No data	Worsen outcome (vs control) oft tissue sarcoma		No chang (vs contro	ge ol)	Similar i (monothe	improved outcome rapy ≈ combination therapy)	nproved outcome of n (vs control	nonotherapy)	Improved outcome of combin therapy (vs monotherapy)	ation	
Table S1: Se	oft tissue sare	Types of Immunotherapy									
		Туре	s of Immun	otherapy		Other		Treatme	nt output		Refs
	ICIs	ACT	Oncolytic viruses	Cancer Vaccines	In situ vaccines	CT/RT	Primary tumor growth	Metastasis	Overall Survival	Immunophenotype	
FB	genetic editing of PD-L1 expression						-extinguishing PD-L1 expression genetically from sarcoma cells (T3ΔPDL1) facilitated significant tumor rejection	No data	No data	No data	[1]
FB	anti-PD-1 +/- anti- CTLA-4			mLama4 (28-mer)/ mAlg8 (21- mer) synthetic long peptides (SLPs) plus poly(I:C)			-tumor regression was observed only in mice vaccinated with mLama4 and mAlg8 SLP plus poly(I:C)	No data	-only mice vaccinated with mLama4 + mAlg8 SLP + poly(I:C) combination displayed a significant extension in survival	-tumor-specific mutant antigens (TSMA) and Alg8 and Lama4 are responsible for CD8+ T cell response induced following anti-PD-1 therapy Alg8 and Lama4 -TIL specific for mLama4 or mAlg8 from mice treated with anti-PD-1 and/or anti-CTLA- 4 displayed lower cell surface expression of LAG-3 and TIM-3, and higher Gzmb expression compared to control mAb-treated mice	[2]
FB	anti- CTLA-4			Neo1- pulsed splenocytes or BMDM- Neo1 or Neo1 DCs- Neo1			-DC-Neo1 immunized mice were the only group which showed tumor protection which was further enhanced in the presence of CTLA-4 blockade -CTLA-4 blockade caused a moderate anti-tumor effect when combined with Neo1- pulsed splenocytes or BMDM-Neo1 immunization	No data	No data	-GM-CSF-CD11c+ MHC class II low DC subset was found to have the most powerful adjuvanticity of all the tested APCs and these APCs act as both an ADC (antigen donor cells) as well as an APC in vivo	[3]
FB	anti-PD-1				TREM2 mAb		-anti-TREM2 and anti-PD-1 caused an incomplete control of tumor growth, while	No data	No data	-combination therapy and anti-TREM2 alone reduced	[4]

				combination of anti-TREM2 and suboptimal anti-PD-1			myeloid cells, while anti-PD- 1 and	
				conferred complete tumor			treated mice evidenced no	
				control in all mice			change	
							-anti-TREM2 treatment	
							augments IFN γ and INF α	
							$CD8 \perp$ and $CD4 \perp T$ cells	
							respectively (ex vivo)	
							-anti-TREM2 treatment, with	
							or without anti-PD-1, induced	
							de novo appearance of Nos2-	
							Macs-t	
FB	anti-		agonist anti-	-anti-OX40 therapy in the	No data	-combined	-only combined anti-	[5]
	CTLA-4		OX40	presence of CTLA-4 blockade		immunotherapy	OX40/anti-CTLA-4 therapy	
				augmented the tumor growth		significantly	boosted intratumoral CD4 and	
				inhibition, while anti-OX40 or		enhanced	CD8 T-cell expansion and	
				anti-CTLA-4 had limited		survival	differentiation but did not	
				enects			or the Tree suppressor	
							function	
FB	anti-PD-1		RAR	- BMS493 synergized with	No data	-BMS493-anti-	-T cell-derived IL13 can	[6]
			signaling	systemic anti-PD-1 therapy		PD-1	induce RA production by	[0]
			antagonist	inducing a more potent tumor		combination	tumor cells	
			(BMS493)	growth inhibition compared to		extends overall	-RA inhibited DC and	
				monotherapy groups		survival	promoted immune	
							suppressive macrophage	
							differentiation from tumor	
							monocytes	
							-RA suppresses DC	
							downregulated transcription	
							factor Irf4	
							-inhibition of retinoic acid	
							production by BMS493	
							decreased frequency of	
							TAMs, increased activation	
							markers on APCs, and	
							increased frequency of CD4+	
TD					NT 1.	The second second	T cells	
FВ	anti-PD-		IDO	-DC-0919 did not	No data	-IDO inhibition	-anti-PD-L1 promoted the	[7]
			innibitor	significantly affect tumor		did not confer	upregulation of $1 \text{ NF}\alpha$, IL6,	
			(UDC-0919)	growth neither enhanced the		any significant	IFINY, IL2, and IGFP	

				tumor inhibition induced anti-		benefit to anti-	induction and favored T cell	
				PD-L1 monotherapy		PD-L1	infiltration expressing IFNy,	
						treatment which	while its combination with	
						slightly	GDC-0919 did not change the	
						improved	observed features	
						survival	-anti-PD-L1 limited, MDSCs	
						compared to	and TAMs by promoting M1	
						control mice	cell state	
							-GDC-0919 alone or in	
							combination with ICI had no	
							impact on MSDCs	
FB	anti-PD-1		NAMPT	-combination of an anti-PD-1	-NAMPT	No data	-NAMPT inhibitor prevented	[8]
			(nicotinamid	and MV87 displayed a	inhibitors		MDSC mobilization by	
			e	significantly higher antitumor	inhibited		blocking the suppression of	
			phosphoribo	activity as compared with the	spontaneous lung		CXCR4 gene expression, but	
			syltransferas	single treatments	metastasis		did not affect TAMs	
			e) inhibitors		formation and this		-NAMPT inhibition increased	
			(FK866 or		effect was		CD3+ T cells but Tregs	
			MV87)		enhanced upon		remained unaffected	
					combination with			
					anti-PD-1			
					-no significant			
					differences were			
					found between ICI			
					and ICI+NAMPT			
		 			inhibition			
FB	anti-PD-1		PERK	-combination of PERK	No data	-all mice treated	-PERK inhibition overcomes	[9]
			inhibitor	inhibitor and anti-PD-1		with	mitochondrial exhaustion in T	
				significantly promoted tumor		combination	cells and increases CD8+	
				regression		therapy-treated	TILs	
						mice survived,		
						while mice		
						treated with		
						either PERK		
						inhibitor and		
						anti-PD-1		
						exhibited a		
						moderate		
						increase in		
					N7 1 1	survival		
FВ	antı-PD-		L19-mIL12	-L19-mIL12 alone inhibited	No data	No data	No data	[10]
	L1/ anti-			tumor growth, while its				
	CTLA-4							

FB	anti-PD-1			L19-mTNF	Dacarbazine / trabectedin/ melphalan	combination with either of ICI enhanced the anti-tumor effect -ICI alone did not have any effect -L19- mTNF caused a moderate reduction in tumor size, while its combination with either chemotherapy drug enhanced tumor regression -L19- mTNF enhanced the anti-tumor effect of ICI and melphalan drug -ICI alone had a moderate effect	No data	-survival was prolonged upon combination of L19-mTNF with either dacarbazine or trabectedin or melphalan or PD-1 blockade	No data	[11]
FB	anti-PD- L1			ketotifen	doxorubicin	-ICI combined with doxorubicin or ketotifen reduced tumor volume -ICI+ doxorubicin+ ketotifen had superior effect on growth inhibition	No data	No data	-ICI-ketotifen combination with or without doxorubicin increased TILs and ratio of CD8+ T cells to Tregs	[12]
FB	anti-PD- L1				Epirubicin (NC6300)	- ICI combined with NC6300 resulted in tumor regression compared to anti-PD-L1 monotherapy	No data	No data	-combination treatment increased TILs and intratumoral CD8 levels and proliferation	[13]
FB		T cells primed with anti- CD3 +/- CH-296				-tumor growth in mice receiving transgenic mouse- derived T cells primed with anti-CD3 in combination with CH-296 was significantly inhibited compared with the other groups (anti-CD3 or CH-294 stimulation)	No data	No data	-Tregs in tumor decreased in mice receiving tumor-specific CD8+ T cells primed with CH-296 -CD8+ to Tregs ratio was enhanced upon ACT stimulated with both anti-CD3 and CH-296	[14]
FB		NK cells/ PBMCs	oncolytic measles vaccine (MeV)			-Co-culture of MeV and NK cells or PBMCs resulted in higher oncolysis rates than MeV monotherapy in sarcoma cells	No data	No data	No data	[15]
FB		TDLN T cells		A2AR- antagonist (KW6002, istradefyllin e)		No data	-combination of KW6002 enhanced the therapeutic effect of wild-type TDLN T ACT	No data	-KW6002 increased the release of IFNγ from TDLN T cells	[16]

							against well established pulmonary metastases, while KW6002 by itself had modest therapeutic effect			
FB	CD8+ T cells			CD47 blockade (morpholino)	RT	-RT enhanced the antitumor effect of CD47 blockade and/or ACT treatment -CD47 blockade alone or combined with RT did not affect tumor growth	No data	No data	-blockade of CD47 enhanced CD8+ T-cell tumoricidal activity and recruitment into irradiated tumors and increased GZMB expression independent of increased CD8+ T-cell infiltration -No change in Foxp3 expression	[17]
FB		DC ex Le ma lys DC LF DC	Cs sposed to eishmania ajor's sate (L.m- Cs) or PS (LPS- Cs)			-LPS-DCs and L.m-DCs diminished the growth rate of tumors more significantly than immature DCs	No data	-LPS-DCs and L.m-DCs significantly extended overall survival	-DCs matured by either L.m or LPS had high levels of IL12 compared to immature DCs in vitro -LPS-DCs and L.m-DCs significantly increased CD8+ T cell accumulation in tumors	[18]
FB		TF va	RXtr-EDB accine			-TRXtr-EDB outperformed the non-truncated form of TRX (TRX-EDB) at inhibiting tumor growth	No data	No data	-TRXtr-EDB vaccination decreased vascular density and increased intratumoral CD45+ infiltration	[19]
FB		DC (in va pro cel DC (in plu ste DC (ly CN tu	C/iVP nduced ascular ogenitor ells)/ C/iPS nduced uripotent em)/ C/CMS-4 ysate from MS-4 FS mor)			-DC/iVP immunized mice exhibited a greater reduction in tumor size compared to DC/iPS or DC/CMS-4 immunization	No data	-DC/iVP- immunized mice showed the longest survival	-both DC/iVP and iVP immunization led to a marked decrease in tumor vasculature -CD8+ T cells from DC/iVP- vaccinated mice showed significant cytotoxic activity against murine endothelial cells and FS cells, whereas CD8+ T cells from DC/iPS- vaccinated mice did not	[20]

