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Abstract 

Background: The protumor activities of cancer-associated fibroblasts (CAFs) suggest that they are potential 
therapeutic targets for the treatment of cancer. The mechanism of CAF heterogeneity in gastric cancer (GC) 
remains unclear and has slowed translational advances in targeting CAFs. Therefore, a comprehensive 
understanding of the classification, function, activation stage, and spatial distribution of the CAF subsets in GC 
is urgently needed. 
Methods: In this study, the characteristics of the CAF subsets and the dynamic communication among the 
tumor microenvironment (TME) components regulated by the CAF subsets were analyzed by performing 
single-cell RNA sequencing of eight pairs of GC and adjacent mucosal (AM) samples. The spatial distribution of 
the CAF subsets in different Lauren subtypes of GC, as well as the neighborhood relations between these CAF 
subsets and the protumor immune cell subsets were evaluated by performing multistaining registration. 
Results: Tumor epithelial cells exhibited significant intratumor and intertumor variabilities, while CAFs mainly 
exhibited intratumor variability. Moreover, we identified four CAF subsets with different properties in GC. 
These four CAF subsets shared similar properties with their resident fibroblast counterparts in the adjacent 
mucosa but also exhibited enhanced protumor activities. Additionally, two CAF subsets, inflammatory CAFs 
(iCAFs) and extracellular matrix CAFs (eCAFs), communicated with adjacent immune cell subsets in the GC 
TME. iCAFs interacted with T cells by secreting interleukin (IL)-6 and C-X-C motif chemokine ligand 12 
(CXCL12), while eCAFs correlated with M2 macrophages via the expression of periostin (POSTN). eCAFs, 
which function as a pro-invasive CAF subset, decreased the overall survival time of patients with GC. 
Conclusions: iCAFs and eCAFs not only exhibited enhanced pro-invasive activities but also mobilized the 
surrounding immune cells to construct a tumor-favorable microenvironment. Therefore, inhibiting their 
activation restrains the GC ‘seed’ and simultaneously improves the ‘GC’ soil, suggesting that it represents a 
promising therapeutic strategy for the treatment of GC. 
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Background 
According to Global Cancer Statistics 2020, 

gastric cancer (GC) is one of the most frequently 
diagnosed cancers in both sexes and is the fourth 
leading cause of cancer-related death worldwide [1]. 
Patients with advanced GC exhibit a poor prognosis, 
with a median survival of less than one year [2]. 
Therefore, the development of novel drugs is urgently 
needed to improve the overall survival rates of 
patients with GC. Although immunotherapy is a 
treatment option for specific subtypes of GC, the 
heterogeneity of GC remains a critical barrier to the 
development of effective drugs that improve the 
prognosis of patients with GC [3]. 

Histopathologically, GC is classified into 
intestinal, diffuse, and mixed-type GC [4]. 
Intestinal-type GC, which often evolves sequentially 
via chronic gastritis, atrophy, intestinal metaplasia, 
and dysplasia, is characterized by the glandular 
appearance of cells. In contrast, more aggressive 
diffuse-type GC is characterized by a lack of 
intercellular adhesion and poor prognosis; however, 
the molecular mechanism underlying the poor 
prognosis of patients with diffuse-type GC remains 
ambiguous [5]. Several genomic studies have 
documented subtype-specific genetic and epigenetic 
alterations in GCs. The molecular heterogeneity of 
GCs has been reported to be associated with tumor 
progression and the treatment outcomes of patients 
[6]. 

Single-cell RNA sequencing (scRNA-seq) has 
recently been used to determine the cellular and 
molecular heterogeneity of GC samples [7]. A recent 
scRNA-seq study revealed that the expression 
patterns of differentiation genes differ among the 
malignant cells of distinct pathological subtypes of 
GC [8]. Cellular heterogeneity is also observed in the 
gastric mucosa of premalignant lesions preceding 
intestinal-type GC [9]. In addition to the heterogeneity 
of malignant cells, scRNA-seq has also revealed 
transcriptional heterogeneity and widespread 
reprogramming of cells in the tumor 
microenvironment (TME), particularly immune cells 
in the GC TME [10]. 

However, the underlying mechanisms of action 
of endothelial cells and cancer-associated fibroblasts 
(CAFs) in GC, which play critical roles in the 
progression and metastasis of GC, remain unclear. 
Endothelial cells and CAFs induce tumor progression 
and metastasis by regulating angiogenesis, 
organization of the extracellular matrix (ECM), and 
inflammation in the TME [11]. A new generation of 
drugs targeting the tumor stroma in the TME, such as 
angiogenesis inhibitors and ECM normalization 

drugs, are currently being tested for therapeutic use 
[12, 13]. However, these drugs exhibit limited 
efficacies in a small percentage of patients. Therefore, 
a more comprehensive profile of stromal cells in the 
TME and a deeper understanding of the relationship 
between the different pathological subtypes of GC 
and TME cell subgroups are urgently required. 

Here, we aimed to study the heterogeneity of 
stromal cells in the GC TME using scRNA-seq. By 
analyzing cells from advanced gastric tumors and 
matching them to the adjacent gastric mucosal tissues 
at the single-cell level, we profiled a TME map of GC 
and identified different stromal cell subsets that were 
characterized by different functions in tumor 
progression. Furthermore, we evaluated the spatial 
distribution of the significant cell subsets using 
immunohistochemical (IHC) staining. 

Methods 
Human Tumor Specimens 

All patients with gastric cancer who enrolled in 
this study at the Peking Union Medical College 
Hospital (PUMCH) provided consent. This study was 
approved by the Ethics Committee of PUMCH 
(ethical approval number: ZS-2087). The age and sex 
of the patients included in this study are listed in 
Table S1. None of the patients received any type of 
neoadjuvant treatment prior to tissue collection. Fresh 
specimens of tumor samples and adjacent mucosal 
samples were resected during surgery. We ensured 
that fresh adjacent specimens of normal tissues 
located more than 5 cm from the edge of the tumor 
were collected. Five centimeters is the accepted 
standard for the collection of adjacent normal tissue 
specimens, and the surgeon determined that it was 
not a tumor sample. The histopathologist confirmed 
that no cancer remained in the cut ends of the resected 
samples. After resection, the tumors and 
nonmalignant tissues were separately digested into 
single-cell suspensions and profiled using 
droplet-based scRNA-seq. 

Tissue Dissociation 
Fresh biopsy samples of gastric cancer tissues 

were cut into pieces and washed with 
phosphate-buffered saline (PBS; Gibco™, USA) before 
being dissociated with a Human Tumor Dissociation 
Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). 
The whole tissue dissociation process was performed 
according to the protocol provided with the kit. The 
sample was incubated for 30 min at 37 °C until no 
tissue pieces were visible. Dissociated cells were 
pelleted by centrifugation at 1200 rpm for 5 min and 
resuspended in PBS. The cells were then treated with 
RBC lysis buffer (no. R1010; Solarbio, China) for 15 
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min on ice and washed once with PBS before 
counting. Cell viability was determined by staining 
the samples with 0.4% trypan blue (no. C0040; 
Solarbio, China). 

