

Given the markedly decreased osteoblastic 
lineage cells with the absence of MSCs in periodontal 
tissues after initial periodontal therapy, we sought to 
explore other sources of MSCs. Pericytes safeguard 
vascular integrity as mural cells and possess attributes 
of self-renewal. As multipotent adult stem cells, they 
can commit and differentiate into multiple lineages 
for processes of tissue repair and regeneration [37-40]. 
Notably, due to the paucity of distinctive markers [27, 
41], single-cell data from pericytes and myofibroblasts 
were pooled and unsupervised clustering was 
conducted to identify distinguishable subpopulations. 
We noted that merged pericytes and myofibroblasts 
uniformly expressed RGS5, but the expression 
patterns and levels varied for individual canonical cell 
lineage markers (Figure 3A) [42]. We detected two 
subpopulations of high MYH11- and ACTA2- 
expression myofibroblasts (subclusters 3 and 4). We 
also identified four transcriptionally distinct KCNJ8+ 
pericyte subclusters. Among them, only sC 2 
expressed a high level of CXCL12, a marker for 
perivascular MSCs [24]. Hence, we identified this 
subcluster as CXCL12+ MSC-like pericytes. 
Importantly, CXCL12+ MSC-like pericytes existed 
even after initial periodontal therapy (Figure 3B and 
Table S3). Consistent with this, immunofluorescence 
staining showed that CXCL12+ cells are mainly 
located around the microvessels in periodontal tissues 
from HC group, whereas there was an increase in the 
expression of CXCL12+ cells with pericyte-like 
location in samples from PD group compared with 
that of HC group (Figure S4A). Interestingly, the 
SPON2+ pericytes were clearly upregulated in the PD 
group compared with the HC group (Figure 3B and 
Table S3). The abundance of SPON2+ pericytes with 
significantly high levels of cell proliferation-related 

genes (MCM3, MCM4, MCM6, PCNA) alluded that 
they were in a stimulated state (Figure 3A and Table 
S2). 

To determine the lineage relationships and the 
corresponding gene expression, we performed 
pseudotime analysis on the merged cells to construct 
a new trajectory containing two termini 
corresponding to two distinct cell fates. The RNA 
velocity analysis was used to unambiguously 
demonstrate the trajectory (Figure 3C). CXCL12+ 
MSC-like pericyte was found at the start point of the 
trajectory, and then split into two main branches with 
POSTN+/SPON2+ pericytes (fate 1 branch) and 
MYH11+/ACTA2+ myofibroblasts (fate 2 branch) 
placed at opposite divergent ends as two terminally 
differentiated cell types. Of note, most CXCL12+ 
MSC-like pericytes failed to proceed through the 
commitment point (black triangles) and transition 
cells showed a propensity to go back to basal fate 
(Figure 3C). Indeed, differential gene expression 
analysis attributed the six clusters to the different 
subtypes concordant with the pseudotime states. 
Besides, we observed both cell fates enriched in the 
PD group and PDT group (Figure S4B). Next, we 
assessed the gene expression patterns responsible for 
the differentiation of MSC-like pericytes during the 
two cell fates. The expression of CXCL12, a critical 
hematopoietic stem cell niche factor in MSCs and 
pericytes [24], was found to be similar in both 
trajectories and was downregulated with cell 
differentiation. The expressions of COL1A1, POSTN, 
and SPON2 were downregulated during fate 2 branch 
but notably upregulated during fate 1 branch (Figure 
3D and Table S5). 

The gene expression patterns involved in the 
continuum transition were further dissected. The 
cluster 1 genes, the expressions of which increased 
with fate 2 branch, were enriched for the GO terms 
“Notch signaling pathways”, “Wnt signaling 
pathways”, and pathways involved in “TGF-beta 
signaling pathways” (FZD7, NOTCH3, INHBA, and 
MYC) (Figure 3E-F and Table S5). These GO terms 
and pathways have also been reported during the 
process of fate 2 branch in renal interstitial fibrosis 
and pulmonary fibrosis [45-47]. The cluster 2 and 3 
genes exhibited branched-dependent enrichment in 
fate 1 branch and were involved in “osteoblast 
differentiation”, “ossification”, and “skeletal system 
development” (MMP14, COL1A1, IGFBP4, and 
POSTN) indicating the potential of osteogenesis 
(Figure 3D-F). Meanwhile, the gene clusters during 
both cell fates showed the same enrichment in the GO 
term “response to oxidative stress”, implying that 
inflammatory stimuli may contribute to both two 
important directions. 
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Figure 3. The multilineage differentiation capacity of pericytes. A. Left panel: UMAP of 521 cells as pericytes (cluster 4/7) and myofibroblasts (cluster 6) in Figure 2A, 
annotated and colored by clustering. Center panels: violin plots showing distinct expressions of the selected marker genes (Row) in each subcluster. Right panel: identified 
subpopulations of pericytes (subcluster 1-6) with the percentages shown. B. The box plots showing the percentage of cells for each of six subclusters as in (A) from HC (blue, 
n=42), PD (red, n=373), and PDT (green, n=106) samples with plot center, box, whiskers, and points corresponding to the median, IQR, 1.5 × IQR and >1.5× IQR, respectively. 
Statistical analysis was performed using unpaired two-tailed t-tests. C. Upper panel: Monocle pseudotime analysis revealing the progression of six subclusters as in (A). Trajectory 
reconstruction of all single cells revealing three branches: Pre-branch, Fate 1, and Fate 2. Bottom panel: RNA-Velocity analysis of the pseudotime trajectory of pericyte and 
myofibroblast. Direction of the arrows points to the cells are heading toward; length of the arrows reflects how fast the cells are heading toward a particular fate. D. The 
expression dynamics of selected marker genes go from CXCL12+ MSC-like pericyte and bifurcating into two branches with respect to pseudotime coordinates. All single cells in 
the six subclusters are colored based on (A) and ordered based on pseudotime. E. Heatmap showing the scaled expression of differently expressed genes in three branches as 
in (C), cataloged into three major gene clusters (labels on left) that vary as a function of pseudotime, highlighting specific representative genes in each gene cluster along the right 
margin. From the center to the left of the heatmap, the kinetic curve from the root along the trajectory to Osteoblastogenesis. From the center to the right, the curve from the 
root to Myofibrogenesis. F. GO analysis of differently expressed genes associated with three gene clusters as in (E) identified unique response pathways for each branch. 
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The trajectory of osteoclast maturation in 
periodontal tissues 

Monocytes, macrophages, OCs, and dendritic 
cells (DCs) are a closely related monocytic family that 
is characterized by its capacity to sense and respond 
to inflammation and bone damage. Its phagocytic 
properties and its high plasticity are controlled by the 
osteoimmunology microenvironmental heterogeneity 
[48]. Within the monocytic cell cluster, we identified 
two clusters of monocytes (clusters1/2), three clusters 
of macrophages (clusters 3/4/5), one cluster of OCs 
(cluster 6), and the DC clusters with distinctive 
markers [49] (Figure 4A and Figure S5A). Groups 
were biologically annotated based on the expression 
of the cell-type marker genes (Figure 4B and Table S2). 
The fraction of macrophages was significantly 
increased in the PD group compared with the HC 
group but was partly rescued after initial periodontal 
therapy (Figure 4C). Similar changes were detected in 
the fraction of OCs but did not reach statistical 
significance. OC marker genes, including ACP5, 
NFATC1, and TNFRSF11A, were also slightly 
increased in the PD group compared with the HC 
group and were partly rescued after initial 
periodontal therapy (Figure S5B-C). Together, these 
data may suggest the efficacy of initial periodontal 
therapy in preventing additional bone loss by 
inhibiting the osteoclastic function. 