FB	bFGF- activated fibroblasts	-tumor growth rate was significantly decreased in the immunized group	No data	-apparent increase in lifespan of immunized group compared to the control	No data	[21]
FB	mDC.Tbet	-mDC.Tbet, but not control mDC.Null, slowed tumor growth	No data	No data	-mDC.Tbet promoted early recruitment/activation of Type-1 CD8+ T cells and NK cells within the therapeutic TME in association with enhanced production of chemokines, independently of the proinflammatory cytokines IL12 family members or IFNγ	[22]
FB	DCs-IL12/ DCs-IFN-α based on Rheoswitch Therapeutic System (RTS)	-DC-IL12 and activator ligand (AL) resulted in a potent antitumor effect	No data	No data	-increased intratumoral levels of CD4+ and CD8+ T cells upon DC-IL12 and AL treatment compared to control mice -no alteration in the MDSC levels in spleen	[23]
FB	TL- CD8α+DCs	-TL-CD8α+ DCs and CD8α+DCs immunization decreased tumor growth rate in a similar manner	No data	No data	-TL-CD8α+ DCs significantly enhanced both CD4+ and CD8+ lymphocytes whereas decreased Tregs in TME and spleen compared to CD8α+DCs or PBS groups -significant increase in CD8+ or CD4+ T cell/ Tregs ratio in tumor	[24]
FB	mHSP/Ps vaccine	-mice immunized with mHSP/Ps showed tumor regression	No data	-mice immunized with mHSP/Ps showed long- term survival and long-term memory since rehallenging with FS tumor cells did not led	No data	[25]

							to tumor development		
FB			rNDV-TV vaccine		-tumor exclusion decreased in mice receiving immunized CD4+ and CD8+ cells, compared with those receiving immunized CD3+ cells	No data	-transfusion of scid mice with immunized CD3+ or splenocytes with rNDV after FS cell inoculation extended survival	-CD4+ and CD8+, NK and NKT cells contributed to the antitumor response	[26]
FB			HSP-70 rich lysate vaccine	propranolol	-tumors in mice receiving HSP70-rich lysate grew more slowly than those in the control groups -Co-treatment (HSP70- enriched lysate + propranolol) caused a more effective growth control	No data	No data	-co-treatment with propranolol induced a significant increase in IFNγ production in splenocytes relative to the HSP70- enriched lysate group -T cell cytotoxicity was increased compared to the untreated group	[27]
FB			DC/EphA2 vaccination	HSP90 Inhibitor (17-DMAG)	-HSP90 inhibition reduced tumor growth rate -combination vaccination + 17-DMAG immunotherapy yields superior antitumor efficacy compared with treatment with either single modality	No data	-DC/EphA2 vaccination or the adoptive transfer of EphA2-specific CD8+ T cells plus 17-DMAG cotreatment yielded a superior tumor therapeutic regimen that was capable of rendering animals free of disease	-HSP90 inhibition alone increased tumor-infiltrating CD4+ and CD8+ T effector cells, and reduced Tregs and MDSCs, while its combination with DC/EphA2 vaccine further enhanced this immune response and yield increased in recognition of tumor cells by Type-1 anti- EphA2 CD8+ T cells	[28]
FB				anti-CD25	-mice that were permanently Treg depleted (by anti-CD25) were completely cured of their subcutaneous tumor		-mice that were permanently Treg depleted remained disease free	-increase in the number of Teff cells that were Tregs permanently depleted	[29]

FB		Iso1/Au/IL1 2 nanodrug	-increased reduction in tumor volume upon Iso1/Au/IL12 treatment compared to either Au/IL12 or IL12	No data	-Iso1/Au/IL12 treatment prolonged survival compared to IL12	-iso1/Au/IL12 Increased the Levels of TNF-R2, IFNγ and MIP-2 in the TME -Increased infiltration of CD11b+ cells, granulocytes, monocytes, and NK cells -anti-tumor effect was NK dependent	[30]
FB		L19mTNF in combination with melphalan (TP)	No data	No data	No data	-increased splenic CD4+ and CD8+ T cells associated with higher levels of IFNγ production compared to untreated control -significant enhancement of NKs and mature DCs in TDLNs and a reduction of infiltrating CD206+ M2 macrophages	[31]
FB		IL12 gene therapy	-IL12 gene therapy significantly reduced tumor volume compared to the untreated mice	No data	No data	-IL12 gene therapy upregulated intratumoral levels of IFNγ and reduced tumor cell proliferation	[32]
FB		F8-IL13 fusion protein	-F8-IL13 fusion protein caused a strong inhibition of tumor growth rate compared to either anti-IL13 or F8 treatment	No data	-F8-IL13 therapy produced a memory response as none of the cured F8-IL13 treated mice developed FS tumors after cancer cell rechallenge	-F8-IL13 accumulated around tumor neo-vascular structures	[33]
FB		Genetic ablation of TGFβ signaling specifically in NKp46+ cells	No data	No data	-ablation of TGFβ signaling prolonged survival	-TGFβ-signaling-dependent conversion of NK cells -TGFβ inhibition decreased the frequencies of intILC1 and ILC1 populations in TME	[34]

FB	TGFβR	-TGFβR inhibition reduced	No data	No data	-tumor-conditioned medium	[35]
	inhibitor	tumor growth			(TCM) induced Treg up-	[]
	(SB431542)	C C			regulation by Breg cells	
					expressing $TGF\beta 1/2$ which in	
					turn suppress T cell responses	
					to antigens	
					-SB431542 treatment	
					significantly increased levels	
					of splenic CD4+ and CD8+	
					cells and reduced Tregs with	
					no change in CD19+ cells	
FB	IFNγ	No data	No data	No data	-IFNy treatment upregulated	[36]
					the expression of antigen-	
					presenting machinery genes	
					by DNA demethylation of	
					selected antigen-presenting	
					machinery genes located in	
					the MHC genomic locus	
FB	Protein-	-PSK significantly reduced	No data	No data	-reduced the proportion of	[37]
	bound	tumor growth			Tregs in the spleen and the	
	polysacchari				plasma TGF β concentration,	
	de-K (PSK)				and significantly increased the	
					CD8+/Treg ratio in the spleen	
					and IFN γ production by	
		ENO CONTRACTO	NT 1 .	NT 1.	spleen cells	
FB	Exosomes	-EXO _{HSP} was more effective	No data	No data	No data	[38]
	(EXO):	than EXO and EXO _{Lys} to				
	cell lysate	decrease the number of tumor				
	treated EXO	cells and this antitumor				
	(EAULYS)/	response was enhanced in the				
	nor/U aprichad ES	(EXO				
		(EAOHSP70/SED)				
	trasted EXO					
	Nalovone					
	treated EXO					
	(EXONLX)					
	+/-					
	staphylococ					
	cal					

			antorotorin					
			B (SEB)					
FB			IL2/anti-IL2 mAb complexes (IL2c) +/- anti- OX40 agonist	-anti-OX40/IL2 therapy boosted tumor regression to either treatment alone		-anti-OX40/IL2 therapy enhanced animal survival to either treatment alone	-IL2 treatment significantly enhanced CD25 and OX40 expression on CD8+ T cells in TME -anti-OX40/IL2c therapy did not affect the Treg accumulation	[39]
FB			anti-OX40 agonist +/- galectin- 3 inhibitor (Gal-3, belapectin)	-significant reduction in tumor growth only in response to combined anti- OX40/belapectin treatment compared to monotherapies	No data	-belapectin combination enhanced the survival benefit produced following anti- OX40 treatment -combination therapy generated durable long- term memory as all tumor-free mice were protected from subsequent tumor re- challenge	 -no significant changes in the percent of CD8+, CD4+ T effectors or CD4+ T regs across treatment groups -combined treatment reduced the proliferation of CD4+ Teff and Treg cells and increased IFNγ secretion in the CD8+ T cells -anti-OX40/belapectin therapy decreases both number and immunosuppressive function of M-MDSCs 	[40]
FB			anti-OX40 agonist +/- caloric restriction (CR)/ resveratrol (RES)	-effect of tumor growth inhibition was stronger in CR mice treated with OX40 agonist -combination with resveratrol does not boost anti-OX40- mediated tumor immunity in aged tumor-bearing mice	No data	-agonist OX40- mediated tumor free survival was greater in young and elderly calorically restricted mice compared to ad libitum controls -long-term dietary supplementatio n with resveratrol did	-CR maintains tumor-antigen- specific CD4 T cell priming to levels similar to young mice, but not CD8+ T cell priming in the context of anti- OX40 treatment	[41]

							not significantly increase anti- OX40-mediated tumor free survival in aged mice		
FB			anti-CD40 agonist	sunitinib	-anti-CD40 therapy did not affect tumor growth while its combination with sunitinib induced a significant tumor regression	No data	-only anti- CD40+sunitinib combination prolonged overall survival	-anti-CD40 combined with sunitinib caused a greater increase in TDLNs activated CD11c+ DCs and intratumoral levels of MDSCs compared to anti-CD40 alone -only upon combination therapy CD8+ tumor infiltration and VCAM-1 adhesion protein were increased	[42]
FB			CD122- IL2 pathway agonist (NKTR- 214)	RT	-RT alone caused growth delay but did not affect systemic abscopal response -NKTR-214 monotherapy cured bilateral disease and combination offered a significantly greater tumor control and	No data	-significant improvement in overall survival when animals received combination therapy as compared with controls or RT or NKTR-214 treatments	No data	[43]
FB			synthetic TLR4 agonist (Dendrophil in, DEN)	doxorubicin	-DEN enhanced the antitumor effect of doxorubicin -DEN alone did not have any antitumor effect	No data	-DEN enhanced the survival benefit of doxorubicin	-DEN combined with doxorubicin promoted the accumulation of myelomonocytic and TH1/Tc1 infiltrates in tumor beds	[44]
FB			PSK (protein- bound polysacchari de K)	docetaxel	No data	- PSK and PSK plus docetaxel treatment suppressed metastasis formation of tumors with high MHC-I expression, while	No data	-immunotherapy and chemoimmunotherapy each produced a significant Increase in intratumoral CD4+ and CD8+ T-cell subsets and a decrease in Treg cells	[45]