Droplet-based single-cell RNA sequencing 
The dissociated cells were sorted into Dulbecco’s 

PBS + 0.04% bovine serum albumin (BSA; Yeasen, 
China) and incubated on ice before counting. Sorted 
cells were then assessed for viability by staining them 
with Trypan blue before counting using a Countess II 
automated counter (Thermo Fisher Scientific, USA). 
Single-cell suspensions were converted to barcoded 
scRNA-seq libraries using the Chromium Single Cell 
Chip Kit (10x Genomics, USA) along with the reverse 
transcription (RT) master mix and single cell 3 gel 
beads according to the manufacturer’s protocol, with 
the aim of estimating 6,000 cells per library. 
Sequencing libraries were generated using a unique 
sample index for each sample. Subsequently, the 
libraries were sequenced using an Illumina HiSeq4000 
sequencer (Illumina, USA). 

Single cell RNA-seq data analysis 
scRNA-seq data were processed and quantified 

using the Cell Ranger (2.0.1) pipeline 
(https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/using/count) 
with “--id --transcriptome --fastqs --localcores’ 
arguments. First, the hg19 reference used to align the 
reads was obtained from 10x genomics. The 
sequenced FASTQ files of 16 tissues (cancer and 
adjacent mucosa) for eight samples were then aligned 
to the hg19 human reference genome using STAR 
software and the Cell Ranger ‘count’ module. A 
feature-barcode matrix was generated, and the cancer 
and normal samples were aggregated using the Cell 
Ranger ‘aggr’ module for downstream analyses. Cells 
with fewer than 400 expressed genes, as well as genes 
expressed in less than four cells, were removed. We 
used the R package Seurat 3.1 to correct the batch 
effects before conducting the combined analysis of the 
scRNA-seq datasets of the eight pairs of tumor and 
adjacent mucosal samples. 

Clustering and marker gene identification 
Normalization, clustering, differential gene 

expression analyses, and visualization were 
performed using the R package Seurat 3.1. Clustering 
of cells was performed using the implemented 
community identification method in the 
‘FindClusters’ function and visualized using the 
RunUMAP function. The specific marker genes of cell 
clusters were identified using the Seurat ‘FindMakers’ 
function. Specifically, the differentially expressed 
genes (DEGs) for a specific cluster were identified by 

comparing cells from that cluster to all other cells 
using the Wilcoxon rank-sum test. 
Bonferroni-corrected p values less than 0.05 were 
used as cutoffs for identifying statistically significant 
DEGs. Marker genes were selected as the genes with 
average expression in the cluster that was more than 
2-fold higher than their expression in other clusters. 
The canonical marker genes and top-ranked 
differentially expressed genes were used to annotate 
the cell types for each cluster. We used the 
‘CellCycleScoring’ function in Seurat to identify cell 
cycle phase-specific changes in different cell clusters. 
The ‘CellCycleScoring’ function assigns each cell a 
score based on the expression of G2/M and S phase 
markers. The G2/M or S phase scores were inversely 
correlated, and cells that did not express G2/M and S 
phase markers were in G1 phase. The 
‘CellCycleScoring’ function will assign each cell a 
predicted classification based on its score. 

Analysis of single-cell trajectories 
Single-cell trajectories were built using Monocle2 

(R package) based on the results obtained with Seurat 
(R package). Genes included in the analysis were 
selected by applying the following criteria: (1) 
expressed in more than 4 cells, (2) the average 
expression level was greater than 0.1, and (3) the 
q-value was less than 0.01 in differentially expressed 
gene expression analysis. 

Gene Ontology (GO) analysis 
The GO enrichment analysis was performed on 

the marker genes (P values were adjusted by the 
Bonferroni correction < 0.01) in each cluster using 
Metascape.org [14]. Tumor progression-associated 
GO terms were selected for heatmap construction 
from terms with P < 0.05. 

Partial epithelial-to-mesenchymal transition 
(p-EMT) signature scores 

The 97 p-EMT genes (without TNFRSF6B, 
CXCR7, and ANXA8L1 genes) based on the list 
reported by Sidharth et al. were used to calculate the 
EMT signature scores of epithelial cells [15]. The 
p-EMT meta-signature scores for each cell were 
calculated as the mean expression rank for the 97 
genes based on their expression level (RPKM) in all 
cells. The nonparametric Wilcoxon rank sum 
test was performed to assess differences in p-EMT 
meta-signature scores among the different groups. 

The Cancer Genome Atlas (TCGA) data 
analysis 

Bulk RNA-seq count data from 377 patients with 
gastric cancer were downloaded using the 
Bioconductor TCGA biolinks package (version 2.14.0). 
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The count data were converted to transcripts per 
million (TPM) using the ‘countToTpm_matrix’ 
function in the R package ‘GeoTcgaData’. The 
expression levels of each marker gene were 
normalized among 377 patients by calculating Z 
scores. Clinical data and immune cell fraction data 
were downloaded from the supplementary data in the 
study by Thorsson et al. [16]. The correlations 
between marker gene expression and the relative 
abundance of different immune cell types were 
calculated using the Spearman method. The 
correlation of each marker gene with overall survival 
was calculated using a Cox proportional hazards 
model (coxph in R survival package version), 
including age, sex, tumor stage, and the mean 
expression of marker genes as variables, and the 
significance value was calculated using the Wald test. 
For plotting the Kaplan–Meier plots, marker gene 
expression was categorized as high if it was within the 
top 30% of all samples. 

Immunofluorescence staining 
After deparaffinization and rehydration, antigen 

retrieval was performed in EDTA antigen repair 
solution (pH 8.0) (Servicebio, China. No. G1206) using 
a microwave oven. Tissue sections were first boiled 
using medium power for 8 min, using medium power 
for 8 min, and then medium-low power for 7 min. 
After three washes with PBS (Servicebio, China. No. 
G0002), tissue sections were blocked in 3% BSA. 
Tissue sections were then incubated with primary 
antibodies (von Willebrand factor (VWF), 1:1000, 
Servicebio, China, GB11020; alpha-smooth muscle 
actin (α-SMA), 1500, Servicebio, China GB13044) 
overnight at 4 °C. After three washes with PBS, tissue 
sections were incubated with secondary antibodies 
diluted 1:200 for 50 min at room temperature 
(Cy3-conjugated goat anti-rabbit IgG (H+L) 
(Servicebio, China; GB21303) and fluorescein 
isothiocyanate-labeled goat anti-mouse IgG (H+L) 
(Servicebio, China; GB22301)). After an incubation 
with DAPI (Servicebio, China; GB1012) and 
anti-fluorescence quenching seal tablet-diluted buffer 
(Servicebio, China; GB1401), images of stained tissue 
sections were captured using a fluorescence 
microscope (Nikon Eclipse Ti-SR, Japan). 

Cells cultured in 96-well plates were washed 
with PBS (Gibco™, USA). Then, they were fixed and 
permeabilized with 4% paraformaldehyde 
(Servicebio, China; HJ194101) and Triton X 100 
(Solarbio, China; 9002-93-1). Cells were incubated 
with a COL1A1 (E8F4L) XP® rabbit mAb (Cell 
Signaling Technology, USA; 72026S) and 
anti-periostin antibody (Abcam, USA; ab79946) 
overnight at 4 °C. After three washes with PBS, the 

cells were incubated with anti-rabbit IgG (H+L) and 
F(ab')2 fragments (Alexa Fluor® 488 Conjugate) (Cell 
Signaling Technology, USA; 4412S) at room 
temperature in the dark for 1 hour. Images were 
captured using an Olympus IX70 microscope. 

Isolation and cultivation of CAFs from gastric 
cancer samples 

CAFs were isolated and cultured from gastric 
cancer samples obtained from patients using primary 
culture [17]. CAFs were identified by the presence of 
alpha collagen type I (COL1A1). All cells were 
cultured in DMEM F-12 (Gibco, USA) supplemented 
with 10% fetal bovine serum (Gibco, USA). 