To reveal the differentiation dynamics of the OC 
lineage cells, we reconstructed the developmental 
trajectory of monocytes (clusters 1/2), macrophages 
(clusters 3/4/5), and OCs (cluster 6). All the cells were 
contained within one cellular lineage without any 
bifurcations. Interestingly, three clusters of 
macrophages were found at different stages of 
differentiation, while cluster 5 was found near the 
terminal end of the trajectory (Figure 4D and Table 
S6). Besides, cluster 5 with high expression of 
osteoclast-related genes (ACP5, CD14, FCGR3A, and 
ITGAV) was proposed as osteoclast precursor cells 
(OCPs) (Figure 4A-B, Figure S5D, and Table S2). The 
gene expression patterns involved in the continuum 
transition were further dissected. Clusters 1 and 3 
genes were repressed during osteoclastogenesis but 
were predominantly enriched in the inflammatory 
response pathways. Cluster 2 genes that activated at 
the final stage of osteoclastogenesis were enriched in 
the pathways about “OC differentiation” and 
“Mineral absorption” (Figure 4E-F). Interestingly, 
OCs possessed gene expressions related to the GO 
terms “immune response”, “antigen processing and 
presentation”, and “inflammatory response”, 
suggesting that OCs also contribute to inflammatory 
reactions (Figure S5E and Table S6). 

Meanwhile, the transcription factors related to 
immune cell differentiation, such as HMGB2, BCL6, 
and FOS, were gradually downregulated along with 
the trajectory differentiation process (Figure 4G). 
Conversely, some osteoclast-related factors, such as 
NFATC1, JUN, MAFB, and JDP2, were upregulated in 
the process (Figure 4G). Furthermore, the expressions 
of IL1B and CCL20 were highly expressed in 
monocytes/macrophages while decreased with 
osteoclastogenesis (Figure 4H). EGFR ligand genes 
AREG and EREG were overrepresented in 
monocytes/macrophages but decreased during 
osteoclastogenesis (Figure 4H), hinting that 
monocytes and macrophages may regulate the 
proliferation of epithelial cells, especially in an 
inflammatory status [50]. Importantly, the expression 
of proinflammatory cytokines (IL18 and CCL18) was 
highly expressed in OCPs, indicating that OCPs might 
also possess immune cell functions (Figure 4H and 
Table S4). As expected, the OC-related genes SPP1 
and THFRSF11A were enriched in OCs (Figure 4H). 

Abundant endothelial cells involved in the 
immune response 

Given the enhanced inflammatory infiltration, 
endothelial cells are abundant in periodontal lesions 
(Figure 1D). We identified ten transcriptionally 
distinct groups from 4461 endothelial cells and 
assigned them to known endothelial cell types [51] 
(Figure 5A and Figure S6A). The relative percentage 
of two distinct groups, venous endothelial cells 
(venous ECs, cluster 1/2/3/5/6/7/8) and arterial 
ECs (cluster 4), was higher in the PD group than in the 
HC group and was unchanged in the PDT group 
compared with the PD group. We also noticed a 
similar enrichment of lymphatic ECs (cluster 10) in the 
PD group, although no significant difference was 
detected (Figure 5A-C). The fraction of proliferative 
ECs was also increased significantly in the PD group 
compared with the HC group and was partly rescued 
after initial periodontal therapy (Figure 5C). 

To examine the transcription factors contributing 
to the increased ECs in the PD samples, we applied 
single-cell regulatory network inference and 
clustering (SCENIC) analysis (Method) (Figure 5D-E). 
SOX17 and TEAD3, transcription factors that may 
participate in arterial regeneration at homeostasis as 
well as in inflammatory conditions [52, 53], were 
potentially engaged in the changes of arterial ECs in 
the periodontal microenvironment (Figure 5D-E). We 
also found several unidentified regulators (CREB3L1, 
PRRX1, MAFB, and HOXA5) that were specifically 
expressed in lymphatic ECs. Expressions of both 
CREB3L1 and PRRX1 were downregulated in the PD 
samples compared with the HC samples. In contrast, 
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the expressions of MAFB and HOXA5 were in the 
opposite way. Of note, the AP-1 transcription factor 
family (BATF, JDP2, JUN, FOSB, and ATF3) was 
detected in venous ECs, which may mediate VEGF- 

induced endothelial cell migration and proliferation 
[54-57]. Among them, JPD2 and BATF were enriched 
in the PDT samples. 

 

 
Figure 4. Trajectory of the osteoclast maturation in periodontal tissues. A. UMAP of 2874 monocytic clusters, annotated and colored by the sample type of origin 
(HCs, PDs, and PDTs) and clustering. Red contours: Macrophages (cluster 3, 4, 5; left); Monocytes (cluster 1, 2; right). B. UMAPs color-coded for expression (gray to red) of key 
cell-type markers to define the nine cell groups: Monocytes (cluster 1/2), Macrophages (cluster 3/4/5), OCs (cluster 6), Proliferative cells (cluster 7), CD1C+ DCs (cluster 8), 
LAMP3+ DCs (cluster 9), CD5+ DCs (cluster 10), CLEC9A+ DCs (cluster 11) and Plasmacytoid DCs (cluster 12). OCs: osteoclasts; DCs: Dendritic cells. C. The box plots 
showing the percentage of cells for each of nine groups as in (B) from HC (blue, n=627), PD (red, n=1577), and PDT samples (green, n=670) with plot center, box, whiskers, and 
points corresponding to the median, IQR, 1.5 × IQR and >1.5× IQR, respectively. Statistical analysis was performed using unpaired two-tailed t-tests. D. Monocle pseudotime 
analysis revealing the progression of three major groups: monocyte (cluster 1, 2), macrophage cell (cluster 3, 4, 5), and osteoclast (cluster 6). Trajectory reconstruction of all 
single cells revealing a continuous lineage path without a branch colored according to clusters as in (A) (top). The distribution of single cell from each cluster mapped in a 
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continuous lineage path, respectively (bottom). E. Heatmap showing the scaled expression of differentially expressed genes in the cells of each major group as in (D), cataloged 
into three major gene clusters (labels on right) that vary as a function of pseudotime, highlighting representative differentially expressed genes in each gene cluster along the right 
margin. From the left to the right of the heatmap, a continuous lineage path from monocytes to OCs. OCs: osteoclasts; DEGs: differentially expressed genes. F. Pathway 
enrichment analysis associated with three gene clusters as in (E). G. Heatmap showing the scaled expression of differentially expressed transcription factor genes along with the 
pseudotime curve as in (D), cataloged into three major gene clusters (labels on right) that vary as a function of pseudotime, highlighting the top 50 transcription factors along the 
right margin. From the left to the right of the heatmap, a continuous lineage path from monocytes to OCs. OCs: osteoclasts; TFs: transcription factors. H. The expression 
dynamics of representative genes that encoded secretion protein. These genes are differentially expressed across pseudotime corresponding to three gene clusters as in (E). All 
single cells in the six subclusters are colored based on (A) and ordered based on pseudotime.  