						docetaxel alone had a moderate effect			
DDLPS	anti-PD-1				-PD-1 blockade slowed tumor growth compared to untreated control	No data	No data	-anti-PD-1 treatment induced the enhancement of CD8+ T (IFN γ + and PD-1) cells, NK active abundance, IFN γ signature, cytolytic score, and CSF1 expression	[46]
LPS	anti-PD-1		viral ILP regimen (GLV-1h68, melphalan, TNFα)		-tumor volumes were significantly smaller in rats treated with viral ILP combined with PD-1 blockade and all animals were cured of local recurrent disease	-compartment- ectomy of primary tumors prevented local relapsing in combination therapy cohort, as compared to the viral ILP alone	-combination of viral ILP with PD-1 blockade significantly improved survival compared with viral ILP alone in the neoadjuvant model	-combination of viral ILP with PD-1 blockade significantly increased infiltration of CD8+ T cells in tumor parenchyma compared with the invasive margin, increased intratumoral CD3+ and expression of GZMB on T cells -combination therapy increased the number of intratumoral DCs but also augmented their function	[47]
RMS		ERBB2- CAR cytokine- induced killer (CIK) cells			-ERBB2-CAR CIK cells led to a complete inhibition of initial tumor load, whereas WT CIKs had a moderate antitumor effect	-tumors were macroscopically cleared in all mice treated with ERBB2-CAR CIK cells, while small macroscopic lesions were observed in some of the mice treated with WT CIK cells	-all mice treated with ERBB2- CAR CIK cells displayed 100% survival	-ERBB2-CAR CIK cells enhanced the accumulation of NK and NKT cell subpopulations in disseminated RMS tumors, which was not observed for WT CIK cells	[48]
RMS		NKAE cell therapy		anti-CXCR4 (MDX1338)	-treatment with MDX1338 mAb alone led to the development of tumors slightly smaller than those of the control mice -NKAE cell therapy alone was sufficient to prevent the intraperitoneal implantation of RH30 tumors entirely	-MDX1338 treatment alone significantly decreased the formation of micrometastases, while combination of MDX1338 and NKAE treatment	No data	No data	[49]

						completely suppressed metastasis			
RMS	fAChR- redirecte d T cells			survivin blockade (SHP)	-fAChR-specific, but not control, T cells delayed the growth of xenotransplants combination with SHP enhanced antitumor effect of ACT	No data	No data	-survivin blockade increased tumor susceptibility toward a T-cell attack, whereas induction of ICOS-L did not	[50]
RMS		VSVΔ51- GFP/ IFNγ/ TWEAK		LCL161 (SMAC mimetic)	-combination of LCL161 with VSV Δ 51-GFP or IFN γ or TWEAK reduced RMS cell viability in vitro -LCL161 combined with VSV Δ 51-GFP inhibited tumour growth in syngeneic mice while LCL161 or VSV Δ 51-GFP alone did not	No data	-LCL161 combined with VSV∆51-GFP extended overall survival of mice whereas LCL161 or VSV∆51-GFP alone did not have any effect	-VSVΔ51-GFP or IFNγ or TWEAK synergized with LCL161 in vitro to promote TNFα signaling	[51]
RMS			DC-based tumor-cell vaccine	DASH inhibitor (ARI-4175)	-ARI-4175 monotherapy had potent antitumor activity but when combined with DC vaccine led to complete tumor regression	No data	-ARI-4175 monotherapy extends survival which was further enhanced upon combination with DC vaccine	-ARI-4175 increased splenic CD4+ T cells, NK cells, and DCs, but had no effect on B cells	[52]
RMS			DC vaccine/ ACT with tumor- primed T cells	DASH inhibitor (ARI-4175)	-ARI-4175 induced tumor regression and resulted in immunologic memory that protected against rechallenge -addition of DC vaccine or ACT to ARI-4175 improved the therapeutic efficacy -DC vaccine is sufficient to protect against tumor challenge, but it is insufficient as a therapeutic vaccine	No data	-combination of ARI-4175 with DC vaccine or ACT significantly enhanced survival as compared to ARI-4175 monotherapy	-anti-tumor effect of ARI- 4715 correlated with a dose- dependent increase in recruitment of myeloid cells (macrophages) and DCs to secondary lymphoid tissues	[53]
LMS		Ad5/3-D24- GMCSF			-Ad5/3-D24 or Ad5/3-D24- GMCSF was more effective than the mock injection or	No data	No data	No data	[54]

				Ad5WT in reducing tumor growth				
LMS			anti-CD47	-reduction in tumor size	-decrease in the size and number of metastases	No data	No data	[55]
SS			α -particleemitting anti-Frizzledhomolog 10(FZD10)antibody(211 At-OTSA101)or antibodyconjugatedwith the β -emitteryettrium-90(90 Y-OTSA101)	- ²¹¹ At-OTSA101 suppressed tumor growth immediately after injection, whereas this effect required several days in the case of ⁹⁰ Y-OTSA101	No data	-both radiolabeled antibodies at the 50-μCi dosage level significantly prolonged survival	No data	[56]
UPS	anti-PD-1		RAR signaling antagonist (BMS493)	- BMS493 synergized with systemic anti-PD-1 therapy inducing a more potent tumor growth inhibition compared to monotherapy groups	No data	No data	-BMS493 treatment increases immunostimulatory TAM populations and CD4+ T cells	[6]
UPS		autologo us CIK cells		-significant reduction of tumor growth in CIK treated mice compared with untreated controls	No data	No data	-significant reduction in residual putative chemoresistant cancer stem– like cells (sCSCs) at the end study after CIK treatment	[57]
1956 sarcoma	anti–PD-1		DDR2 inhibition (dasatinib)	-combination of anti-PD-1 and dasatinib led to a significant tumor load reduction -therapeutic blockade of PD-1 or DDR2 alone had little effect	No data	No data	No data	[58]
24JK- HER-2 sarcoma		PTPN2- deficient CD8+ HER-2 CAR T cells		-effective at specifically killing 24JK-HER-2 cells but not 24JK cells in vitro	No data	No data	-PTPN2-deficient CD8+ HER-2 CAR T cells exhibited increased antigen-specific cytotoxic capacity in vitro after challenge with tumor cells (IFNY, TNF, GZMB)	[59]

F244 MCA sarcoma		NF-κB inhibitor	 -in vitro treatment of tumor cells with NF-κB inhibitor enhanced their killing by NK cells -blocking NF-κB in the tumour cells led to immune rejection in vivo 	No data	No data	-NF-κB inhibition upregulated the expression of NKG2D ligand H60a on tumor cells in vitro	[60]
MCA304 sarcoma	IL13Ro targetec DNA vaccine	2- IL13-PE	-IL13-PE combined with IL13Rα2 DNA vaccination significantly reduced tumor burden and prolonging survival	No data	-IL13-PE combined with IL13Rα2 DNA vaccination significantly prolonged survival	-combination therapy induced CTL activity against established tumors and exhibited increased IFNγ release in spleens -greater density of CD4 and CD8+ cells and inflammatory cytokine production in tumor samples from the mice receiving combination therapy compared with control tumors -decrease in immunosuppressive Tregs and MDSCs within the TME after IL13-PE + IL13Rα2 DNA vaccine combination	[61]

FB, fibrosarcoma; DDLP, dedifferentiated liposarcoma; LP, liposarcoma; RMS, rhabdomyosarcoma; LMS, leiomyosarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma; CT, chemotherapy; RT, radiotherapy; ICIs, immune checkpoint inhibitors; ACT, adoptive cell therapy Purple font in letters indicates the combination therapy

No d	ata	Vorsen outcon (vs control)	ne	No ch (vs cor	ange ntrol)	Similar im (monothera th	proved outcome py ≈ combination lerapy)	Improved outcome of a (vs control	nonotherapy)	Improved outcome of combin therapy (vs monotherapy)	ation
Table S	2: Bone Sarco	ma									
		Туј	pes of Immu	notherapy		Other		Treatm	ent output		Refs
	ICIs	ACT	Oncolytic viruses	c Cancer Vaccines	In situ vaccines	CT/RT/ surgery	Primary tumor grov	wth Metastasis	Overall Survival	Immunophenotype	
OS	anti-PD-1						No data	-anti-PD-1 significantly reduced lung metastasis	No data	-anti-PD-1 induced NK and M1 macrophage infiltration into OS lung metastases	[62]
OS	anti-PD-1						-No change in the prir tumor volume after an PD-1	nary -fewer lung tti- metastatic nodes in anti-PD-1 group	No data	No data	[63]
OS	anti-PD-1, anti-PD-L1, anti-OX-86 cocktail						No data	-immuno-cocktail suppressed the metastatic tumor proliferation	-immuno- cocktail prolonged overall survival compared to untreated group	No data	[64]
OS	anti-PD-1/ anti-PD-L1	T cells armed with anti- GD2- BsAb (GD2- EATs) or anti- HER2- BsAb (HER2- EATs)					-anti-PD-L1 combinat improved tumor contr compared to EATs alo while anti-PD-1 combination did not	ion No data ol one,	-sequentially continuous therapy (SCT) with GD2- EATs-anti-PD- L1 combination improved OS while anti-PD-1 combination did not	-higher levels of IL2, TNF α and IFN γ after EATs injection -PD-L1 expression was upregulated following BsAb treatment -anti-PD-L1 combination resulted in more TILs compared to GD2-EATs or HER2-EATs alone, whereas anti-PD-1 combination did not	[65]
OS	anti-PD-1		OBP-502 (telomerase specific)	2			-OBP-502 combined w anti-PD-1 suppressed tumor volume while a PD-1 alone did not	vith No data nti-	No data	-OBP-502 alone or in combination with anti-PD-1 increased CD8+ T cell infiltration in TME while anti- PD-1 alone did not	[66]
OS	anti-CTLA- 4			tumor lysate- pulsed			-DC(Ly) combined wi CTLA-4 blockade cau the strongest reduction	ith-DC(Ly)usedcombined withn inCTLA-4 blockade	No data	-DC(Ly) and anti-CTLA-4 treated mice had reduced numbers of Tregs and	[67]