Western Blotting 
Periostin expression was assessed by performing 

western blot analysis. The primary antibodies we 
used were as follows: anti-periostin (1:1000; Abcam, 
ab79946) and anti-GAPDH (1:1000; Cell Signaling 
Technology, 2118S). The secondary antibody we used 
was goat anti-rabbit IgG (H+L)-HRP (1:3000; 
Neobioscience, China, ANR02-2). 

Differentiation of THP-1 cells into M2 
macrophages 

THP-1 cells were treated with 100 ng/ml PMA 
(Sigma, 16561-29-8) for 24 h and then rested for 24 h 
before exposure to 30 ng/ml IL-4 (KEXIN, China; 
kx20-4) for 24 h. The primers used to identify the M2 
phenotype were as follows: ALOX15 (F: CAGATGTC 
CATCACTTGGCAG; R: CTCCTCCCTGAACTTCTT 
CAG); TGM2 (F: GCAGTGACTTTGACGTCTTT 
GCCC; R: GTAGCTGTTGATAACTGGCTCC-ACG); 
and CD206 (MRCI; F: CGAGGAAGAG-GTTCGG 
TTCACC; R: GCAATCCCGGTTCTCATGGC). 

Transwell migration assay 
The Transwell migration assay was performed as 

previously described [18]. The Transwell chamber 
(aperture 8 μm; Costar, Kennebunk, ME, USA) was 
used to assess migration. In the absence of fetal bovine 
serum, 1×105 M2 macrophages were grown in the 
upper chamber. Next, 2×105 MSCs or CAFs were used 
as migration attractants and were seeded in the lower 
chamber. Cell culture medium was discarded after 12 
hours. Cells in the upper chamber were washed with 
PBS, fixed with 4% paraformaldehyde (Servicebio, 
China; HJ194101) for 10 min, and stained with crystal 
violet (Solarbio, China; G1063). Finally, the migrating 
cells were counted and photographed. 

Lentiviral particle preparation and 
transduction 

An NC-expressing cassette was constructed in 
LV5(EF-1a/GFP&Puro) (GenePharma, Suzhou, 
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China). The inserted sequence was NM_006475.3. The 
lentivirus was added to the cell culture medium 
according to the manufacturer’s instructions. Culture 
medium containing puromycin (2 μg/ml) was used to 
select cells 24 h after transduction. The transduction 
efficiency was evaluated by detecting GFP expression 
under a fluorescence microscope (Olympus IX70). 
Transfection efficiency was then verified using 
western blotting. 

Immunohistochemical Staining 
Sequential pathological sections of GC were 

incubated with E-cadherin (Servicebio, GB11082), 
cluster of differentiation (CD)-8 (Servicebio, 
GB11068-1), PD1 (CST, 86163T), CD163 (Servicebio, 
GB14027), αSMA (Servicebio, GB111364), CD34 
(Servicebio, GB121693), periostin (Abcam, ab79946), 
and collagen type I alpha 1 chain (COL1A1) (CST, 
72066T) antibodies overnight at 4 °C, followed by an 
incubation with a goat anti-rabbit secondary antibody 
(Servicebio, G1213) or a goat anti-mouse secondary 
antibody (Servicebio, G1214) for 1 h at room 
temperature. Sections were incubated with DAB and 
imaged under a microscope (Nikon Eclipseci). 

Multistaining registration and positive density 
analysis 

We aligned the images of multistained 
histological sections and quantified CAFs using the 
image registration technique [19]. The WSIs were first 
registered onto one slide, which was usually the 
centroid slide of serial sections, to align the tissue in 
images and obtain the spatial information for multiple 
biomarkers in images of immunohistochemical 
staining. A typical registration process was 
constructed using Python. Images were 
downsampled to a size of approximately 500 × 500 
pixels and then registered to downsampled target 
images. The deformation fields were generated and 
upsampled to the original target image size. Finally, 
the digital scanned image was aligned with the 
upsampled deformation field, and the serial sections 
labeled with antibodies against different biomarkers 
were spatially aligned to study the distribution of 
multiple cells. An expression heatmap was generated 
for each biomarker to calculate colocalization. The 
annotated regions on the scanned image were 
dissected into smaller regions of 1000 × 1000 pixels. 
The marker-positive cell densities were calculated for 
each small region, and the expression hotspots were 
easily identified on the heatmap. 

Statistical Methods 
The proportions of different cellular subgroups 

between the tumor samples and AM samples were 
compared using the two-tailed Mann–Whitney test 

and unpaired t test with GraphPad Prism 8.4.0 
software. Normality tests were performed prior to the 
t test. For data without equal SD, we used the Mann–
Whitney test to compare the ranks. Bars and error 
bars represent the means and standard errors of the 
means, respectively. 

Results 
Single-cell gene expression profiling of GC 
primary tumors and matching adjacent 
mucosal tissues revealed seven major cell 
types in the TME 

We comprehensively profiled the cell 
populations in human gastric cancer by generating 
single-cell gene expression profiles for GC primary 
tumors and matched adjacent mucosal gastric tissues 
resected from 8 patients with untreated GC. The 
carcinoma types of eight patients included three 
intestinal-type GCs, three diffuse-type GCs, and two 
mixed-type GCs (Table S1). 

A total of 36,897 cells were acquired, of which 
17,376 cells were obtained from GC and 19,521 were 
obtained from AM tissues (Figure 1A; Table S2). We 
performed dimensional reduction and unsupervised 
clustering of cells to identify cell groups based on 
their expression patterns [20]. As shown in Figure 1B, 
23 cell clusters were identified. The annotation of 
these clusters resulted in the separation of seven cell 
types [9, 21-23]: epithelial cells, endothelial cells, 
fibroblasts, T cells, B cells, macrophages, and mast 
cells (Figure 1B-C). Remarkably, cells identified as 
epithelial cells, endothelial cells, fibroblasts, T cells, 
and B cells belong to multiple clusters, indicating that 
these cell types may be heterogeneous (Figure 1B). 

We showed that the cells derived from both 
tumor and normal tissues from different patients were 
split into seven categories (Figure 1D). As 
proliferation is one of the main characteristics of 
tumor cells, we performed a cell cycle analysis using a 
cell cycle gene scoring method. The majority of T cells 
and a small fraction of epithelial cells derived from 
GC samples were in G2, M, or S phase of the cell cycle 
[24], whereas other cells were in G1 phase of the cell 
cycle (Figure 1E). 

Tumor-derived epithelial cells are 
heterogeneous among patients 

Epithelial cells were the most abundant cell type 
in both the tumor and AM samples (Table S2; Figure 
S1A). We investigated the cellular heterogeneity of 
epithelial cells by performing an unsupervised 
clustering analysis of 11,187 epithelial cells. We 
identified 16 clusters (Figure 2A), of which eight 
clusters were mostly derived from tumor samples 
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(Figure 2B). Based on the expression of marker genes 
(Figure S1B), we identified nine epithelial cell 
subtypes: enterocytes, pit cells, chief cells, parietal 
cells, enteroendocrine cells, goblet cells, antral basal 
gland mucous (GMC) cells, and cancer stem cells 1 
and 2 (Figure 2A). These cell subtypes were identified 
in both tumor and adjacent samples, except for cancer 
stem cell 1” and cancer stem cell 2”. These two tumor 
cell subgroups were mainly derived from tumor 
samples from patient 1 and patient 3, indicating that 
the cancer epithelial cells were highly heterogeneous 
among patients (Figure 2C). 