 
Figure 5. Abundant endothelial cells involved in immune response. A. UMAP of 4461 endothelial clusters, annotated and colored by the sample type of origin (HCs, 
PDs, and PDTs) and clustering. Red contour: Venous ECs (cluster 1/2/3/5/6/7/8). EC: Endothelial Cell. B. UMAPs color-coded for expression (gray to red) of key cell-type 
markers to define the four cell groups: Venous ECs (cluster 1/2/3/5/6/7/8), Arterial ECs (cluster 4), Lymphatic ECs (cluster 10), and Proliferative ECs (cluster 9). EC: Endothelial 
Cell. C. The box plots showing the percentage of cells for each of four cell groups as in (B) from HC (blue, n=153), PD (red, n=2999), and PDT samples (green, n=1309) with 
plot center, box, whiskers, and points corresponding to the median, IQR, 1.5 × IQR and >1.5× IQR, respectively. Statistical analysis was performed using unpaired two-tailed 
t-tests. D. Heatmap of the mean value of area under the recovery curve (Aucell) value of expression regulation by the transcription factors, as estimated using SCENIC, for the 
indicated three ECs clusters (Row). Shown the top 25 transcription factors genes (TF) (labels on right) having the highest difference in expression regulation estimates among 
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HCs, PDs, and PDTs (Row). E. UMAP of endothelial cells, dots coded the for the Aucell value of the estimated regulon activity of selected TFs and the corresponding targeted 
genes in Arterial ECs (left), Lymphatic ECs (center), Venous ECs (right). EC: Endothelial Cell. F. Volcano plots displaying the differentially expressed genes in Venous ECs among 
PD VS. HC, PDT VS. PD, and PDT VS. HC (from left to right). Each dot represented one gene. Representative differentially expressed genes (blue) are indicated. Green dots, 
differentially down-regulated genes with logeFC < -0.25 and FDR < 0.05; red dots, differentially up-regulated genes with logeFC > 0.25 and FDR < 0.05; gray dots, non-differentially 
expressed genes. 

 
Subsequently, the expression of secretory factors 

was examined to explore the potential effects of 
venous ECs in the microenvironment (Table S7). Of 
note, the expression level of CSF3 was upregulated in 
the comparisons of PD vs. HC, PDT vs. PD, and PDT 
vs. PD (Figure 5F and Table S7). Although CSF3 
possesses a relatively low potency in inducing 
osteoclastogenesis compared with CSF1, CSF3 
decreases bone mass by promoting OC function and 
inhibiting OB activity [58, 59]. CX3CL1 and IL33, 
cytokines that mediate the recruitment of immune 
cells [60-63], were both increased in the PDT group 
compared with the PD group. Furthermore, gene 
enrichment analysis (QuSAGE analysis, Method) 
revealed that compared with both the HC and PD 
groups, venous ECs in the PDT group were enriched 
by the immune response pathways, such as “antigen 
processing and presentation”, “Th1 and Th2 cell 
differentiation”, and “Th17 cell differentiation” 
(Figure S6B and Table S7). Therefore, these data may 
expand our understanding of the novel function of 
venous ECs in the periodontal microenvironment 
after initial periodontal therapy. 

The heterogeneity of T and B cells in the 
microenvironment of periodontal tissues 

The immune cells, especially T and B cells, are 
considered as important regulators in chronic 
inflammation [10]. It was reported that plasma cells 
represent about 50% of cells in periodontitis lesions, 
while B cells comprise about 18%. The proportion of B 
cells was larger than that of the T cells in these lesions 
[64]. However, in our study, the proportions of B cells 
and plasma cells were relatively lower than the T 
cells, but the amounts were considerable compared 
with other cell types (Table S3). Therefore, we further 
profiled and analyzed the T cells, B cells, and plasma 
cells in the microenvironment of periodontal tissues 
(Figure 6 and Figure S7-9). 

Within the T cell clusters, we identified Natural 
killer T (NKT) cells, CD4+ T cells, and CD8+ T cells [65] 
(Figure 6A-B and Figure S7A). Consistent with prior 
studies [64, 66], seven subclusters of NKT cells with 
potential functional specificities were detected (Figure 
S7B-C). Next, six CD4+ T cell subclusters were 
identified (Figure 6C and Figure S8A), including CD4+ 

effector memory (TEM)/TH1-like cells (14%), CD4+ 
central memory T (TCM) cells (32.79%), CD4+ naïve T 

(TN) cells (11.92%), Treg cells (13.34%), Follicular helper 
T (TFH) cells (19.05%), and TH17 cells (8.90%). 

Although these CD4+ T cell subclusters may perform 
distinct functions in the microenvironment of 
periodontal tissues, no statistical significance was 
detected during the periodontitis process (Figure 
S8B). 

We further identified seven distinct CD8+ T cell 
subclusters (Figure 6D and Figure S8C), including 
mucosal-associated invariant T cells (MAIT, 7.04%), 
CD8+ TCM cells (8.69%), CD8+ TEffector cells (39.42%), 
CD8+ terminally differentiated effector T (TEMRA) cells 
(17.12%), CD8+ TN cells (10.02%), CD8+ tissue-resident 
memory T (TRM) cells (9.11%), and γδT cells (8.60%). 
Notably, with the reduction of T cells in the PD group 
compared to the HC group, CD8+ TRM cells appeared 
to increase while MAIT and CD8+ TEMRA cells 
significantly decreased in the PD group compared 
with the HC group (Figure 1D and Figure S8D). 
Interestingly, the gene set enrichment analysis 
revealed that various signaling pathways—including 
the NOD−like receptor signaling pathway, Th17 cell 
differentiation, apoptosis, IL-17 signaling pathway, 
TNF signaling pathway, and osteoclast 
differentiation, of most of the CD8+ T cell subclusters 
– were increased in the PD group compared with the 
HC group (Figure 6E). Most of the above pathways 
were partly rescued in the PDT group compared with 
the PD group (Figure 6E). In addition, both analyses 
about functional scoring and death inflammasomes of 
the CD8+ T cell subclusters showed that the gene 
expression signature patterns were in concordance 
with the enrichment of pathological pathways (Figure 
S8E and F). Besides, the key immune checkpoint 
genes (e.g., PDCD1, CTLA4, TIGIT, CD96, and CD44), 
which may induce an inhibitory response toward 
T-cell activation [67, 68], were detected in the CD8+ T 
cell subclusters (Figure 6F). Compared with PDCD1 
and CTLA4 that have been previously reported [69, 
70], the immune checkpoint genes TIGIT, CD96, and 
CD44 were relatively upregulated in the CD8+ T cell 
subclusters. 