			DCs [DC(Ly)]		size of metastatic lesions, while DC(Ly) or anti- CTLA-4 had a moderate antitumor effect	prolonged lifetime more effectively than either treatment alone		increased CD8+ T cells inside the metastatic tumor, while their combination further enhanced these effects -serum IFNγ levels were increased, and IL10 decreased in the combination treatment group compared to those that received the DC(Ly) or anti- CTLA-4 antibody alone	
OS	anti-CTLA- 4/ anti-PD-1		CD103+ cDC1s activated with poly toll-like receptor 3 agonist polyinosin ic:polycyt idylic acid (poly I:C)		-CD103+ cDC1 vaccination or CTLA-4 or DC vaccination combined with PD-1 blockade restrained tumor growth in some mice -DC vaccination combined with anti- CTLA-4 led to a complete regression of tumors	-DC vaccination reduced in lung metastasis formation (No data for combination therapy)	-CD103+ cDC1s vaccination prolonged survival -combination with anti- CTLA-4 induced the most potent immunological memory responses against OS cell rechallenge	- vaccination enhanced IFNγ+ CD8+ T cell and Th1 infiltration but also, increased Tregs compared to the poly I:C- stimulated MoDCs	[68]
OS	anti-PD-1			shFGD1	-shFGD1 and anti-PD-1 had similar effect in reducing tumor growth while combination caused the greatest reduction	No data	-shFGD1 combined with anti-PD-1 caused the longest survival time compared to monotherapies	-shFGD1 and anti-PD-1 monotherapies increased TILs and decreased myeloid cell infiltration, but combination enhanced these effects	[69]
OS	anti-PD-1			CXCR4 inhibitor (AMD3100)	-anti-PD-1 alone did not suppress growth -CXCR4 inhibition slightly inhibited tumor growth and their combination has the strongest reduction in tumor size	No data	-CXCR4 inhibition prolonged mouse survival which was enhanced by CXCR4-PD-1 blockade combination	-CXCR4 inhibition alone and combination treatment increased CD8+ T cell infiltration -Combination caused a further upregulation of Ki67, GZMB, IFNγ, and TNFα expression in CD8+ TILs, compared to monotherapies	[70]

								-CXCR4 inhibition alone and combination reduced MDSCs in a similar manner	
OS	anti-PD-L1		L-arginine		No data	No data	-anti-PD-L1 and L-arginine combination increased survival more effectively than anti-PD-L1 alone -L-arginine had no effect on survival	-anti-PD-L1 and L-arginine combination elevated the number and activity of CD8+ T-cells in orthotopic tumors and pulmonary metastasis -anti-PD-L1 alone increased activation of CD8+ T-cells in tumors and pulmonary metastasis and suppressed MDSC infiltration to orthotopic tumors	[71]
OS	anti-Tim- 3/anti-PD- L1/anti-OX- 86 cocktail			debulking surgery	No data	-lung metastases were abolished in the long-term survivors treated with combination therapy	- immunotherapy alone did not prolong survival, while combination with debulking surgery significantly extended it	No data	[72]
OS	anti-CTLA- 4/ anti-PD-1			Carbon ion (CIRT) or photon (XRT) radiotherapy	-significant reduction in tumor growth after combining radiotherapy with ICI compared to ICI monotherapy -reduction of abscopal tumors after ICI or XRT-ICI and CIRT-ICI combination	-CIRT-ICI and XRT-ICI reduced lung metastasis compared to ICI, XRT or CIRT monotherapies	No data	-increased CD8 infiltration in abscopal tumors after XRT- ICI and CIRT-ICI combination	[73]
OS	anti-PD-1			doxorubicin	-doxorubicin combined with an anti-PD-L1 reduce tumor growth more effectively than doxorubicin or anti-PD-1 monotherapy	No data	No data	-doxorubicin upregulated PD- L1 expression in osteosarcoma CD4+ T cells, CD8+ T cells, and CTLs in the dox-treated group were higher, whereas the proportion of Tregs was lower compared to dox or anti-PD-1 monotherapy	[74]

OS	anti-PD-L1				sunitinib	-sunitinib and anti-PD-L1 combination inhibited tumor growth compared to monotherapies	-sunitinib and anti-PD-L1 suppressed lung metastasis compared to the control but combination had the strongest effect	-sunitinib and anti-PD-L1 combination prolonged mouse survival compared to monotherapies	-levels of CD8+T cells were higher and T regs lower in the sunitinib or anti-PD-L1 or combination treatment groups compared to the control group	[75]
OS	anti-PD-L1			ketotifen	doxorubicin	-ICI combined with doxorubicin or ketotifen reduced tumor volume -ICI+ doxorubicin+ ketotifen had superior effect on growth inhibition	No data	No data	-ICI combined with doxorubicin or ketotifen or both increased intratumoral levels of CD8+ T cells	[12]
OS	anti-PD-L1			dexamethasone	Doxorubicin or Epirubicin (NC6300)	-Both anthracycline combinations with ICI resulted in tumor regression compared to anti-PD-L1 monotherapy -ICI+NC6300+ dexamethasone caused a greater reduction in tumor growth than ICI+NC6300 combination	No data	No data	No data	[13]
OS		AD-MSCs as mbTRAIL cellular vectors				-MSC-TRAIL induced apoptosis of OS cells by a direct cell-to-cell contact, but in vivo MSC-TRAIL treatment increased tumor development	-MSC-GFP/OS cell co-injection increased pulmonary metastasis	-MSC-GFP/OS cell co-injection decreased mouse survival	No data	[76]
OS		B7-H3 CAR T cells				-B7-H3 CAR T cells eradicated osteosarcoma tumors in vivo	No data	-B7-H3 CAR T cell therapy led to a significant survival advantage compared with control CAR T- cell-treated mice	No data	[77]

OS	CD166.B Bζ CAR- T cells		-CD166.BBζ CAR-T cells efficiently suppressed tumor growth with no off- target toxicity	No data	No data	No data	[78]
OS	NKG2D- CAR+ CD45RA- T cells		-NKG2D CAR-redirected CD45RA- cells lysed osteosarcoma cells in vitro and in vivo	No data	-mice treated with NKG2D CAR-redirected CD45RA- cells exhibited prolonged survival after rechallenge with OS cells	No data	[79]
OS	IGF1R and ROR1 CAR T cells		-IGF1R and ROR1 CAR T cells derived suppressed sarcoma growth in vivo	No data	-both CAR T cells extended overall survival compared to the untreated group	-produced high amounts of IL13 Th2 cytokine but not IL4 and IL10 in vitro	[80]
OS	HER2- specific T cells		-decrease in the sarcosphere forming efficiency from tumors treated with HER2- specific T cells No effect on tumor size in vivo	No data	No data	No data	[81]
OS	GD2- CAR.OX4 0.28. ζ CAR T cells	all-trans retinoic acid (ATRA)	-GD2-CAR T cells showed minimal antitumor effect against OS in vivo -GD2-CAR T cells combined with ATRA reduced tumor volume	No data	-GD2-CAR T cell therapy alone did not improve survival -GD2-CAR T cells combined with ATRA prolonged survival	-ATRA treatment led to a significant granulocytic reduction in MDSCs compared to untreated tumors -GD2-CAR T cells combined with ATRA increased peripheral CD8+ T cell population	[82]
OS	γδ T cells	decitabine (DAC, DNA demethylation drug)	-DAC or $\gamma\delta$ T cells alone slightly decreased tumor growth, whereas $\gamma\delta$ T cells + DAC treatment caused a substantial decrease	No data	No data	-upregulation of NKG2DLs MICB and ULBP1 in DAC- pretreated OS cells compared to the non-DAC treatment group	[83]
OS	NK cell therapy	aerosol IL2	No data	-IL2 combined with NK cell	No data	-increased infiltration, retention, and proliferation of	[84]

							therapy		IL12 infused NK cells in the	
							decreased lung		lungs	
							metastasis			
							compared to either			
							monotherapy			
os	autologou s hematopoi etic stem cell transplant ation			Intratumoral IFNβ gene transfer		-IFNβ gene transfer in combination with syngeneic HSCT suppresses tumor growth more effectively compared to IFNβ gene transfer alone	-combination therapy inhibited formation of spontaneous lung and liver metastases	No data	-combination therapy increased the infiltration of many immune cells in metastatic tumors	[85]
OS	NK cell therapy			IL2 injections	spironolactone (SPIR)	-groups treated with NKAE cells +IL2 and/or SPIR had less bone damage, smaller tumor volumes compared to mice treated with SPIR alone -NKAE cells +IL2+SPIR combination had the strongest antitumor effect	-mice treated with NKcells showed no lung metastasis while SPIR and control groups do	-NKAE cells +IL2+SPIR treated mice survived longer compared to NKAE cells +IL2 treatment	-tumor cell co-culture with NKAE cells reduced CXCR4 and c-kit positive subsets	[86]
OS		rhabdovirus MG1				-MG1 treatment slowed tumor progression	No data	-MG1 treatment significantly increased the number of cured mice and induced the generation of memory immune response that provided protection against a subsequent tumor challenge	No data	[87]
OS			TRXtr- mCD99			-vaccination resulted in suppressed tumor growth	No data	No data	-production of anti-mCD99 antibodies upon vaccination and reduction in tumor	[88]

		vaccinat n	0	compared to the control vaccinated mice (TRXtr)			microvessel density and functionality	
OS		allograft DC- osteosar ma fusic (DOF) tumor vaccine	00 1	-tumor bodies after DOF treatment showed atrophy or even disappeared	No data	-DOF treatment led to longer survival	-DOFs increased CD8+ cell percentage while that of CD4+ cells decreased compared to untreated DCs -Killing potential of DOF-T cells was significantly enhanced	[89]
OS		Allogen c OS mRNA– DC electrotr nsfection	i	-rats immunized with allogeneic mRNA–DCs rejected tumor challenge	No data	- preimmunizatio n with allogeneic DC- tumor mRNA electrotransfect ed vaccine extended survival the most compared to immunization with DCs, UMR108- derived mRNA, an unelectrotransfe cted mixture of the two Survivors developed long immunological memory and rejected subsequent rechallenge	-T cells stimulated with allogeneic mRNA–DC electrotransfection product exhibited antitumor CTL responses	[90]
OS		anti-A5 sera or anti- PCMT1 sera vaccinat n	0	-sarcoma was significantly inhibited by vaccination with A5	No data	No data	-antibodies induced by A5 or PCMT1 mediated their antitumor roles by eliciting strong antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity toward tumor cells	[91]