Next, we conducted a differential gene 
expression analysis and GO enrichment analysis to 
explore how expression states differed between 
tumor-derived epithelial cells and AM-derived 

epithelial cells. Genes that were upregulated in 
tumor-derived epithelial cells were enriched in 
malignant biological properties, including cell 
proliferation, response to wounding, and positive 
regulation of NF-kappa B transcription factor activity 
(Figure S1C). 

Moreover, a fraction of epithelial cells derived 
from tumor samples exhibited increased expression 
levels of partial epithelial-to-mesenchymal transition 
(p-EMT) signature genes (Figure 2D-E). Interestingly, 
tumor-derived Cluster 10 showed the highest p-EMT 
expression levels (Figure 2F), indicating that it 
represented a subgroup of cells undergoing active 
p-EMT. Therefore, we refer to cells present in Cluster 
10 as “EMT cells”. 

 

 
Figure 1. Overview of the single cells isolated from eight primary gastric cancer (GC) lesions and matching adjacent mucosal (AM) samples. A. Summary of 
the workflow used to collect the specimens and perform single-cell transcriptome sequencing in the tumor microenvironment (TME) of GC. B. Uniform Manifold Approximation 
and Projection (UMAP) plot of the analyzed single cells. Each color represents one cluster. Annotated cell types are listed below. C. UMAP plot color-coded (gray to blue) to 
represent the expression levels of the marker genes for the seven cell types, which are listed beyond the UMAP plot. D. The distribution of cells derived from different patients 
or different sample origins. E. UMAP clustering of the 36,897 cells, with each color representing a different stage of the cell cycle. 
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Figure 2. Heterogeneity in the gene expression of GC-associated epithelial cells. A. UMAP visualization of 11,187 epithelial cells. Each color represents one cluster 
(see cluster ID panel). “endocrine cell” represents “enteroendocrine cell”. B. UMAP plot and bar plot of epithelial cells. Colors represent sample origins, either tumor-derived 
(Clusters 0, 1, 6, 9, 10, 12, 14, and 15) or AM-derived samples. C. The distribution of different epithelial cell subgroups derived from the tumor samples or AM samples from 
different patients. P1-P8 represent patient 1-patient 8. Colors represent the epithelial cell subgroups. D. Heatmap showing the expression levels of various partial 
epithelial-to-mesenchymal transition (p-EMT) genes in different clusters. E. p-EMT signature scores for tumor and normal cells. F. p-EMT signature scores across all clusters. 

 

A fraction of GC-associated endothelial cells 
exhibit endothelial-to-mesenchymal transition 
(EndMT) signatures 

Endothelial cells are tightly regulated by the 
TME, which is essential for tumor growth and 
metastasis [25]. We explored the heterogeneity of 
endothelial cells by further clustering the 2,973 
endothelial cells into 13 clusters (Figure 3A; Table S2), 
among which eight clusters were derived from tumor 
samples, and the remaining clusters were derived 
from AM samples (Figure S2A). Cluster 8 was 
identified as a lymphatic endothelial cell line. The 
remaining clusters were identified as blood 
endothelial cells (Figure 3A-B). 

We performed a differential gene expression 
analysis of cells of tumor origin and compared gene 
expression with cells of AM origin to dissect the roles 
of lymphatic endothelial cells and blood endothelial 
cells in GC progression. We identified 243 genes (p < 
0.01) that were differentially expressed between 
tumors and AM-derived lymphatic endothelial cells. 
For example, SPRY1 was significantly upregulated in 
tumor-derived lymphatic endothelial cells (Figure 
S2B). 

Regarding blood endothelial cells, 
tumor-derived blood endothelial cells exhibited 
upregulated expression of genes that were 
significantly associated with the GO terms 
“regulation of cell adhesion” and “extracellular 
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matrix organization” (Figure 3C). AM-derived blood 
endothelial cells displayed upregulated expression of 
genes that were associated with “myeloid leukocyte 
activation”, “blood vessel development”, “regulation 
of cell adhesion” and “regulation of cytokine 
production” (Figure S2C), indicating that AM-derived 
blood endothelial cells also exhibited increased 
angiogenesis and cytokine production [26]. 

Interestingly, cells in Cluster 4 expressed both an 
endothelial marker gene (VWF) and fibroblast marker 
genes (COL1A1, collagen type I alpha 2 chain 

(COL1A2), and actin alpha 2 (ACTA2)) at high levels 
(Figure 3D-F). We also identified a group of cells 
coexpressing VWF and α-SMA in tumor samples by 
performing immunofluorescence staining of samples 
from a different cohort of patients with gastric cancer 
(Figure 3G). We performed a pseudotime analysis of 
these two cell groups to investigate the transition 
between endothelial cells and fibroblasts. Cells in 
Cluster 4 were located in an intermediate stage on the 
pseudotime trajectory between endothelial cells and 
two groups of fibroblasts (Figure 3H-I). 

 

 
Figure 3 Clusters of endothelial cells in eight pairs of gastric tumor and adjacent normal samples. A. UMAP plot color-coded for 13 clusters of endothelial cells. 
‘EndMT’ refers to EndMT cells. B. UMAP plot color-coded (gray to blue) to represent the expression levels of the marker genes: lymphatic endothelial cells, podoplanin (PDPN); 
blood endothelial cells, fms-related receptor tyrosine kinase 1 (FLT1); tumor samples (n = 8); AM samples (n = 8). C. Enriched Gene Ontology (GO) terms for the genes that 
were differentially expressed between the tumor-derived and AM-derived blood endothelial cells. P values are shown (from gray to red). D-F. Violin plot showing the distribution 
of collagen type I alpha 1 chain (COL1A1), collagen type I alpha 2 chain (COL1A2) and actin alpha 2 (ACTA2) among the different clusters. G. Images of immunofluorescence staining 
of representative GC tumors with antibodies against von Willebrand factor (VWF) (red) and alpha-smooth muscle actin (α-SMA) (green). Scale bar, 100 μm. H-I. Pseudotime 
analysis of endothelial cells and fibroblast cells derived from tumor samples inferred by Monocle2. Each point corresponds to one single cell. Each color represents one cell 
subgroup (H). Each color represents one cell state (I). 
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The endothelial-to-mesenchymal transition 
(EndMT) is a critical step in vasculogenesis during 
embryonic development. Several studies have 
suggested that the EndMT also plays a role in tumor 
progression [27]. We performed a differential gene 
expression analysis of cells in tumors compared with 
those in adjacent mucosal samples in this cluster to 
explore the role of cells in Cluster 4 (named the 
EndMT cluster) in GC tumorigenesis. We showed that 
upregulated genes in tumor-derived EndMT cells 
were associated with the functional terms 
“TNF-alpha/NF-kappa B signaling complex 6” and 
“collagen fibril organization” (Figure S2D), 
suggesting that EndMT cells are involved in sprouting 
angiogenesis in GC [28]. 

eCAFs promote invasion and are associated 
with shorter overall survival of TCGA cohort. 

Cancer-associated fibroblasts (CAFs) have been 
recognized as an important component of the tumor 
microenvironment because of their diverse roles in 
promoting tumor progression. 