Lastly, three transcriptionally distinct B cell 
subclusters were observed (Figure 6G-I and Figure 
S9A), including activated B cells (ABCs) (8.41%), 
memory B cells (50.55%), and naïve B cells (41.04%). 
To further identify the potential functions of the B 
cells in periodontitis, we performed differential 
expression analysis on the B cell expression profiles 
between PD and HC, PDT and HC, and between PD 
and PDT (Figure 6J and Figure S9C). The pathways in 
the PD group comprised of B cell functions (Fc 
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gamma R-mediated phagocytosis, antigen processing 
and presentation, and regulation of actin 
cytoskeleton), and the inflammatory-specific 
signature (oxidative phosphorylation) was 
upregulated compared with the HC group. In 

addition, most pathways were rescued after initial 
periodontal therapy, but Fc gamma R-mediated 
phagocytosis was still overrepresented in PDT vs. PD, 
which may need further study in the future (Figure 
S9C and Table S8). 

 

 
Figure 6. The heterogeneity of T & B cells in periodontal microenvironment. A. UMAP of 12805 T cell clusters, annotated and colored by the sample type of origin 
(HCs, PDs, and PDTs) and clustering. Red contours in right panel: CD4+ T cells (cluster 1/2/4/8/12) (left), CD8+ T cells (cluster 3/5/6/7) (center), NK T cells (cluster 9/10) (right). 
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B. UMAPs color-coded for expression (gray to red) of key cell-type markers to define the four cell groups: CD4+ T cells (cluster 1/2/4/8/12), CD8+ T cells (cluster 3/5/6/7), NK 
T cells (cluster 9/10), Proliferative T cells (cluster 11). C. Left panel: UMAP of 5066 CD4+ T cells, annotated and colored by clustering with the label of each subcluster. Right 
panel: identified six subclusters of CD4+ T cells with the percentages shown. D. Left panel: UMAP of 5951 CD8+ T cells, annotated and colored by clustering with the label of each 
subcluster. Right panel: identified seven subclusters of CD8+ T cells with the percentages shown. E. Heatmap of the QuSAGE activity for the enrichment pathways (labels on the 
right) that associated with cell differentially expressed genes among seven subclusters of CD8+ T cells from HC, PD, and PDT samples (labels on the top). Red indicates an 
increased average expression of genes in the modules. F. Bubble plot showing expressions (dots) of the selected immune checkpoint inhibitor genes (columns) in each subcluster 
of CD8+ T cells (rows, as in B). Dot colored by the average expression level, and dot size proportional to the percentage expression. G. UMAP of 10576 B & Plasma cell clusters, 
annotated and colored by the sample type of origin (HCs, PDs, and PDTs) and clustering. Red contours: B Cell (cluster 1/6/9) (left), Plasma Cell (cluster 2/3/4/5/7/10) (right). H. 
UMAPs color-coded for expression (gray to red) of key cell-type markers to define the three cell groups: B Cell (cluster 1/6/9), Plasma Cell (cluster 2/3/4/5/7/10), and 
Proliferative cell (cluster 8). I. Top left panel: UMAP of 3248 B cells, annotated and colored by clustering. Red contours: Naive B cells (left), Memory B cells (center), ABCs (right). 
Top right panel: identified subclusters of B cells with the percentages shown. Bottom panel: Violin plots showing distinct expressions of the selected marker genes (row) in each 
subcluster (labels on left) of B cells. ABCs: Activated B Cells. J. Pathway enrichment analysis associated with genes upregulated (top) between PD vs. HC and downregulated 
(bottom) genes between PDT vs. PD. 

 

Cell-cell communication in the periodontal 
osteoimmunology microenvironment 

Elucidating the explicit interaction between bone 
cells and immune cells in the osteoimmunology 
microenvironment will shed light on the mechanisms 
of bone homeostasis and the pathogenesis of 
inflammatory osteolysis in periodontitis [3, 10]. 
Therefore, we used CellPhoneDB (Method) to identify 
ligand-receptor pairs among the major cell types 
shown in Figure 1 to explore possible molecular 
interactions. The circos plot detected broadcast 
ligands and demonstrated extensive communication 
for cognate receptors (Figure 7A and Figure S10). 
Notably, endothelial cells showed the most 
interactions with other cell types, followed by 
fibroblasts, monocytic cells, and epithelial cells. 
Subsequently, we compared the ligand-receptor 
interaction pairs among the HC, PD, and PDT groups. 
In total, we identified 91699 ligand-receptor 
interaction pairs in samples from the HC, PD, and 
PDT groups. Interestingly, there were 26942 pairs in 
common among the three groups. There were 13018, 
13047, and 13784 unique ligand-receptor interaction 
pairs in the HC, PD, and PDT groups, respectively 
(Figure 7B). Since pre-OBs and OCPs give rise to 
osteoblasts and osteoclasts, respectively, we further 
calculated the attraction strengths of ligand-receptor 
pairs in our scRNA-seq dataset and identified 
interaction pairs displaying significant cell population 
specificity between pre-OBs/OCPs and other cells. 

The most specific interactions between pre-OBs 
and other cell types were observed with 
osteoblastogenesis (such as Wnt, BMP, PDGF, FGF, 
and NOTCH signaling), and were more abundant in 
the PD group than the HC group or PDT group 
(Figure 7C and Figure S11). Notably, pre-OBs in the 
PD group expressed relatively high levels of the 
NOTCH receptors, while the corresponding ligands 
were widely expressed in endothelial cells, suggesting 
a strong interaction between pre-OBs and ECs during 
the osteoblastogenic process [71]. In addition to those 
commonly observed interactions, the receptor-ligand 
pairs enriched in Ephrin-Eph signaling that has rarely 
been reported in periodontitis were also detected. 

CellPhoneDB analyses showed apparently increased 
interactions of receptor-ligand pairs associated with 
Ephrin-Eph signaling between ECs and Pre-OB, such 
as EFNA1-EPHA7, EPHA2-EFNA5, EPHA4-EFNB3, 
EPHA4-EFNA5, and EPHB4-EFNB3 (Figure 7D-E, 
Figure S12, and Table S9). We next examined the 
anatomic relationship between Ephrin A1-expressing 
ECs (CD31+) and Eph A7-expressing Pre-OBs (ALP+) 
in periodontal tissues from HC and PD samples, using 
quadruple immunofluorescence (IF) staining on 
paraffin section. We observed numerous Eph 
A7+ALP+ Pre-OBs on alveolar bone surfaces in 
samples from HC group. In contrast, Eph A7+ALP+ 
Pre-OBs numbers in PD samples were markedly 
reduced, and numerous Ephrin A1-expressing ECs 
were detected (Figure 7F). 