OS	ne gly eii (N va	eem leaf ycoprot n NLGP)- accine		No data	No data	No data	-NLGP matured DCs -CD4+ T cell help was not required to generate CD8+ T cells but to maintain CD8+ T cells antitumor activity by physical contact and partial involvement of IL2 in CD4	[92]
OS	ml va	HSP/Ps accine		-mice immunized with mHSP/Ps showed tumor regression	No data	-mice immunized with mHSP/Ps showed long- term survival -long term memory since rehallenging of mice did not led to tumor development	-NK cells, CD8+, and IFNγ- secreting cells and tumor- specific cytotoxic T-cell activity were increased in the immunized group	[25]
OS	D0 va	C(Ly) a accine (anti-TGFβ mAb (1D11)	No data	-DC(Ly) + anti- TGF-β combination more effectively reduced the volume of lung metastasis	No data	-TGFβ inhibition caused a moderate CD8+ T cell infiltration in pulmonary metastasis which was enhanced upon combination with DC(Ly) vaccination, while both treatments caused a similar significant reduction in Tregs -mice treated with combination therapy had the highest IFNγ levels and the lowest IL10 levels	[93]
OS	Du va	C(Ly) a accine a	anti-GITR agonist	-combination of DC(Ly) + anti-GITR induced the most potent reduction in tumor growth compared to the DC(Ly) alone or anti-GITR which moderately decrease tumor size	No data	-combination treatment significantly prolonged survival -survival benefit of DC(Ly) alone and anti- GITR alone was small compared to control	-anti-GITR combined with DC (Ly) reduced intratumoral Tregs and increased CD8+ T cells compared to anti-GITR monotherapy -serum levels of IFNγ were higher while IL10 levels lower in the combination treatment group	[94]

OS	anti-CD47 mAb	No data	-CD47 blockade inhibited invasive ability OS cells in vitro and spontaneous	No data	-CD47 blockade increased macrophage phagocytosis of OS cells	[95]
OS	anti-CXCR4 (12G5)	-CXCR4-blocking antibodies diminished osteolysis	-inhibition of lung micro-metastasis	No data	-blocking inhibition of pAKT of OS cell and migration in vitro	[96]
OS	BsAbBmi/TRI M	-BsAbBmi/TRIM-treated mice had the smallest tumor growth compared to AbBmi-1 or AbTRIM- 14 treatment which had a comparable effect on tumor size	No data	-BsAbBmi/ TRIM-treated mice exhibited extended survival compared to AbBmi-1 or AbTRIM-14 treatment	-BsAbBmi/TRIM-treated tumors had the lowest proliferation, highest apoptotic index and lowest microvascular density BsAbBmi/TRIM blocks expression of MMP9 by NF- κB signaling inhibition	[97]
OS	radioimmunothe rapy (RIT) with radiolabeled anti-IGF2R mAb (2G11) with 213Bi and 177Lu	-213Bi-2G11 and 177Lu - 2G11 slowed down the growth	No data	No data	No data	[98]
OS	188Re-labeled IGF2R-specific mAb	-treatment with 188Re- labeled IGF2R-specific mAb suppressed tumor growth	No data	No data	No data	[99]
OS	anti-CD47 mAb	-anti-CD47 therapy reduced tumor burden	No data	No data	-anti-CD47 inhibition induced phagocytosis of both tumor	[100]
OS	shDNMT1 decitabine (DNA hypomethylatio n agent)	No data	-hypomethylating treatment with decitabine prevented the formation of spontaneous lung metastases	-increased overall survival	-shDNMT1 or decitabine significantly increased the number of intrapulmonary CD8+ T cells -only decitabine promoted expression of the level of IFNγ and TNFα in CD8+ T cells and proliferation -increased CXCL12, CXCL9 and CXCL10 chemokines	[101]

OS		S (or MPL)	-LPS induced TLR-4 stimulation decreased tumor volume	-mice induced with LPS-induced TLR4 stimulation had significantly lower rates of lung metastasis	-LPS induced TLR-4 activation had extended overall survival	-LPS induced TLR-4 stimulation increasing the levels of TNFα and IFNγ in serum and spleen -increased infiltration of CD8+ T cells but not F4/80+ TAMs in tumor and lung metastasis	[102]
OS	DC wit inh	Cs transfected th miR-133a libitor	-DCs injection with miR- 133a inhibitor dramatically decreased the volume of tumor	No data	-survival rate of mice was significantly improved by DCs transfected with miR-133a inhibitor treatment	-miR-133a suppression in DCs promoted maturation and activation of DCs via RBP-J -miR-133a inhibition contributed to the elevation of CD8+ T cells -miR-133a inhibitor stimulated Notch signaling (Hes1 and Hey1)	[103]
OS	pC. imi (fu: HE sin, a si Pse exc an cas	MV- munocasp sion of a ER2-specific gle-chain Ab, ingle-chain eudomonas otoxin A and active spase-6)	-immunocasp-6 induced apoptosis of the HER2- overexpressing OS cells and suppresses tumor growth in vivo	-immunocasp-6 inhibited lung metastasis of HER2- overexpressing OS tumors	immunocasp-6 increased overall survival HER2- overexpressing OS tumors compared to the untreated group	No data	[104]
OS	her	mocyanin	-tumor weight and volume were decreased significantly in hemocyanin treated groups	No data	No data	-hemocyanin treatment led to higher NK cell activity, enhanced the ability of ConA to induce the proliferation of T cells, stimulated the secretion of TNFα	[105]
OS	PS-pol	-F2, a lysaccharide	-administration of PS-F2 effectively suppressed the growth of sarcoma tumors	No data	No data	-CD4+ T cells, CD8+ T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals	[106]
OS	Lac pol (LF	chnum lysaccharide EP)	-LEP induced a strong tumor growth inhibition	No data	No data	-LEP decresed microvascular density of tumors and resets TAMs from protumor M2 to antitumor M1	[107]

							phenotype by promoting Th1 polarization and IFNγ secretion -LEP might directly activate M1 macrophages via TLR4 mediated NF-κB signaling pathway -LEP decreased the infiltration of immunosuppressive MDSCs and Tregs	
OS			lipid-coated calcium zoledronate nanoparticles (CaZol@pMNP s) containing conjugated mannose	-CaZol@pMNPs restrained tumor growth without	No data	No data	-CaZol@pMNPs effectively depleted TAMs, markedly decreased angiogenesis MMP-9 and IL10 expression	[108]
OS			IAPS-2 polysaccharide	-tumor was significantly decreased upon IAPS-2 treatment	No data	-IAPS-2 treatment extended animal survival	-IAPS-2 polysaccharide promoted the secretion of antitumor cytokines (IL12, IFNγ) in TAMs and increased the expression of genes associated with M1 type (NOS2 and MHC II) by the activation of NF-κB and STAT signaling	[109]
OS			Helicobacter pylori neutrophil activating protein fused with the maltose binding protein (rMBP-NAP)	-rMBP-NAP administration decreased tumor growth compared to the control group	No data	No data	- rMBP-NAP treatment induced a significant accumulation of splenic CD4+ IFNγ-secreting cells, which is a cytokine profile of Th1 cells	[110]
OS			Methionine enkephalin (MENK) neuropeptide	-MENK delayed the development of tumor	No data	No data	-MENK effectively down- regulated level of Tregs by suppressing the expression of Foxp3 induced by TGFβ via weakening the phosphorylation and nuclear translocation of Smad2/3	[111]

OS		Methionine		-ACT of CD8+T cells	No data	- ACT of	-MENK administration	[112]
		enkephalin		after treatment with		CD8+T cells	increased the CD8+ T cells in	[]
		(MENK)		MENK led to a significant		after treatment	spleen and lymph nodes and	
		neuropeptide		shrinkage in tumor growth		with MENK	the expression of CTLA-4,	
						result in	CD28, FasL and GrzB on	
						significantly	CD8+ T cells	
						increased	-MENK led to increased	
						survival	expression of opioid receptors	
							on CD8+ T cells which is	
							essential for the activation of	
							CTL	
							-MENK-induced T cell	
							signaling is associated with a	
							significant up-regulation of	
							Ca2+ influx into the	
							cytoplasm and the	
							translocation of NFAT2 into	
							nucleus	
OS		cationic		-cationic polymer	No data	-prolonged the	-increased the expression of	[113]
		polymers [e.g.,		administration reduced		survival	pro-inflammatory genes	
		polyethyleneimi		tumor volume			(NOS2 and MHCII) and	
		ne (PEI), C-					reduced expression of M2-	
		dextran					specific genes (Arg1 and	
							Ym1) through TLR-4	
							signaling	
							-promoted the production of	
							the antitumor cytokine IL12	
							and reduced the expression	
							The Lond NK coll infiltration	
							In I and INK cell initiation,	
							while suppressing tumor	
05		 noom loof		adoptive transfer of	No data	No data	NI CD switched the II 10	[114]
05		glycoprotein		NI GP TMF exposed T	ino uata		TGEB II 6 rich type 2	[114]
		(NI GP)		cells but not PRS_TME			characters to type 1	
				exposed cells in mice			microenvironment with	
				significantly inhibited			dominance of IFNy II 2 and	
				sarcoma tumor growth			II 12 secretion	
				sarconia tunior growth			-NI GP normalized protumor	
							angiogenic and hypoxic TMF	
							-significant upregulation in	
							perform and GZMB in CD8+	
							T cells and reduction	
							perforin and GZMB in CD8+	
							1 cens and reduction	

OS			neem leaf glycoprotein (NLGP)/ cyclophosphami de (CTX)	-tumor growth rate was faster in the CTX cohort than the NLGP treated mice	No data	-NLGP treated mice had longer survival compared to CTX or untreated control	recruitment of MDSCs and Tregs - NLGP protects CD8+ T cells from anergy within TME -NLGP generated superior tumor specific central memory CD8+ T cells than CTX that averted post-surgery solid sarcoma recurrence -tumor surgery decreased antigen load and restored functionality of memory T cell by activation of Wnt signalling with concomitant inhibition of GSK-3β and stabilisation of β-catenin	[115]
OS			cationic polymers [e.g., polyethyleneimi ne (PEI), C- dextran]	-cationic polymer administration reduced tumor volume	No data	-prolonged the survival	-increased the expression of pro-inflammatory genes (NOS2 and MHCII) and reduced expression of M2- specific genes (Arg1 and Ym1) through TLR-4 signaling -promoted the production of the antitumor cytokine IL12 and reduced the expression levels of IL 10, and promoted Th 1 and NK cell infiltration, while suppressing tumor angiogenesis	[113]
OS			neem leaf glycoprotein (NLGP)	-adoptive transfer of NLGP-TME exposed T cells, but not PBS-TME exposed cells in mice, significantly inhibited sarcoma tumor growth	No data	No data	-NLGP switched the IL10, TGF β , IL6 rich type 2 characters to type 1 microenvironment with dominance of IFN γ , IL2 and IL12 secretion -NLGP normalized protumor angiogenic and hypoxic TME -significant upregulation in perforin and GZMB in CD8+ T cells and reduction recruitment of MDSCs and Tregs	[114]