We identified four main fibroblast subgroups in 
both GC samples and AM samples based on the 
expression of specific cellular markers: myofibro-
blasts, pericytes, extracellular matrix CAFs (eCAFs), 
and immunomodulatory CAFs (iCAFs) (Figure 4A-B; 
Figure S3A) [11, 29]. We also examined the marker 
gene expression levels in these CAF subgroups using 
TCGA bulk RNA-seq data. The expression levels of 
gene markers for the same cell type were highly 
correlated with each other (Figure S4). Additionally, 
the resident fibroblast subsets in AM samples 
expressed the same marker genes as the 
corresponding CAF subsets, but did not express genes 
involved in pathways for CAF activation, such as 
proliferation, angiogenesis, inflammation, and 
extracellular matrix (ECM) remodeling (Figure S5A; 
Table S3). Based on these results, the CAF subsets 
educated by the surrounding tumor cells gain 
enhanced protumor abilities compared to distal 
AM-derived fibroblasts. 

We performed an analysis of differentially 
expressed genes (DEGs) in all four fibroblast 
subpopulations to understand the distinct roles of the 
four fibroblast subgroups. GO terms enriched for 
genes that were expressed at high levels in 
myofibroblasts included muscle contraction, vascular 
smooth muscle cell proliferation, and blood vessel 
development (Figure 4C), confirming that they played 
a regulatory role in the endothelial differentiation 
process as myofibroblasts. The GO analysis of genes 
that were upregulated in pericytes revealed 
enrichment of the term “blood vessel development”, 
consistent with the definition that pericytes are cells 

that enwrap capillaries and promote their survival 
(Figure 4C, Table S3). Interestingly, consistent with 
the activated sprouting angiogenesis observed in 
tumors [25], we showed that the fraction of pericytes 
was significantly increased in tumor samples 
(P=0.0117) (Figure S3B; Table S4-S5). 

iCAFs expressed CXCL12, IL6, and CXCL14 at 
high levels (Table S4), which are marker genes of 
inflammatory CAFs (iCAFs) described in other solid 
tumors. In addition, genes that were upregulated in 
tumor-derived iCAFs were associated with the 
regulation of the inflammatory response, namely, 
IL6ST, NFKBIA, NT5E, SERPINF1, and NFKBIZ 
(Figure 4C; Table S3), suggesting that they play roles 
in communicating with immune cells. 

Importantly, we identified a previously 
unreported CAF subpopulation characterized by high 
expression of POSTN (Figure S3A), a gene encoding a 
protein that supports the adhesion and migration of 
epithelial cells, in addition to promoting cancer stem 
cell maintenance and metastasis [30]. We showed that 
this CAF subset expressed genes involved in ECM 
remodeling at high levels, including genes encoding 
collagens and collagen metabolic enzymes (Figure 4C, 
Figure S3C); therefore, we defined them as 
extracellular matrix CAFs (eCAFs). Tumor-derived 
eCAFs (Cluster 3) are characterized by high 
expression of genes associated with tumor invasion 
(MMP14, LOXL2, and POSTN) (Figure 4D), indicating 
that eCAFs constitute an essential component of the 
TME for tumor metastasis. We analyzed the 
correlation between gene expression profiles and 
prognosis in the bulk transcriptome of 423 TCGA GC 
samples to evaluate whether the presence of high 
levels of eCAFs is associated with a worse prognosis 
of gastric cancer. As shown in Figure 4E, patients with 
high POSTN gene expression levels experienced 
shorter overall survival, even after stratifying for the 
stromal fraction in the tumor samples (Cox 
proportional hazards model, p=0.001). Together, these 
results suggest that eCAFs represent an essential CAF 
subpopulation that promotes metastasis and 
subsequently affects the prognosis of patients with 
GC. 

We performed immunohistochemical staining 
for CAF marker genes in serial pathological sections 
and combined the results of markers of interest using 
image registration analysis to investigate the 
distribution of the four CAF subsets in GC. We 
divided the tumor tissue into three parts: tumor gland 
(T), distal stroma (S), and lymphoid-like structures (L) 
(Figure S6A). Myofibroblasts and pericytes (stained 
with αSMA and COL1A1 antibodies, respectively) 
were evenly distributed throughout the tumor tissue, 
including the tumor gland and distal stroma area 
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(Figure S6A). iCAFs were enriched in the tumor gland 
and were located around the tumor cells (Figure 4F). 
iCAFs were identified in lymphoid nodule-like 
structures (Figure 4F), indicating that they may be 
involved in regulating lymphocytes. Notably, iCAFs 
were more enriched in the tumor gland area than in 
the distal stroma area (Figure 4G). The 

periostin-positive area was increased in the order of 
tumor gland, invasive front, and distal stroma (Figure 
4H-I, Figure S6B), indicating that eCAFs mainly reside 
in the distal stroma area. The different spatial 
distributions of eCAFs suggested their distinct roles in 
the tumor microenvironment. 

 

 
Figure 4. Fibroblast clusters in the GC and AM samples. A. UMAP plot showing 14 clusters of fibroblast cells colored according to different clusters identified here. B. 
UMAP plot of the tumor-derived and AM-derived fibroblast cells: tumor samples (n = 8) and AM samples (n = 8). Bar chart showing the composition by sample origin as the total 
percentage of each cell type per sample. The X-axis represents the cell proportion, and the Y-axis represents clusters. C. Heatmap showing the selected significant terms for the 
genes differentially expressed in the four subgroups of tumor-derived fibroblasts. Colors represent the P values (from white to orange). ‘Myo’ represents myofibroblasts. ‘Peri’ 
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represents pericytes. D. Heatmap of the expression levels of the genes associated with invasion, cell migration, and extracellular matrix remodeling in different clusters of 
fibroblast cells. E. Overall survival curves of the patients with stomach cancer in The Cancer Genome Atlas (TCGA), stratified by the mRNA expression levels of the POSTN gene. 
The red line shows the survival curve of the patients exhibiting high POSTN expression levels in the tumor samples (for the top 30% of all samples); the blue line shows the survival 
curve of the remaining patients (P value = 0.001). F. Hematoxylin and eosin (H&E) staining and immunohistochemical staining for cluster of differentiation (CD)-34 (marker of 
iCAFs) in tumor tissues from patient 6 (scale bar, 50 μm). Upper right panel: CD34-positive staining in the tumor gland (T). Lower right panel: CD34-positive staining in the 
lymphoid nodule-like structure (LN). Arrows indicate the positive staining for CD34. G. Heatmap showing the density of positive staining for CD34 and COL1A1 in the tumor 
tissues from patient 6. The area inside the yellow line represents the tumor gland (T). The area inside the blue line indicates the lymphoid nodule-like structure (LN). The 
remaining area is the stroma (S). H. Tumor sections from patients with intestinal-type and diffuse-type GC showing how periostin-positive cells are distributed in the tumor gland 
(T), invasive front (IF) and distal stroma (S). Cells were stained for periostin in tumor tissues from patient 1 and patient 5. Arrows indicate the positive staining. I. Proportions 
of the periostin-positive area in the tumor gland (T), invasive front (IF) and distal stroma (S). Upper panel: Proportion in each patient with intestinal-type GC. The P value was 
calculated based on the paired t test (P = 0.0377). Lower panel: Proportion in each patient with diffuse-type GC. The P value was calculated based on the paired t test (P = 0.0464). 