Finally, interactions involved in osteo-
clastogenesis between OCPs and other cell types, such 
as interactions via TNFRSF11A, TNFRSF14, CSF1R, 
CSF3R, and NOTCH receptors, were also changed 
among the three groups (Figure S13). For example, 
TNFSF14 was expressed mainly by T cells, while the 
interaction of TNFSF14-TNFRSF14 was only detected 
in the PD group. CSF3 released by venous ECs, as 
described above, was received by OCPs in the PD 
group. In addition, we observed cytokines and 
chemokines, such as IL34, CCL8, and CCL19, that were 
expressed mainly by pre-OB-like pericytes and 
received by OCPs in the PD group, while OCPs in the 
PDT group would receive stronger recruitment of 
IL34 from pre-OBs and pre-OB-like pericytes through 
its receptor CSF1R. These data suggested that there 
were still active osteoclastogenesis-driven signals in 
the periodontal osteoimmunology microenvironment 
even after initial periodontal therapy, which may 
need more attention in further study. 

Together, potential cross-talks with the focus on 
the osteoimmunology microenvironment of 
periodontal tissue after initial periodontal therapy 
could be abstracted from our data (Figure 7, Figure 
S10-13, and Table S9) as exemplified in Figure 8. These 
scRNA-seq data were direct evidence for a shared 
regulatory network among osteoimmune cells in 
periodontal tissue after initial periodontal therapy. 
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Figure 7. Cell-cell communication among all cell types in the periodontal osteoimmunology microenvironment. A. The circo plot showing the potential cell 
interactions among ten major cell types as in Figure 1B in periodontal tissues predicted by CellphoneDB. The node size represents the number of interactions. The width of the 
edge represents the number of significant ligand-receptor pairs between the two cell types. B. Venn diagram representing the interaction between the significant ligand-receptor 
pairs identified by CellPhone-DB analysis on scRNA-seq data from HC, PD, and PDT samples. C. The dot plot generated by CellPhoneDB showing potential ligand-receptor pairs 
associated with osteoblastogenesis between Pre-OB and all detected cellular types in PD group. Dots colored by mean expression of ligand-receptor pair between two clusters 
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and dots size proportional to the value of -log10 (P Value). D. Stacked bar graph showing the number of all significantly expressed pairs between ECs and Pre-OB on different 
conditions (HC: blue bar; PD: red bar; PDT: green bar) and the Ephrin-EPH receptor pairs within these conditions (orange bar). E. The dot plot generated by CellPhoneDB 
showing potential ligand-receptor pairs associated with Ephrin-Eph receptor signaling pathway between Pre-OB and all detected cellular types in PDT group. Dots colored by 
mean expression of ligand-receptor pair between two clusters and dots size proportional to the value of -log10 (P Value). F. Representative images of paraffin sections from 
periodontal tissues of HC (left panel) and PD samples (right panel) were subjected to IF with anti-ALP (pre-OBs, green), anti-Eph A7 (red), anti-CD31 (ECs, blue), and anti-Ephrin 
A1 (white) Abs. Adjacent paraffin sections were stained with H & E staining to show the location. Top left: merged; top right: ALP; middle right: Eph A7; bottom left: CD31; 
bottom middle: Ephrin A1; bottom right: H & E. Scale bar = 50 µm. The quantifications of Eph A7+ALP+ Pre-OBs and Ephrin A1+CD31+ ECs per field were shown. Pre-OB: 
Pre-osteoblast, EC: Endothelial cell. 

 
Figure 8. Predicted regulatory network centered on the osteoimmunology microenvironment of periodontal tissue after initial periodontal therapy. 
Sc-RNA seq analysis of the osteoimmunology microenvironment of periodontal tissue after initial periodontal therapy. In this Figure, the Ephrin-Eph signaling and the interactions 
regarding OB/OC differentiation are shown at the level of intercellular interactions. Pre-OB: Pre-osteoblast; OB: Osteoblast; EC: Endothelial cell; OC: Osteoclast; OCP: 
Osteoclast precursor cell. 

 

Discussion 
The inflammatory process of periodontitis 

causes the distinctive symptom of bone loss and a 
failure to return to homeostasis through excessive OC 
activation and the negative control of OB-mediated 
bone formation [72, 73]. Therefore, it is important to 
achieve more understanding of the interplay between 
bone cells and immune cells. scRNA-seq approaches 
are rapidly becoming useful tools for deciphering 
both the abundance and functional state of immune 
cells [41, 74, 75], and have provided unprecedented 
detail of the heterogeneity of bone cells in 
bone-related diseases such as rheumatoid arthritis 
and osteoporosis [76, 77]. While these scRNA-seq 
studies investigated only unilateral changes of either 
bone cells or immune cells, the robust evidence of 
how interactions of cellular components act on bone 
remodeling is still lacking, especially in periodontitis. 
Here, in the current study, scRNA-seq analysis was 
used to decipher the phenotypic and functional 
diversity of periodontal cells, and provide a better 
understanding of deregulated osteoimmune 
interactions participating in pathological bone loss. 

CD55 is a glycosylphosphatidylinositol (GPI) 
-anchored surface glycoprotein that is widely 

distributed on blood, stroma, epithelial, and 
endothelial cells. The physiologic role of CD55 is to 
inhibit the complement cascade at the level of the 
critical C3 convertase step. By this mechanism, DAF 
protects autologous cells and tissues from 
complement-mediated damage and thereby plays a 
role in preventing or modulating autoimmune disease 
and inflammation. We also confirmed the wide 
expression of CD55 by UMAP analysis (Date not 
shown). However, a couple of reports showed that 
MSCs also express CD55 [78-81]. In the current study, 
we characterized CD45−CD55+ cells as MSC 
population in periodontal tissue. CD45−CD55+ cells 
from periodontal tissues especially from alveolar bone 
exhibited in vitro OB differentiation potential and 
further differentiated into osteoblast-like cells 
depositing mineralized matrix upon transplantation 
into immunodeficient mice (Figure S3B-C). 

Bone regeneration is in great demand nowadays 
for alveolar bone loss caused by periodontitis. 
However, our study demonstrates that the fractions of 
MSCs, pre-OBs, and OBs were significantly decreased 
in the PDT group compared with the PD group. 
Importantly, in the PDT group, we failed to detect 
MSCs (Figure 2 and Table S3). Such results replicated 
in three PDT samples were somewhat surprising but 
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in keeping with the fact that clinical nonsurgical 
treatments for periodontitis have shown little bone 
regeneration [82]. This raises an important question of 
how to promote efficient and effective periodontal 
bone regeneration without the help of MSCs. A 
variety of techniques, including the implantation of 
bone grafts or bone substitutes, root surface 
demineralization procedures, guided tissue 
regeneration, and the use of growth/differentiation 
factors, enamel matrix proteins, or various 
combinations thereof have been employed to achieve 
periodontal bone regeneration. However, limited 
bone regeneration has been achieved [82-84]. 
Therefore, it is still urgent to find out other sources of 
MSCs after initial periodontal therapy. Our findings 
reveal that CXCL12+ MSC-like pericytes have the 
potential of osteogenesis during inflammatory 
responses and may contribute to skeletal 
regeneration, even after initial periodontal therapy. 
These findings confirmed previous reports that 
injury-induced cues drive pericytes into the 
osteoblastic lineage with global upregulation of 
osteoblast-signature genes [37, 85]. Therefore, 
pericytes may be a promising therapeutic candidate 
for treating bone loss in periodontitis after initial 
periodontal therapy. 