								- NLGP protects CD8+ T	
OS			neem leaf glycoprotein (NLGP)/ cyclophosphami de (CTX)		-tumor growth rate was faster in the CTX cohort than the NLGP treated mice	No data	-NLGP treated mice had longer survival compared to CTX or untreated control	-NLGP generated superior tumor specific central memory CD8+ T cells than CTX that averted post-surgery solid sarcoma recurrence -tumor surgery decreased antigen load and restored functionality of memory T cell by activation of Wnt signalling with concomitant inhibition of GSK-3β and stabilisation of β-catenin	[115]
OS			TLR7/8 agonist (R848)	doxorubicin (DOX) and cisplatin (CDDP) in NP formulation (CDDPNPDO X&R848)	-CDDPNPDOX+R848 induced the greatest reduction in tumor growth compared to NPR848	No data	- CDDPNPDOX + R848 induced the greatest increased in survival compared to NPR848 - CDDPNPDOX & R848 caused a long-term	-combination therapy induced DCs maturation, promoted TAM polarization from M2 to M, increased infiltration of CD8+ T cells and secretion of IFN γ and IL6 compared with NPR848	[116]
OS			IL2/anti-S4B6	RT	-IL2/S4B6 monotherapy had no significant tumor growth inhibition -combined therapy and IR alone cause a similar reduction in tumor volume -only combination therapy had an absconal effect	No data	response -only combination therapy significantly prolonged overall survival	-RT increased CD8+ T cells in irradiated tumors while combination in both irradiated and unirradiated tumors	[117]
OS			IL23 neutralizing antibody (16E5)	doxorubicin	-IL23 inhibition moderately reduced tumor growth while this effect	No data	-IL23 inhibition prolonged survival	-GRM4 suppresses cAMP production by DCs and subsequent IL23 expression	[118]

			or GRM4		was enhanced upon			-IL23 inhibition increased T-	
			agonist		combination with			cell cytotoxicity	
			0		doxorubicin			, , , , , , , , , , , , , , , , , , ,	
					-treatment with GRM4				
					agonist alone significantly				
					suppressed tumor growth				
					with a potency				
					comparable to				
					doxorubicin				
05			shMIF	cisplatin or	-MIF knockdown	-MIF knock down	No data	No data	[110]
0.0			macronhage	doxorubicin	enhanced OS cell	inhibited lung	110 data		[11]
			migration	doxordorem	sensitivity to cisplatin and	metastasis			
			inhibitory		dovorubicin in vitro by	metastasis			
		4	factor)		suppressing the				
					DAS/MARK nothway				
					AS/MAFK paulway				
					MIE silonoing inhibited				
					tumor growth in vivo				
EC	D7 U2					Na data		N. J. J.	[]
Ews					-D/-H3 CAR I cells	No data		No dala	[//]
					eradicated Ewing sarcoma		cell therapy led		
	cens				tumors in vivo		to a significant		
							survival		
							advantage		
							compared with		
							control CAR T-		
							cell-treated		
D G	LIE GED A					NT 1 .	mice	NT 1.	
EwS	VEGFR2-				-VEGFR2-specific CAR	No data	No data	No data	[120]
	specific				T cells specifically lysed				
	CART				VEGFR2-expressing				
	cells				target cells and spheroids				
EwS	GD2-				-no difference in primary	-mice treated with	-no overall	No data	[121]
	specific				tumor growth between	ACT had a growth	survival		
	CAR- T				treated and untreated mice	delay of lung	advantage was		
	cell					tumors, with both	found for mice		
	therapy					lower numbers	receiving T-cell		
						and smaller	therapy		
						volumes			
EwS	CHM1-				No data	-CHM1-specific	No data	-CHM1-specific TCR-	[122]
	specific					TCR-transgenic T		transgenic T cells increased	
	TCR-					cells inhibited the		CD8+ T cell infiltration in the	
	transgenic					formation of lung		metastatic sites	
	T cells					and liver			

					metastases in contrast to control mice			
EwS	mbIL15- NK cell therapy			-mice receiving mbIL15- transduced NK cells had a slower tumor growth than untreated mice and mice treated with mock- transduced NK cells	No data	-mice treated with mbIL15- NK cell therapy had a significantly longer survival	-mbIL15-NK cells expanded over time in all tissues whereas mock-transduced NK cells did not	[123]
EwS	mbIL21- NK cells			-mbIL21-NK administration reduced the growth of the primary sarcoma tumor	-mbIL21-NK administration led to a dramatic reduction in tumor metastases to the lung	No data	-mbIL21 signaling promoted sustained NK cell expansion and increased metabolic activity	[124]
EwS	EWS- FLI1 (YLNPSV DSV))-specific CTL			No data	No data	-ACT of CTL specific for the modified peptide YLNPSVDSV resulted in enhanced survival of mice with established ES xenografts	-peptide modification increased stabilization of HLA-A2.1 molecules on the cell surface	[125]
EwS	NK cells or PBMCs	oncolytic measles vaccine virotherapeu tics (MeV)		-co-culture of MeV and NK cells or PBMCs resulted in higher oncolysis rates than MeV monotherapy in sarcoma cells	No data	No data	-co-culture with NK cells + oncolytic virus increased the release of GZMA/B, perforin and granulysin -higher levels of IFNγ and sFasL upon combination compared to NKAEs alone	[15]
EwS	GD2- specific CAR- T cell therapy		anti-HGF (AMG102) mAb	-AMG102 treatment only moderately decreased tumor burden in the bone -CAR-T therapy did not affect primary tumor growth -antitumor response was enhanced after combination with CAR-T therapy	-AMG102 treatment only moderately decreased tumor burden in the lungs	-AMG102 treatment increased survival compared to untreated mice -CAR-T therapy had no effect -combination treatment significantly	-higher accumulation of CD3+ and CD8+ T cells in CAR-T + AMG102 treatment group	[126]

		 			extended survival		
EwS	GD2- CAR.OX4 0.28. ζ CAR T cells	all-trans retinoic acid (ATRA)	-GD2-CAR T cells showed minimal antitumor effect against EWs in vivo -GD2-CAR T cells combined with ATRA reduced tumor volume	No data	-GD2-CAR T cell therapy had a moderate effect on survival which was enhanced upon combination with ATRA	-ATRA treatment led to a significant granulocytic reduction in MDSCs compared to untreated tumors -GD2-CAR T cells combined with ATRA increased peripheral CD8+ T cell population	[82]
CHS	Vγ9Vδ2 T cells	zoledronate (ZOL)	-treatment with ZOL alone did not inhibit tumor growth -combination therapy of ZOL and $V\gamma 9V\delta 2$ T cells led to tumor volume reduction compared to untreated tumors and improved efficiency of systemic immunotherapy	No data	No data	-Vγ9Vδ2 T cell-mediated cytotoxicity was mainly mediated by the perforin pathway	[127]

OS, osteosarcoma; EwS, Ewing sarcoma; CHS, chondrosarcoma; CT, chemotherapy; RT, radiotherapy; ICIs, immune checkpoint inhibitors; ACT, adoptive cell therapy Purple font in letters indicates the combination therapy

References

1. Noguchi T, Ward JP, Gubin MM, et al. Temporally distinct PD-L1 expression by tumor and host cells contributes to immune escape. Cancer Immunol Res. 2017; 5: 106-117.

2. Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014; 515: 577-581.

3. Ebrahimi-Nik H, Corwin WL, Shcheglova T, et al. CD11c MHCII lo GM-CSF-bone marrow-derived dendritic cells act as antigen donor cells and as antigen presenting cells in neoepitope-elicited tumor immunity against a mouse fibrosarcoma. Cancer Immunol Immunother. 2018; 67: 1449-1459.

4. Molgora M, Esaulova E, Vermi W, et al. TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 2020; 182: 886-900.

5. Redmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA-4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2014; 2: 142-153.

6. Devalaraja S, To TKJ, Folkert IW, et al. Tumor-derived retinoic acid regulates intratumoral monocyte differentiation to promote immune suppression. Cell. 2020; 180: 1098-1114.

7. Nafia I, Toulmonde M, Bortolotto D, et al. IDO targeting in sarcoma: biological and clinical implications. Front Immunol. 2020; 11: 274.

8. Travelli C, Consonni FM, Sangaletti S, et al. Nicotinamide phosphoribosyltransferase acts as a metabolic gate for mobilization of myeloid-derived suppressor cells. Cancer Res. 2019; 79: 1938-1951.

9. Hurst KE, Lawrence KA, Essman MT, et al. Endoplasmic reticulum stress contributes to mitochondrial exhaustion of CD8 T cells. Cancer Immunol Res. 2019; 7: 476-486.

10. Puca E, Probst P, Stringhini M, et al. The antibody-based delivery of interleukin-12 to solid tumors boosts NK and CD8 T cell activity and synergizes with immune checkpoint inhibitors. Int J Cancer. 2020; 146: 2518-2530.

11. Corbellari R, Nadal L, Villa A, et al. The immunocytokine L19-TNF eradicates sarcomas in combination with chemotherapy agents or with immune check-point inhibitors. Anticancer Drugs. 2020; 31: 799-805.

12. Panagi M, Fotios M, Voutouri C, et al. Targeting mast cells restores T cell infiltration and sensitizes sarcomas to PD-L1 inhibition. (under revision).

13. Mpekris F, Panagi M, Michael C, et al. Translational nanomedicine regimen potentiates immune checkpoint inhibition in metastatic sarcoma by normalizing the microenvironment. (under revision).

14. Hosoi H, Ikeda H, Imai N, et al. Stimulation through very late antigen-4 and-5 improves the multifunctionality and memory formation of CD8 T cells. Eur J Immunol. 2014; 44: 1747-1758.

15. Klose C, Berchtold S, Schmidt M, et al. Biological treatment of pediatric sarcomas by combined virotherapy and NK cell therapy. BMC Cancer. 2019; 19: 1-15.

16. Kjaergaard J, Hatfield S, Jones G, et al. A2A adenosine receptor gene deletion or synthetic A2A antagonist liberate tumor-reactive CD8 T cells from tumor-induced immunosuppression. J Immunol. 2018; 201: 782-791.