 

The TME of GC presents an 
immunosuppressive state 

T cells are the most highly enriched immune 
cells in the TME. We investigated the functional states 
of T cells in the GC TME by analyzing 6,874 T cells in 
tumor and AM tissues (Table S2). We identified 14 
clusters using an unsupervised clustering analysis 
(Figure 5A). T cells from the tumor samples clustered 
separately from T cells in AM samples in the UMAP 
plot (Figure S7A), indicating that their functional 
properties differ significantly. 

Based on gene expression signatures, we 
identified 12 main groups, including eight clusters of 
CD8+ T cells and four clusters of CD4+ T cells (Figure 
5A-B; Figure S7B). We further annotated these T cell 
clusters into eight T cell subtypes by examining the 
expression of marker genes. The eight subtypes are 
CD8+ effector memory T cells, CD8+ effector T cells, 
CD4+ central memory precursor T cells, CD8+ central 
memory T cells, Th17 cells, regulatory T cells, 
exhausted T cells, and proliferative T cells (Figure 5A, 
Table S6). 

Importantly, we identified two exhausted T cell 
subgroups, CD8-C3-PDCD1 and CD4-C4-CXCL13. 
The CD8-C3-PDCD1 subgroup exhibited the 
substantial upregulation of the PDCD1 and HAVCR2 
genes, while the CD4-C4-CXCL13 subgroup presented 
the substantial upregulation of the PDCD1, TIGIT, and 
CTLA4 genes (Figure 5B). Notably, the 
CD8-C3-PDCD1 subgroup expressed CD69 and 
various cytotoxic genes, such as GZMH, GZML, and 
NKG7, at high levels, indicating that it may be 
activated (Figure 5B). We confirmed whether 
exhausted T cells could be identified in GC tissues by 
performing immunohistochemistry for CD8 and PD1 
in serial pathological sections and the image 
registration analysis. T cells expressed both CD8 and 
PD1 in the lymphoid structures of GC (Figure 5C-D). 

CD4+ central memory precursor T cells, 
CD4-C1-TCF7, were identified as the most abundant T 
cell subgroup in tumor samples but not in AM 
samples (Figure S8A-B). In the AM samples, effector T 
cells and effector memory T cells were identified as 
the most abundant T cell subgroups (Figure S8A-B). 
In addition, a greater number of Tregs infiltrated 
tumor samples than AM samples (Figure S8I; Table 

S5). Together, these findings clearly indicate that the 
immediate immune function of T cells is impaired in 
the GC TME. 

We clustered 8,090 B cells, of which 4,493 cells 
were derived from tumor samples, to investigate the 
functional roles of tumor-infiltrating B cells in GC 
(Table S2). Thirteen clusters were identified. Clusters 
2, 6, and 7, which were characterized by the 
expression of the FCER2 and CR2 genes (Figure 
S9A-B), were annotated as naïve B cells. Cluster 12 
expressed BCL6 (Figure S9A-B), suggesting that it 
comprises the germinal center B cell subset. The 
remaining clusters expressed immunoglobulin 
(Figure S9A-B), suggesting that they constituted 
plasma B cells. 

 We showed that the gene expression profiles 
differed between tumor-derived B cells and 
AM-derived B cells (Figure S9C), indicating that B 
cells were reprogrammed by the TME. Next, we 
analyzed differential gene expression between 
tumor-derived naïve B cells and AM-derived naïve B 
cells. The genes expressed by tumor-derived B cells 
exhibited a stronger association with “cellular 
responses to stress”, “positive regulation of cell 
death” and “intrinsic apoptotic signaling pathway”, 
suggesting that naïve B cells in the tumor samples 
underwent apoptosis (Figure S9D). 

 Macrophage density is associated with a poor 
prognosis for patients with many solid tumors [31]. 
We explored the role of macrophages in the TME by 
performing an unsupervised clustering analysis of 
our scRNA-seq data for 1,481 macrophages, of which 
952 cells were derived from tumors (Table S2). 
Similarly, tumor-derived macrophages were 
distributed differently from AM-derived 
macrophages (Figure S9E). We obtained 11 clusters, of 
which Clusters 2 and 6 were annotated as 
tumor-associated macrophages and clusters and 1 and 
5 were annotated as myeloid-derived suppressor cells 
(Figure S9F-G). Genes that were upregulated in 
tumor-derived macrophages were enriched in 
functions of leukocyte migration, myeloid leukocyte 
activation, and antigen processing and presentation 
(Figure S9H), suggesting that tumor-derived 
macrophages play roles in regulating immune cell 
infiltration in the TME [32]. 
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Figure 5. T cell clusters in tumor samples and AM samples. A. UMAP plot of T cells showing 14 clusters annotated in different colors. B. Heatmap of marker gene 
expression in each annotated cell subgroup. C. Heatmap showing the density of positive staining for CD8 and PD1 and IHC staining for CD8 and PD1 in the tumor tissue from 
patient 6 (intestinal-type). D. Heatmap showing the density of positive staining for CD8 and PD1 and IHC staining for CD8 and PD1 in the tumor tissue from patient 5 
(diffuse-type). 

 

Dynamic communication among different 
TME components 

We conducted cell-cell communication analysis 
based on our single-cell data using the CellPhoneDB 
toolkit to investigate the communication between 

different fibroblast subgroups and other components 
in the tumor microenvironment [33]. CellPhoneDB 
infers cell-cell communication networks based on 
curated ligand-receptor interactions and the 
expression of ligands and receptors in different cell 
types from scRNA-seq data. We identified strong 
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interactions among endothelial cells, fibroblasts, and 
macrophages in both tumor and AM-derived samples 
(Figure S10A-B). CAF-endothelial communication 
was mediated by angiogenesis-associated 
VEGFA-receptor pairs (Figure S10C), confirming that 
CAFs play a critical role in the activation of 
angiogenesis. Moreover, the epithelial cells in the 

tumor exhibited a stronger interaction with other 
TME components than the epithelial cells in the AM 
(Figure S10A-B), indicating that the tumor cells were 
actively regulated by other components in the TME. 
For example, tumor epithelial cells expressing PDGFA 
interacted with PDGFRA-expressing fibroblasts 
(Figure S10D). 

 

 
Figure 6. Communication among tumor microenvironment components. A-B. Heatmap showing interactions between fibroblast subgroups and immune cells (A) or 
other stromal cells (B). The color represents the number of interactions (blue to red); n=8 tumors. C. Selected specific interactions between CAF subgroups and immune cells 
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in tumors. The size indicates the p values, and the color indicates the mean values of the receptor/ligand pairs between two clusters. D. IHC staining and pseudofluorescence 
synthesized by multistaining registration for CD8, PD1, CD34, and COL1A1 in the tumor tissue from patient 6. The box indicates adjacent cells. E. Images of IHC staining and 
pseudofluorescence synthesized by multistaining registration for E-cadherin, CD163, periostin, and COL1A1 in the tumor tissue from patient 6. The box indicates adjacent cells. 
F. Immunofluorescence staining for COL1A1 and periostin in the fifth generation of CAFs. G. Crystal violet staining of M2 macrophages in response to MSCs and CAFs. Bar plot 
showing the average crystal violet-stained area in Transwells calculated using ImageJ software. The p value was calculated using the unpaired t test (P value = 0.0038). H. Western 
blot results showing a comparison of the periostin and GAPDH bands between MSCs and CAFs. I. Western blot results showing a comparison of the periostin and GAPDH bands 
between NC-MSCs and periostin-overexpressing MSCs. J. Crystal violet staining of M2 macrophages that were recruited in response to NC-MSCs and periostin-overexpressing 
MSCs. Bar plots showing the average crystal violet-stained area in the Transwells calculated using ImageJ software. The p value was calculated using the unpaired t test (P value 
= 0.0004). 