The Eph receptors, the largest family of tyrosine 
kinase receptors, have been identified as playing 
important roles in a multitude of physiological and 
pathological activities, including bone remodeling, 
tissue repair, and fibrosis [86, 87]. These membrane- 
bound molecules mediate contact-dependent and 
bidirectional signaling through both the Eph receptors 
(termed forward signaling) and ephrin ligands 
(referred to as reverse signaling) [88]. In our study, the 
pronounced changes in the expression of Ephrin-Eph 
interactions indicated that they may play distinct roles 
in modulating the process of periodontitis (Figure 7, 
Figure S13, and Table S9). Evidence suggests that 
ephrin ligands and Eph receptors are crucial signaling 
molecules, contributing to fibroblast activation, 
extracellular matrix deposition, and tissue fibrosis 
formation [89-92]. Pre-OBs have been described as one 
source of fibroblasts [93, 94]. This shows diversity in 
origin beyond the local fibroblasts in organ fibrosis 
[95, 96]. In our findings, the existence of pre-OBs but 
with failed osteogenesis in PDT may be associated 
with the altered cell fate toward fibroblasts (Figure 2, 
Figure 7, and Figure S12). Actually, tissue fibrosis and 
abnormal tissue remodeling have been described in 
periodontitis and lead to an imbalance in periodontal 
homeostasis [97-99]. We assume that the abundance of 
Ephrin-Eph interactions in periodontal tissues from 
patients with severe chronic periodontitis after 
treatment has a significant influence on osteogenesis. 

This effect could be through both direct effects on 
osteoblast precursors and indirect effects via 
consuming the osteogenic lineage by enhancing 
fibrosis. Therefore, since the Eph receptors are 
potential therapeutic targets for multiple clinical 
conditions [90, 100-103], we speculate that the 
inhibition of Ephrin-Eph signaling may facilitate 
clinical bone defect healing after initial periodontal 
therapy. 

Our data suggest enrichment of ECs in the 
inflammatory state of the PD group and the 
maintenance of ECs after treatment in periodontal 
tissues (Figure 5 and Table S3). These changes are 
consistent with the EC reactions in rheumatoid 
arthritis, suggesting ECs as active participants and 
regulators of the inflammatory process [61, 104, 105]. 
We previously demonstrated the functions of 
lymphatic ECs in the pathogenesis of periodontal 
inflammation [106]. The current study reveals the 
function of venous ECs in the recruitment of T cells 
via the production of proinflammatory cytokines and 
chemokines (Figure 5 and Figure S6). New research 
has revealed that ECs have many innate immune 
functions, including cytokine secretion, phagocytic 
function, antigen presentation, pathogen-associated 
molecular pattern- and danger-associated molecular 
pattern sensing, proinflammatory, immune- 
enhancing, anti-inflammatory, immunosuppression, 
migration, heterogeneity, and plasticity, suggesting 
ECs are novel immune cells [107-110]. Along these 
lines, our data suggest ECs produce multiple 
proinflammatory cytokines/chemokines and possess 
the most interactions with other cell types (Figure 5, 
Figure 7, and Table S9). In addition, the interactions 
related to OB differentiation were most enriched 
between ECs and pre-OBs (Figure 7 and Table S9). 
Thus, we agree with the concept that ECs are dynamic 
cells that respond to extracellular environmental 
changes and play a meaningful role in immune 
system function. In the future, we may pay attention 
to the function of ECs in the inflammatory state in our 
research. 

The activation of T and B cells is crucial in 
controlling chronic inflammation through constitutive 
cytokine secretion and modulation of 
osteoclastogenesis in the pathogenesis of periodontitis 
[111-113]. The proportions of immune cell subtype in 
the current dataset appear at odds with previous 
studies in periodontal tissues [64, 66, 114, 115]. The 
inconsistency was generated mainly for two reasons. 
The digestion condition optimized for bone cell 
collection in our study may not be the best condition 
for the yield of immune cells. On the other hand, the 
proportion of each cellular cluster in different sample 
sets shown in Figure 1D and Table S3 have suggested 
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the variation among samples. We also observed a 
decline of MAIT cells in patients with periodontitis 
(Figure 6, Figure S8, and Table S3), raising the 
question of whether these cells might be related to an 
immune imbalance in periodontal tissues from 
patients with periodontitis. Further analyses revealed 
that signaling pathways, including NOD−like 
receptor signaling pathway, Th17 cell differentiation, 
apoptosis, IL-17 signaling pathway, TNF signaling 
pathway, and osteoclast differentiation, were 
activated in MAIT cells from patients with 
periodontitis compared with healthy individuals. This 
finding suggests the potential value of the dataset in 
selecting putative regulators of healthy versus disease 
MAIT states for further study. 

Notably, periodontal tissue is a complex tissue 
composed mainly of alveolar bone, periodontal 
ligament, and gingival tissues. Conceptually, the 
present study would have benefitted from separate 
tissue collections to track tissue-specific cells in the 
subsequent analyses. However, if we separate bone, 
periodontal ligament, and gingiva during sample 
preparation for single-cell suspensions, multiple steps 
would cause the loss of cells and make the cells no 
longer fresh due to the prolonged exposure to 
artificial media and in vitro conditions. These 
unknown conditions may cause the inaccurate single- 
cell atlas of cellular populations and osteoimmune 
interactions in periodontal microenvironment. 
Another concern is that several cell types, such as 
osteocytes were undetected in fibroblast clusters 
(Figure 2), whereas melanocytes and merkel cells 
were undetected in the epithelial cell clusters (Figure 
S14). Indeed, the collection of osteocytes is quite 
challenging at this time due to their matrix-embedded 
anatomical location for scRNA-seq. As for 
melanocytes, there are a lot of factors that affect the 
number of melanocytes in the gingival epithelium, 
such as smoking, race, and ethnicity [116, 117]. In 
addition, merkel cells have been proved that it is not 
easy to observe in normal or acute inflammation [118]. 
As reported by Williams et al., melanocytes and 
merkel cells were found in a small proportion or even 
absent in human oral mucosa [66]. Finally, similar to 
other single-cell studies [64, 66], our scRNA-seq 
analysis using the BD Rhapsody system also showed 
no difference in neutrophils across health and disease. 
Therefore, future studies will be aimed at solving 
these problems. 

In summary, using scRNA-seq, we have 
provided a comprehensive portrait of the osteo-
immunology microenvironment with multiple cell 
types and molecular mechanisms in periodontal 
tissue. The study identifies alterations in osteo-
immune cell types that occur in the context of disease. 

The cells include fibroblasts, monocytic cells, 
endothelial cells, T cells and B cells. These results will 
enable other investigators to identify additional 
periodontitis-associated changes in a cell type specific 
manner for further study. This will likely accelerate 
mechanistic and functional investigations into the role 
of specific genes in relevant osteoimmune cell types 
and states in periodontitis. 