17. Soto-Pantoja DR, Terabe M, Ghosh A, et al. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res. 2014; 74: 6771-6783.

18. Arab S, Motamedi M, Hadjati J. Effects of dendritic cell vaccine activated with components of Lieshmania major on tumor specific response. Iran J Immunol. 2019; 16: 268-277.

19. Huijbers EJ, van Beijnum JR, Lê CT, et al. An improved conjugate vaccine technology; induction of antibody responses to the tumor vasculature. Vaccine. 2018; 36: 3054-3060.

20. Koido S, Ito M, Sagawa Y, et al. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells. Cancer Immunol Immunother. 2014; 63: 459-468.

21. Li X, Wang Y, Zhao Y, et al. Immunotherapy of tumor with vaccine based on basic fibroblast growth factoractivated fibroblasts. J Cancer Res Clin Oncol. 2014; 140: 271-280.

22. Chen L, Taylor JL, Sabins NC, et al. Extranodal induction of therapeutic immunity in the tumor microenvironment after intratumoral delivery of Tbet gene-modified dendritic cells. Cancer Gene Ther. 2013; 20: 469-477.

23. Huang C, Ramakrishnan R, Trkulja M, et al. Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother. 2012; 61: 573-579.

24. Azadmehr A, Pourfathollah AA, Amirghofran Z, et al. Immunotherapy with tumor cell lysate-pulsed CD8α dendritic cells modulates intra-tumor and spleen lymphocyte subpopulations. Neoplasma. 2013; 60: 525-532.

25. Wang Y, Liu S, Yuan M, et al. Prophylactic antitumor effect of mixed heat shock proteins/peptides in mouse sarcoma. Chin Med J. 2015; 128: 2234.

26. Takamura-Ishii M, Miura T, Nakaya T, et al. Induction of antitumor response to fibrosarcoma by Newcastle disease virus-infected tumor vaccine. Med Oncol. 2017; 34: 1-8.

27. Khalili A, Muhammad Hassan Z, Shahabi S, et al. Long acting propranolol and HSP-70 rich tumor lysate reduce tumor growth and enhance immune response against fibrosarcoma in Balb/c mice. Iran J Immunol. 2013; 10: 70-82.

28. Rao A, Taylor JL, Chi-Sabins N, et al. Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells. Cancer Res. 2012; 72: 3196-3206.

29. Whelan MC, Casey G, Larkin JO, et al. Oral tolerance to cancer can be abrogated by T regulatory cell inhibition. PLoS One. 2014; 9: e97602.

30. Gasparri AM, Sacchi A, Basso V, et al. Boosting interleukin-12 antitumor activity and synergism with immunotherapy by targeted delivery with isoDGR-tagged nanogold. Small. 2019; 15: 1903462.

31. Balza E, Zanellato S, Poggi A, et al. The therapeutic T-cell response induced by tumor delivery of TNF and melphalan is dependent on early triggering of natural killer and dendritic cells. Eur J Immunol. 2017; 47: 743-753.

32. Razi Soofiyani S, Kazemi T, Lotfipour F, et al. Gene therapy with IL-12 induced enhanced anti-tumor activity in fibrosarcoma mouse model. Artif Cells Nanomed Biotechnol. 2016; 44: 1988-1993.

33. Hess C, Neri D. The antibody-mediated targeted delivery of interleukin-13 to syngeneic murine tumors mediates a potent anticancer activity. Cancer Immunol Immunother. 2015; 64: 635-644.

34. Gao Y, Souza-Fonseca-Guimaraes F, Bald T, et al. Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 2017; 18: 1004-1015.

35. Premkumar K, Shankar BS. TGF-βR inhibitor SB431542 restores immune suppression induced by regulatory B–T cell axis and decreases tumour burden in murine fibrosarcoma. Cancer Immunol Immunother. 2021; 70: 153-168.

36. Vlková V, Štěpánek I, Hrušková V, et al. Epigenetic regulations in the IFNγ signalling pathway: IFNγmediated MHC class I upregulation on tumour cells is associated with DNA demethylation of antigenpresenting machinery genes. Oncotarget. 2014; 5: 6923-6935.

37. Aoki R, Iijima H, Kato M, et al. Protein-bound polysaccharide-K reduces the proportion of regulatory T cells in vitro and in vivo. Oncol Rep. 2014; 31: 50-56.

38. Behzadi E, Hosseini HM, Halabian R, et al. Macrophage cell-derived exosomes/staphylococcal enterotoxin B against fibrosarcoma tumor. Microb Pathog. 2017; 111: 132-138.

39. Redmond WL, Triplett T, Floyd K, et al. Dual anti-OX40/IL-2 therapy augments tumor immunotherapy via IL-2R-mediated regulation of OX40 expression. PloS one. 2012; 7: e34467.

40. Sturgill ER, Rolig AS, Linch SN, et al. Galectin-3 inhibition with belapectin combined with anti-OX40 therapy reprograms the tumor microenvironment to favor anti-tumor immunity. Oncoimmunology. 2021; 10: 1892265.

41. Farazi M, Nguyen J, Goldufsky J, et al. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging. Cancer Immunol Immunother. 2014; 63: 615-626.

42. van Hooren L, Georganaki M, Huang H, et al. Sunitinib enhances the antitumor responses of agonistic CD40-antibody by reducing MDSCs and synergistically improving endothelial activation and T-cell recruitment. Oncotarget. 2016; 7: 50277- 50289.

43. Walker JM, Rolig AS, Charych DH, et al. NKTR-214 immunotherapy synergizes with radiotherapy to stimulate systemic CD8 T cell responses capable of curing multi-focal cancer. J Immunother Cancer. 2020; 8: e000464.

44. Yamazaki T, Hannani D, Poirier-Colame V, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 2014; 21: 69-78.

45. Romero I, Garrido C, Algarra I, et al. MHC intratumoral heterogeneity may predict cancer progression and response to immunotherapy. Front Immunol. 2018; 9: 102.

46. Choi B, Lee JS, Kim SJ, et al. Anti-tumor effects of anti-PD-1 antibody, pembrolizumab, in humanized NSG PDX mice xenografted with dedifferentiated liposarcoma. Cancer Lett. 2020; 478: 56-69.

47. Smith HG, Mansfield D, Roulstone V, et al. PD-1 blockade following isolated limb perfusion with vaccinia virus prevents local and distant relapse of soft-tissue sarcoma. Clin Cancer Res. 2019; 25: 3443-3454.

48. Merker M, Wagner J, Kreyenberg H, et al. ERBB2-CAR-engineered cytokine-induced killer cells exhibit both CAR-mediated and innate immunity against high-risk rhabdomyosarcoma. Front Immunol. 2020; 11: 2483.

49. Vela M, Bueno D, González-Navarro P, et al. Anti-CXCR4 antibody combined with activated and expanded Natural Killer cells for sarcoma immunotherapy. Front Immunol. 2019; 10: 1814.

50. Simon-Keller K, Paschen A, Hombach AA, et al. Survivin blockade sensitizes rhabdomyosarcoma cells for lysis by fetal acetylcholine receptor–redirected T cells. Am J Pathol. 2013; 182: 2121-2131.

51. Dobson CC, Naing T, Beug ST, et al. Oncolytic virus synergizes with Smac mimetic compounds to induce rhabdomyosarcoma cell death in a syngeneic murine model. Oncotarget. 2017; 8: 3495-3508.

52. Donahue RN, Duncan BB, Fry TJ, et al. A pan inhibitor of DASH family enzymes induces immunogenic modulation and sensitizes murine and human carcinoma cells to antigen-specific cytotoxic T lymphocyte killing: implications for combination therapy with cancer vaccines. Vaccine. 2014; 32: 3223-3231.

53. Duncan BB, Highfill SL, Qin H, et al. A pan-inhibitor of DASH family enzymes induces immune-mediated regression of murine sarcoma and is a potent adjuvant to dendritic cell vaccination and adoptive T-cell therapy. J Immunother (Hagerstown, Md.: 1997). 2013; 36.

54. Bramante S, Koski A, Kipar A, et al. Serotype chimeric oncolytic adenovirus coding for GM-CSF for treatment of sarcoma in rodents and humans. Int J Cancer. 2014; 135: 720-730.

55. Edris B, Weiskopf K, Volkmer AK, et al. Antibody therapy targeting the CD47 protein is effective in a model of aggressive metastatic leiomyosarcoma. PNAS. 2012; 109: 6656-6661.

56. Li HK, Sugyo A, Tsuji AB, et al. α-particle therapy for synovial sarcoma in the mouse using an astatine-211labeled antibody against frizzled homolog 10. Cancer Sci. 2018; 109: 2302-2309.

57. Sangiolo D, Mesiano G, Gammaitoni L, et al. Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas. Cancer Res. 2014; 74: 119-129.

58. Tu MM, Lee FY, Jones RT, et al. Targeting DDR2 enhances tumor response to anti–PD-1 immunotherapy. Sci Adv. 2019; 5: eaav2437.

59. Mardiana S, John LB, Henderson MA, et al. A multifunctional role for adjuvant anti-4-1BB therapy in augmenting antitumor response by chimeric antigen receptor T cells. Cancer Res. 2017; 77: 1296-1309.

60. Peinado C, Kang X, Hardamon C, et al. The nuclear factor-κB pathway down-regulates expression of the NKG 2D ligand H60a in vitro: implications for use of nuclear factor-κB inhibitors in cancer therapy. Immunology. 2013; 139: 265-274.

61. Nakashima H, Terabe M, Berzofsky JA, et al. A Novel Combination Immunotherapy for Cancer by IL-13Rα2– Targeted DNA Vaccine and Immunotoxin in Murine Tumor Models. J Immunol. 2011; 187: 4935-4946.

62. Dhupkar P, Gordon N, Stewart J, et al. Anti-PD-1 therapy redirects macrophages from an M2 to an M1 phenotype inducing regression of OS lung metastases. Cancer Med. 2018; 7: 2654-2664.

63. Zheng B, Ren T, Huang Y, et al. PD-1 axis expression in musculoskeletal tumors and antitumor effect of nivolumab in osteosarcoma model of humanized mouse. J Hematol Oncol. 2018; 11: 1-13.

64. Shimizu T, Fuchimoto Y, Fukuda K, et al. The effect of immune checkpoint inhibitors on lung metastases of osteosarcoma. J Pediatr Surg. 2017; 52: 2047-2050.