 

The recruitment of immune cells to the TME is a 
process that can be targeted during cancer therapy. 
We analyzed the cell-cell communications between 
different subgroups of stromal and immune cells in 
the TME to provide insights into immune cell 
recruitment in the TME (Figure 6A-B). Our analysis 
showed that iCAFs communicated with CD4+ T cells, 
CD8+ T cells, Tregs, and macrophages through 
receptor-ligand interactions associated with 
chemokines, inflammatory cytokine responses, and 
immune modulation (Figure 6C). Taken together, 
iCAFs play a role in the recruitment of lymphocytes. 
We tested this hypothesis by analyzing the abundance 
of immune cell types in bulk RNA sequencing data 
from TCGA gastric cohort. As shown in Figure S10E, 
the expression levels of gene markers for iCAFs were 
associated with the abundance of lymphocytes. We 
also identified that the main subpopulation of CAFs 
residing in lymphoid nodule-like structures was 
iCAFs (Figure 6D), which were located around 
CD8-positive and PD1-positive T cells, indicating that 
iCAFs are involved in regulating T cells. 

For comparison, POSTN expression was more 
strongly correlated with the macrophage fraction in 
TCGA tumor samples (Figure S10E), which is the 
most highly correlated gene even after correction for 
the overall stromal fraction in tumor samples. In 
addition, POSTN expression was more strongly 
correlated with protumorigenic M2 macrophages 
than antitumorigenic M1 macrophages in tumor 
samples (Figure S10E). We compared the sites of 
periostin and CD163 (an M2 macrophage marker) 
expression using immunohistochemical methods to 
investigate the spatial relationship between eCAFs 
and M2 macrophages. Periostin-positive cells 
correlated spatially with CD163-positive cells (Figure 
6E). We further confirmed that eCAFs functioned in 
recruiting M2 macrophages by performing functional 
experiments in cultured cells. First, we obtained M2 
macrophages in vitro by inducing Thp1 cells to 
differentiate into M2 macrophages (Figure S10F). 
Next, we obtained eCAFs from gastric cancer 
samples. We first isolated and cultured all CAFs from 
gastric cancer samples. All second-generation gastric 
cancer sample-derived cells expressed COL1A1 
(Figure S10G), and approximately 18% of cells 
expressed periostin (Figure S10G-H), indicating that 

we obtained gastric cancer CAFs and that some CAFs 
were eCAFs. Interestingly, after passaging these cells 
four times, almost all CAFs expressed periostin 
(Figure 6F). eCAFs may have a higher proliferation 
potential than other CAFs in cell culture. 

We used fifth-generation CAFs as eCAFs to 
perform the Transwell migration assay, with 
mesenchymal stem cells (MSCs) serving as the 
negative control to identify whether eCAFs recruited 
M2 macrophages. We showed an increased number of 
migrated M2 macrophages in response to eCAFs 
compared with MSCs (Figure 6G). Periostin was 
expressed at significantly higher in eCAFs than in 
MSCs (Figure 6H). As the POSTN gene was correlated 
with M2 macrophages in TCGA analysis, we further 
investigated the role of periostin in recruiting M2 
macrophages by overexpressing periostin in MSCs 
(Figure 6I). Periostin-overexpressing MSCs increased 
the migration of M2 macrophages (Figure 6J). Based 
on these results, eCAFs exhibited enhanced 
chemotaxis of attracting M2 macrophages in vitro. 
Taken together, iCAFs and eCAFs have different 
functions in immune cell recruitment within the 
tumor microenvironment. 

In addition, communication between 
macrophages and lymphocytes was also identified 
(Figure S10A). The recruited macrophages expressed 
CTLA4, LGALS9, and HAVCR2, all of which are likely 
involved in suppressing the function of lymphocytes 
expressing CD86 and HAVCR2 (Figure 6C). 

TME components that infiltrated diffuse-type 
GC construct a microenvironment favoring 
cancer progression. 

We compared cell subgroup ratios between 
patients with diffuse and intestinal GC to investigate 
the correlation of cellular heterogeneity with 
pathological classifications in GC. The fractions of 
EMT epithelial cells were higher in two of the three 
patients with diffuse-type GC than in the three 
patients with intestinal-type GC (Figure 7A), 
confirming the presence of more undifferentiated cells 
in diffuse-type GC. As shown in Figure 7B, the 
diffuse-type tumor samples also exhibited a higher 
fraction of stromal components (endothelial, CAF, 
and immune cells, p=0.038).  
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Figure 7. Comparison of cell subgroup fractions between two histopathological types of gastric cancer. A. Fraction of EMT epithelial cells relative to total 
nonimmune cells in 6 tumor samples. B. Fraction of all stromal cells relative to the total cells in 6 tumor samples. “*” represents a p value<0.05; unpaired Student’s t test. C. 
Fraction of immune cells relative to total cells in 6 tumor samples. “**” represents a p value<0.01; unpaired Student’s t test. D. Fraction of CD4-C4-CXCL13 cells relative to the 
total immune cells in 6 tumor samples. “**” represents a p value<0.01; unpaired Student’s t test. E. IHC staining for E-cadherin in tumor tissues from patients with intestinal-type 
GC (patients 1, 3 and 6) and diffuse-type GC (patients 4, 5 and 8). F. IHC staining for PD1 in tumor tissues from patients with intestinal-type GC (patients 1, 3 and 6) and 
diffuse-type GC (patients 4, 5 and 8). 

 
In addition, the fraction of immune cells was 

higher in diffuse-type tumor samples than in 
intestinal-type tumor samples (Figure 7C) (p=0.0073), 

suggesting that diffuse-type tumor samples had a 
higher degree of immune cell infiltration. Within 
subtypes of immune cells, we showed that the relative 
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abundance of CXCL13-expressing T cells was higher 
in diffuse-type tumors (Figure 7D) (p=0.0081), 
suggesting that diffuse GC had a more suppressive 
immune microenvironment. We also compared the 
pathological features of intestinal-type and 
diffuse-type tumors. Clear boundaries were observed 
between the tumor and stromal regions in 
intestinal-type tumors but not in diffuse-type tumors. 
E-cadherin was expressed at lower levels in 
diffuse-type tumors than in intestinal-type tumors, 
indicating that the fraction of EMT epithelial cells was 
higher in diffuse-type tumors (Figure 7E). Lymphoid 
nodule-like structures developed along the margins of 
the tumor region in intestinal-type tumors (Figure 7F). 
We showed that lymphoid nodule-like structures of 
diffuse-type tumors resided near tumor cells, and the 
number of lymphoid structures in diffuse-type 
tumors was higher than that in intestinal tumors 
(Figure 7F). PD1 was only expressed in the lymphoid 
structures (Figure 7F), indicating that more exhausted 
T cells infiltrated in diffuse-type tumors. Taken 
together, diffuse-type GC is characterized by a ‘Four 
High’ phenotype (high EMT, high stromal cell, high 
immune cell infiltration, and high T cell exhaustion), 
indicating that more metastatic tumor cells and the 
immunosuppressive TME may account for the poor 
prognosis of patients with diffuse GC. 