Materials and methods 
Patients 

Detailed written informed consent was obtained 
from all volunteers in accordance with protocols 
approved by the Human Subjects Institutional Review 
Board of Nanjing Medical University (Approval ID 
NMU-2019313). All subjects were in good general 
health and had not taken anti-bacterial or 
anti-inflammatory drugs for 3 months before the 
sampling. Periodontal tissues, including alveolar 
bone, periodontal ligament, and gingival tissues, were 
obtained from subjects with clinically healthy 
periodontal tissues (HC), patients with severe chronic 
periodontitis (PD), and patients with severe chronic 
periodontitis after initial periodontal therapy within 1 
month (PDT), as reported [119, 120]. The alveolar 
bone that surrounds the roots of teeth is called the 
alveolar ridge of the jaw. Ridge repair is a common 
dental procedure often performed immediately 
following a tooth extraction. Periodontal tissues, 
including alveolar bone, periodontal ligament, and 
gingival tissues, were collected following tooth 
extraction and during ridge repair. 1) HC subjects (n = 
4) showed no bleeding on probing, a probing depth < 
3 mm, and no attachment loss or alveolar bone loss. 
Periodontal tissues from HC subjects were collected 
during teeth extractions for orthodontic reasons. 2) 
PD subjects (n=5) showed bleeding on probing, a 
probing pocket depth > 6 mm, and alveolar bone loss 
>60% of the root. Periodontal tissues from PD subjects 
were collected from teeth extracted after being judged 
irrational to treat. 3) PDT subjects (n = 3) showed 
negligible signs of marginal gingival inflammation 
but advanced clinical attachment loss and bone loss > 
60% of the root. Periodontal tissues from PDT subjects 
were collected from teeth extracted after being judged 
irrational to treat. The collected periodontal tissue 
specimens were immediately placed in a sterile tube 
containing PBS and transferred to the laboratory 
within 10 min for single cell preparations and RNA 
sequencing. 

Preparation of single-cell suspensions 
To harvest cells from periodontal tissues of 

human specimens, the tissues were minced on ice to 
pieces smaller than 1 mm3 and transferred to 5 ml of 
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digestion medium containing 0.5 mg/ml collagenase 
type I (Sigma-Aldrich) and 0.5 mg/ml collagenase 
type II (Sigma-Aldrich) in PBS. Samples were 
incubated for 15 min at 37 °C, with manual shaking 
every 5 min. Samples were then vortexed for 10 s and 
pipetted up and down for 1 min using a 5 ml pipette. 
Next, 15 ml ice-cold PBS containing 0.04% BSA 
(Thermo Fisher Scientific) was added and samples 
were filtered using a 40 mm cell strainer (Thermo 
Fisher Scientific). The undigested alveolar bone 
fragments were collected and further digested using 
0.5 mg/ml collagenase type I and 0.5 mg/ml 
collagenase type II at 37 °C for another 30 min to yield 
all the cells. After the supernatant was removed, the 
pelleted cells were suspended in red blood cell lysis 
buffer (Miltenyi Biotec) to lyse the red blood cells. 
After washing with PBS containing 0.04% BSA, the 
cell pellets were re-suspended in PBS containing 
0.04% BSA and re-filtered through a 35 μm cell 
strainer. Dissociated single cells were then stained for 
viability assessment using calcein-AM (Thermo Fisher 
Scientific) and Draq7 (BD Biosciences). The single-cell 
suspension was further enriched with a MACS dead 
cell removal kit (Miltenyi Biotec). 

Single-cell RNA sequencing 
A BD Rhapsody system was used to capture the 

transcriptomic information of the 12 sample-derived 
single cells. Single-cell capture was achieved by 
random distribution of a single-cell suspension across 
> 200,000 microwells through a limited dilution 
approach. Beads with oligonucleotide barcodes were 
added to saturation so that a bead was paired with a 
cell in a microwell. The cells were lysed in the 
microwell to hybridize the mRNA molecules to the 
barcoded capture oligos on the beads. Beads were 
collected into a single tube for reverse transcription 
and Exo I digestion. Upon cDNA synthesis, each 
cDNA molecule was tagged on the 5′ end (that is, the 
3′ end of an mRNA transcript) with a unique 
molecular identifier (UMI) and cell barcode indicating 
its cell of origin. Whole transcriptome libraries were 
prepared using the BD Rhapsody single-cell 
whole-transcriptome amplification (WTA) workflow 
including random priming and extension (RPE), RPE 
amplification PCR, and WTA index PCR. The libraries 
were quantified using a high sensitivity DNA chip 
(Agilent) on a Bioanalyzer 2200 and the Qubit high- 
sensitivity DNA assay (Thermo Fisher Scientific). 
Sequencing was performed on an Illumina sequencer 
(Illumina) on a 150 bp paired-end run. 

Single-cell RNA statistical analysis 
scRNA-seq data analysis was performed by 

NovelBio Bio-Pharm Technology Co. Ltd. with the 

NovelBrain cloud analysis platform. We applied fastp 
[121] with default parameter filtering the adaptor 
sequence and removed the low quality reads to 
achieve clean data. UMI-tools [122] was applied for 
single-cell transcriptome analysis to identify the cell 
barcode whitelist. The UMI-based clean data was 
mapped to the human genome (Ensemble version 91) 
utilizing STAR [123] mapping with customized 
parameters from the UMI-tools standard pipeline to 
obtain the UMI counts of each sample. The cells 
contained over 200 expressed genes and a 
mitochondrial UMI rate below 40% passed the cell 
quality filtering and mitochondrial genes were 
removed in the expression table. Seurat package 
(version: 2.3.4, https://satijalab.org/seurat/) was 
used for cell normalization and regression based on 
the expression table according to the UMI counts of 
each sample and the percent of mitochondria rate to 
obtain the scaled data. To remove the batch effect, 
which may affect the accuracy of single cell analysis, 
we applied the batch effect correction analysis by the 
Harmony package [124] based on the top 3000 
variable genes with the default harmony parameter. 

Utilizing the graph-based cluster method 
(resolution = 0.8), we acquired the unsupervised cell 
cluster result based the PCA top 10 principal. We 
calculated the marker genes by FindAllMarkers 
function with the Wilcox rank sum test algorithm 
under the following criteria: 1, lnFC > 0.25; 2, p-value 
< 0.05; and 3, min. pct > 0.1. In order to identify the 
cell type detailed, clusters of the same cell type were 
selected for re-tSNE analysis, graph-based clustering, 
and marker analysis. As for further re-cluster, we 
performed different resolutions to resolve 
subpopulations better according to the workflow as 
above. 

Pseudotime analysis 
We applied the single-cell trajectories analysis 

utilizing Monocle2 (http://cole-trapnell-lab.github. 
io/monocle-release) using the DDR-Tree and default 
parameter. Before Monocle analysis, we selected 
marker genes from the Seurat clustering result and 
raw expression counts of the cell passed filtering. 
Based on the pseudotime analysis, branch expression 
analysis modeling (BEAM Analysis) was applied for 
branch fate determined gene analysis. 

Cell communication analysis 
To enable a systematic analysis of cell–cell 

communication molecules, we applied cell 
communication analysis based on the CellPhoneDB 
[125], a public repository of ligands and receptors and 
their interactions. Membrane-secreted and peripheral 
proteins of the cluster of different time points were 
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annotated. Significant mean and cell communication 
significance (p-value < 0.05) were calculated based on 
the interaction and the normalized cell matrix 
achieved by the Seurat normalization. 

SCENIC analysis 
To assess transcription factor regulation 

strength, we applied the single-cell regulatory 
network inference and clustering (pySCENIC, v0.9.5) 
[126] workflow, using the 20-thousand motifs 
database for RcisTarget and GRNboost. 

QuSAGE analysis (gene enrichment analysis) 
To characterize the relative activation of a given 

gene set, such as pathway activation, we performed 
QuSAGE [127] (2.16.1) analysis. 

Differential gene expression analysis 
To identify differentially expressed genes among 

samples, the function FindMarkers with the Wilcox 
rank sum test algorithm was used under the following 
criteria: 1, lnFC > 0.25; 2, p-value <0.05; and 3, min. pct 
> 0.1. 

Co-regulated gene analysis 
To discover the gene co-regulation network, 

find_gene_modules function of Monocle3 [128] was 
used with the default parameters. 

Flow cytometry and sorting 
Periodontal cells were harvested and red blood 

cells were lysed. Cells were stained with FITC-labeled 
anti-CD55 (catalog number MA1-19573, Invitrogen), 
eFluor 506-labeled anti-CD45 (catalog number 
69-0459-42, Invitrogen), APC-labeled anti-NT5E 
(catalog number 17-0739-42, Invitrogen), and mouse 
anti-LepR (catalog number MAB867, R&D Systems) 
antibodies for 30 min, then incubated with PE-labeled 
anti-mouse antibody, and subjected to 11-colour LSRII 
(BD Biosciences) for cell sorting. CD55+NT5E+LepR+ 
or CD45−CD55+ cells were further subjected to cell 
culture as described next. 

Cell culture 
(1) For CFU-F colony formation assays, cells 

were cultured at a density of <1 × 103 cells /cm2 in 
α-MEM (Gibco) containing 10% FCS (Hyclone 
Laboratories) for 12 days. For CFU-ALP colony 
formation assays, cells were cultured at a density of 
<1 × 103 cells /cm2 in α-MEM (Gibco) containing 10% 
FCS (Hyclone Laboratories) with 50 μg/ml ascorbic 
acid (Sigma-Aldrich) and 10 mM β-glycerophosphate 
(Sigma-Aldrich) for 12 days. Cell cultures were 
maintained at 37 °C in a 5% CO2 incubator. At the end 
of the culture period, cells were stained for CFU-F or 
CFU-ALP activity. (2) For bone nodule formation, 

cells were cultured at a density of 5 × 103 cells/cm2 in 
α-MEM containing 10% FCS for 7 days, and then 
cultured in α-MEM containing 10% FCS with 50 
μg/ml ascorbic acid and 10 mM β-glycerophosphate 
for another 14 days. At the end of the culture period, 
the cells were subjected to von Kossa staining. (3) For 
the adipogenesis assay, cells were cultured at a 
density of 1 × 103 cells/cm2 in α-MEM containing 10% 
FCS, 10 nM dexamethasone, 5 μg/ml insulin (Sigma- 
Aldrich), 100 nM indomethacin (Sigma-Aldrich), and 
0.5 mM methylisobutylxanthine (Sigma-Aldrich) for 
adipocyte induction. Cells were stained with Oil Red 
O for adipocytes. (4) For the chondrogenesis assay, 
cells were cultured in 15 ml centrifuge tubes at 1 × 103 
cells per tube with StemXVivo Chondrogenic Base 
Media (catalog number CCM005, R&D Systems) and 
StemXVivo Chondrogenic Supplement (catalog 
number CCM006, R&D Systems) for 21 days. At the 
end of the culture period, a chondrogenic pellet was 
cryo-sectioned and subjected to Alcian blue staining. 

Histology 
The histology study was carried out in the 

Department of Anatomy at Nanjing Medical 
University. The alveolar bone including periodontal 
tissues and teeth were harvested from cadavers that 
were available in the Department of Anatomy at 
Nanjing Medical University. As the cadavers had 
been procured by following a standard ethical 
protocol, additional ethical clearance was not required 
to harvest the tissues. The cadavers were embalmed 
about 6 hours after death. The bodies were kept in a 
refrigerated chamber before embalming. The 
diagnosis of periodontitis was relied on the 
radiographic assessments, including a distance 
between the cemento-enamel junction (CEJ) and the 
alveolar bone crest (ABC) exceeding 3 mm. The 
embalming was done using a 40% formaldehyde 
solution. The alveolar bone was collected, decalcified 
in 20% EDTA, embedded in paraffin, and sectioned at 
3 μm thickness for three levels (200 μm apart). 
Sections were stained with H&E for routine histology. 
The pathologist would confirm the diagnosis with 
histological sections stained with H & E. 

Immunofluorescence staining 
The deparaffinized sections were subjected to 

antigen retrieval, incubated in 3% hydrogen peroxide 
for 10 min, blocked in PBS with 10% normal goat 
serum and 10% Triton X-100 for 1 hour, and then 
stained overnight at 4 ℃ with mouse anti-LepR 
(catalog number MAB867, 1:100, R&D Systems) or 
rabbit anti-CD55 (ab133684, 1:100, Abcam) or mouse 
anti-collagen I (ab88147, 1:100, Abcam) or rabbit 
anti-CD358 (ab198034, 1:20, Abcam) or rabbit anti- 
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CXCL12 (97958, 1:200, Cell Signaling Technology) or 
goat anti-ASPN (ab31303, 1:25, Abcam) or rat 
anti-CD31 (NB600-1475SS, 1:100, Novus biologicals) 
or goat anti-ALP (AF2910, 1:100, R & D Systems) or 
mouse anti-EphrinA1 (sc-377362, 1:200, Santa Cruz) or 
rabbit anti-Eph A7 (PA1-30296, 1:200, Invitrogen). 
After rinsing with PBS for 15 minutes, the tissues were 
incubated at room temperature with goat anti-rabbit 
Alexa Fluor 488 or goat anti-mouse Alexa Fluor 568 or 
goat anti-rabbit Alexa Fluor 568 or goat anti-mouse 
Alexa Fluor 488 or donkey anti-rat Alexa Fluor 405 or 
goat anti-rabbit Alexa Fluor 647. Slides were mounted 
with mounting medium containing DAPI (Vector 
Labs), and images were captured using a Leica 
DM4000 fluorescence microscope. 

Statistical analysis 
No statistical method was used to predetermine 

sample sizes. Box plots were generated using the R 
base package and default parameters. Hence, the 
boxes span the interquartile range (IQR; from the 25th 
to the 75th percentiles) with the centerline 
corresponding to the median. The whiskers represent 
the lowest data point still within 1.5 × IQR of the 
lower quartile and the highest data point still within 
1.5 × IQR of the upper quartile. Violin plots were 
generated using the beanplot R package, and data 
distribution bandwidth was estimated by kernel 
density estimation, as per the built-in 'nrd0' option. 
One-way analysis of variance with Tukey's multiple 
comparisons tests were used for multiple group 
comparisons. Comparisons between the two groups 
were made using unpaired two-tailed t-tests. All 
statistical analyses and presentations were performed 
using R. 
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