Discussion 
Our study revealed the heterogeneity of the GC 

TME, revealing the significant variability in 
abundance and expression signatures among tumor 
epithelial cells and other TME cell subsets. We mainly 
focused on the diversity of CAFs, which regulate 
different aspects of the biology of the TME. iCAFs 
chemoattract and regulate the function of T cells by 
secreting IL6 and CXCL12, which are similar to the 
inflammatory CAFs identified in other solid tumors 
[34, 35]. For example, CAF-S1 found in breast cancer 
recruits CD4+CD25+ T cells by secreting CXCL12 [36]. 
CAF-S1 is also correlated with macrophage 
infiltration. In contrast to CAF-S1 in breast cancer, in 
our study, eCAFs, rather than iCAFs, were 
significantly correlated with tumor-associated M2-like 
macrophages. We also observed a spatial association 
between eCAFs and M2-like macrophages. eCAFs, 
which express POSTN, remodeled the extracellular 
matrix in the TME, suggesting their roles in 
promoting invasion and metastasis. eCAFs were also 
significantly correlated with a poor prognosis, 
suggesting that the increased infiltration of eCAFs 
forms a metastasis-friendly niche by degrading the 
ECM and chemoattracting tumor-associated M2-like 
macrophages. Similar to previous studies [10, 37], we 
did not determine the exact M1 and M2 macrophage 

subsets. We observed that a TAM cluster (Cluster 2) 
expressed CD163 (Table S4), indicating that these cells 
are characterized as M2-like macrophages. Further 
studies on eCAFs and TAMs in GC are needed to 
understand how they function in metastasis and how 
they can be used as potential therapeutic targets to 
inhibit metastasis. We annotated Cluster 5 of 
fibroblasts as pericytes based on the expression of the 
RGS5 gene. The origin of pericytes remains 
controversial. Recent studies have shown that 
activated fibroblasts transdifferentiate into pericytes 
in the TME [38]. However, the origin of these 
pericytes identified in GC requires further 
exploration. 

According to recent studies, senescent fibroblasts 
develop a senescence-associated secretory phenotype, 
including inflammatory factors, chemokines, and 
extracellular matrix elements, and promote tumor 
growth [39]. Interestingly, iCAFs in GC tumors 
upregulated the expression of the CDKN1A gene 
(encoding P21 protein) and expressed inflammatory 
factors, chemokines, and ECM elements in our study. 

The abundance and expression signature of 
tumor epithelial cells presented significant 
interpatient variability, such as cancer stem cell 2, 
which was derived only from patient 3. Variations in 
tumor epithelial cells are driven by various mutations 
among patients [35]. Unlike tumor epithelial cells, the 
diversity of CAFs only presented a difference in 
abundance across patients. Diverse CAF subsets were 
significantly correlated with the biological behaviors 
of other stromal cells in the GC TME. Combining 
classical therapy with treatments targeting CAFs may 
reduce the supportive effect of the TME on tumor cells 
and produce a favorable outcome in the majority of 
patients. 

Disease recurrence after curative resection of 
advanced GC results in a poor prognosis [2]. The 
reason for the recurrence and metastasis of advanced 
GC remains unclear. We observed that the resident 
fibroblast counterparts of four CAF subsets were 
identified in the adjacent mucosal samples. These 
fibroblast subsets were less activated than the 
corresponding CAF subsets. We hypothesize that the 
wound repair process and the constant inflammation 
caused by curative resection activate resident 
fibroblasts to form a tumor-supportive milieu and 
may correlate with the local recurrence of GC. 
Combining postoperative chemotherapies with the 
inhibition of CAF activation may reduce recurrence 
and improve the prognosis of patients with advanced 
GC. 

Lauren subtypes are associated with the 
prognosis. Compared to patients with intestinal-type 
GC, patients with diffuse-type GC typically have a 
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younger onset age and lower 5-year survival rates. 
Diffuse-type tumors are poorly differentiated, exhibit 
a greater infiltration depth, and have a higher degree 
of lymphatic vessel invasion [40]. Our findings 
presented here provide clear evidence for greater 
infiltration of metastatic tumor cells and stromal cells 
in diffuse-type tumors, which may explain why 
diffuse-type tumors are more aggressive. 

TCGA molecular classification, which affects 
prognostic predictions and personalized therapy, has 
become a popular method for determining the 
pathological subtypes of GC in patients [41]. 
Determining how the TME is constituted in each 
TCGA subtype may provide more insights into the 
diagnosis and treatment of patients with GC. We 
aligned our findings by classifying our samples 
according to TCGA molecular classification. As only 
one patient was classified into the EBV subtype, we 
did not observe significant differences among the four 
molecular subtypes. Further studies should include a 
larger patient cohort to understand how the TME is 
constituted in each TCGA subtype. 

Similar to other scRNA-seq studies of solid 
tumors [42, 43], we also identified that p-EMT 
epithelial cells and proliferating T cells were enriched 
in GC tumors, highlighting the universal importance 
of these two cell subsets across different types of 
cancer. We also showed that a small number of 
p-EMT epithelial cells and proliferating T cells were 
identified in AM samples. We hypothesized that the 
reason why a few AM-derived epithelial cells 
exhibited a higher p-EMT score may be that those 
cells remain unhealed, as the gastric mucosa of 
patients with GC may be in an inflammatory state 
[44]. Moreover, these AM-derived proliferative T cells 
might be intraepithelial lymphocytes residing in the 
gastric mucosa [45]. 

Unlike previous scRNA-seq studies of GC [9, 10, 
37], which focused on the heterogeneity of malignant 
cells or immune cells among different subtypes of GC, 
our study mainly focused on elucidating the 
classification and function of different CAF subsets in 
GC. Moreover, we validated the spatial distribution of 
CAF subsets in GC using multistaining registration 
analysis and confirmed the chemotaxis ability of 
eCAFs in attracting M2 macrophages in vitro. The 
limitation of our analysis is the small number of 
patient samples included in our study, resulting in 
poor yields of several cell subsets. Our findings 
require verification in a larger cohort of patients. The 
digestion process may also affect the transcriptome of 
cells. Furthermore, we studied CAF heterogeneity 
based on scRNA-seq data collected from dissociated 
tumor samples. Although we validated the spatial 
distribution of CAF subsets in GC using multistaining 

registration analysis and confirmed the chemotaxis 
ability of eCAFs in attracting M2 macrophages in 
vitro, the isolation and enrichment of other CAFs was 
challenging for us due to sample availability. For 
example, for iCAF isolation, negative selection of 
CD31 must be performed to exclude CD31-expressing 
endothelial cells, which requires a tissue size that is 
not feasible for early-stage gastric cancers in patients 
undergoing surgery. By culturing all 
COL1A1-expressing CAFs, we also only obtained 
eCAFs, as they may have a higher proliferation 
potential. Therefore, methods to isolate and enrich 
iCAFs and other CAFs from gastric cancer samples for 
functional studies require further exploration. 

Conclusions 
We profiled approximately 37,000 cells from 

tumors and adjacent mucosal tissues from eight 
patients with GC using single-cell RNA sequencing. 
We mainly discussed CAFs in the GC TME, including 
the classification, function, origin, interaction with 
other cell subsets, and spatial distribution in different 
pathological types. These results reveal the unique 
roles of CAFs in regulating different aspects of the 
biology of the TME, including immune modulation, 
invasion, migration, and angiogenesis. Importantly, 
we showed that eCAFs presented an enhanced 
chemotaxis ability of attracting M2 macrophages and 
were associated with a poor prognosis of patients 
with GC, indicating that inhibiting eCAF activation 
may be a potential therapeutic target for patients with 
GC. 
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