65. Park JA, Cheung NV. GD2 or HER2 targeting T cell engaging bispecific antibodies to treat osteosarcoma. J Hematol Oncol. 2020; 13: 1-16.

66. Mochizuki Y, Tazawa H, Demiya K, et al. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunol Immunother. 2021; 70: 1405-1417.

67. Kawano M, Itonaga I, Iwasaki T, et al. Enhancement of antitumor immunity by combining anti-cytotoxic T lymphocyte antigen-4 antibodies and cryotreated tumor lysate-pulsed dendritic cells in murine osteosarcoma. Oncol Rep. 2013; 29: 1001-1006.

68. Zhou Y, Slone N, Chrisikos TT, et al. Vaccine efficacy against primary and metastatic cancer with in vitrogenerated CD103 conventional dendritic cells. J Immunother Cancer. 2020; 8: e000474.

69. Wu W, Jing D, Meng Z, et al. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics. 2020; 10: 2859-2871.

70. Jiang K, Li J, Zhang J, et al. SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy. Int Immunopharmacol. 2019; 75: 105818.

71. He X, Lin H, Yuan L, et al. Combination therapy with L-arginine and α -PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biol Ther. 2017; 18: 94-100.

72. Shimizu T, Fuchimoto Y, Okita H, et al. A curative treatment strategy using tumor debulking surgery combined with immune checkpoint inhibitors for advanced pediatric solid tumors: An in vivo study using a murine model of osteosarcoma. J Pediatr Surg. 2018; 53: 2460-2464.

73. Helm A, Tinganelli W, Simoniello P, et al. Reduction of lung metastases in a mouse osteosarcoma model treated with carbon ions and immune checkpoint inhibitors. Int J Radiat Oncol Biol Phys. 2021; 109: 594-602.

74. Wang J, Hu C, Wang J, et al. Checkpoint blockade in combination with doxorubicin augments tumor cell apoptosis in osteosarcoma. J Immunother. 2019; 42: 321-330.

75. Duan XL, Guo JP, Li F, et al. Sunitinib inhibits PD-L1 expression in osteosarcoma by targeting STAT3 and remodels the immune system in tumor-bearing mice. Future Oncol. 2020; 16: 1815-1824.

76. Guiho R, Biteau K, Grisendi G, et al. In vitro and in vivo discrepancy in inducing apoptosis by mesenchymal stromal cells delivering membrane-bound tumor necrosis factor–related apoptosis inducing ligand in osteosarcoma pre-clinical models. Cytotherapy. 2018; 20: 1037-1045.

77. Majzner RG, Theruvath JL, Nellan A, et al. CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 2019; 25: 2560-2574.

78. Wang Y, Yu W, Zhu J, et al. Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 2019; 38: 1-11.

79. Fernández L, Metais J, Escudero A, et al. Memory T cells expressing an NKG2D-CAR efficiently target osteosarcoma cells. Clin Cancer Res. 2017; 23: 5824-5835.

80. Huang X, Park H, Greene J, et al. IGF1R-and ROR1-specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One. 2015; 10: e0133152.

81. Rainusso N, Brawley VS, Ghazi A, et al. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther. 2012; 19: 212-217.

82. Long AH, Highfill SL, Cui Y, et al. Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer immunol Res. 2016; 4: 869-880.

83. Wang Z, Wang Z, Li S, et al. Decitabine Enhances Vγ9Vδ2 T Cell-Mediated Cytotoxic Effects on Osteosarcoma Cells via the NKG2DL–NKG2D Axis. Front Immunol. 2018; 9: 1239.

84. Kiany S, Gordon N. Aerosol delivery of interleukin-2 in combination with adoptive transfer of natural killer cells for the treatment of lung metastasis: Methodology and effect. In: Anonymous Natural Killer Cells: Springer; 2016: 285-295.

85. Udagawa T, Narumi K, Goto N, et al. Syngeneic hematopoietic stem cell transplantation enhances the antitumor immunity of intratumoral type I interferon gene transfer for sarcoma. Hum Gene Ther. 2012; 23: 173-186.

86. Fernandez L, Valentin J, Zalacain M, et al. Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D–NKG2DL dependent manner. Cancer Lett. 2015; 368: 54-63.

87. Le Boeuf F, Selman M, Son HH, et al. Oncolytic maraba virus MG1 as a treatment for sarcoma. Int J Cancer. 2017; 141: 1257-1264.

88. Huijbers EJ, Van Der Werf, Inge M, Faber LD, et al. Targeting tumor vascular CD99 inhibits tumor growth. Front Immunol. 2019; 10: 651.

89. Fang X, Jiang C, Xia Q. Effectiveness evaluation of dendritic cell immunotherapy for osteosarcoma on survival rate and in vitro immune response. Genet Mol Res. 2015; 14: 11763-11770.

90. Yu Z, Qian J, Wu J, et al. Allogeneic mRNA-based electrotransfection of autologous dendritic cells and specific antitumor effects against osteosarcoma in rats. Med Oncol. 2012; 29: 3440-3448.

91. Zhao H, Zhao X, Du P, et al. Construction of random tumor transcriptome expression library for creating and selecting novel tumor antigens. Tumor Biol. 2016; 37: 12877-12887.

92. Ghosh S, Sarkar M, Ghosh T, et al. Absence of CD4 T cell help generates corrupt CD8 effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine. Immunol Lett. 2016; 175: 31-39.

93. Kawano M, Itonaga I, Iwasaki T, et al. Anti-TGF-β antibody combined with dendritic cells produce antitumor effects in osteosarcoma. Clin Orthop Relat Res. 2012; 470: 2288-2294.

94. Kawano M, Tanaka K, Itonaga I, et al. Dendritic cells combined with anti-GITR antibody produce antitumor effects in osteosarcoma. Oncol Rep. 2015; 34: 1995-2001.

95. Xu J, Pan X, Zhang S, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models. Oncotarget. 2015; 6: 23662- 23670.

96. Brennecke P, Arlt MJ, Campanile C, et al. CXCR4 antibody treatment suppresses metastatic spread to the lung of intratibial human osteosarcoma xenografts in mice. Clin Exp Metastasis. 2014; 31: 339-349.

97. Yu G, Li A, Li X, et al. Bispecific antibody suppresses osteosarcoma aggressiveness through regulation of NFκB signaling pathway. Tumor Biol. 2017; 39: 1010428317705572.

98. Karkare S, Allen KJ, Jiao R, et al. Detection and targeting insulin growth factor receptor type 2 (IGF2R) in osteosarcoma PDX in mouse models and in canine osteosarcoma tumors. Sci Rep. 2019; 9: 1-10.

99. Geller DS, Morris J, Revskaya E, et al. Targeted therapy of osteosarcoma with radiolabeled monoclonal antibody to an insulin-like growth factor-2 receptor (IGF2R). Nucl Med Biol. 2016; 43: 812-817.

100. Mohanty S, Yerneni K, Theruvath JL, et al. Nanoparticle enhanced MRI can monitor macrophage response to CD47 mAb immunotherapy in osteosarcoma. Cell Death Dis. 2019; 10: 1-14.

101. Li B, Wang Z, Wu H, et al. Epigenetic regulation of CXCL12 plays a critical role in mediating tumor progression and the immune response in osteosarcoma. Cancer Res. 2018; 78: 3938-3953.

102. Yahiro K, Matsumoto Y, Yamada H, et al. Activation of TLR4 signaling inhibits progression of osteosarcoma by stimulating CD8-positive cytotoxic lymphocytes. Cancer Immunol Immunother. 2020; 69: 745-758.

103. Gao X, Han D, Fan W. Down-regulation of RBP-J mediated by microRNA-133a suppresses dendritic cells and functions as a potential tumor suppressor in osteosarcoma. Exp Cell Res. 2016; 349: 264-272.

104. Zhou B, Liu M, Qiu X, et al. A novel recombinant immunocasp-6 fusion gene specifically and efficiently suppresses HER2-overexpressing osteosarcoma. Oncol Rep. 2013; 29: 276-282.

105. Liu S, Zheng L, Aweya JJ, et al. Litopenaeus vannamei hemocyanin exhibits antitumor activity in S180 mouse model in vivo. PloS One. 2017; 12: e0183783.

106. Wang C, Lu C, Hsueh Y, et al. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol. 2014; 98: 9389-9398.

107. Zong S, Li J, Ye Z, et al. Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype. Int J Biol Macromol. 2020; 144: 1022-1033.

108. Zang X, Zhang X, Hu H, et al. Targeted delivery of zoledronate to tumor-associated macrophages for cancer immunotherapy. Mol Pharm. 2019; 16: 2249-2258.

109. Li Q, Hao Z, Hong Y, et al. Reprogramming tumor associated macrophage phenotype by a polysaccharide from Ilex asprella for sarcoma immunotherapy. Int J Mol Sci. 2018; 19: 3816.

110. Wang T, Liu X, Ji Z, et al. Antitumor and immunomodulatory effects of recombinant fusion protein rMBP-NAP through TLR-2 dependent mechanism in tumor bearing mice. Int Immunopharmacol. 2015; 29: 876-883.

111. Li X, Meng Y, Plotnikoff NP, et al. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4 Foxp3 regulatory T cells (Tregs) in mice. Cancer Biol Ther. 2015; 16: 450-459.

112. Li W, Chen W, Herberman RB, et al. Immunotherapy of cancer via mediation of cytotoxic T lymphocytes by methionine enkephalin (MENK). Cancer Lett. 2014; 344: 212-222.

113. Huang Z, Yang Y, Jiang Y, et al. Anti-tumor immune responses of tumor-associated macrophages via tolllike receptor 4 triggered by cationic polymers. Biomaterials. 2013; 34: 746-755.

114. Barik S, Banerjee S, Mallick A, et al. Normalization of tumor microenvironment by neem leaf glycoprotein potentiates effector T cell functions and therapeutically intervenes in the growth of mouse sarcoma. PLoS One. 2013; 8: e66501.

115. Ghosh S, Sarkar M, Ghosh T, et al. Neem leaf glycoprotein generates superior tumor specific central memory CD8 T cells than cyclophosphamide that averts post-surgery solid sarcoma recurrence. Vaccine. 2017; 35: 4421-4429.

116. Zhang Y, Yuan T, Li Z, et al. Hyaluronate-Based Self-Stabilized Nanoparticles for Immunosuppression Reversion and Immunochemotherapy in Osteosarcoma Treatment. ACS Biomater Sci Eng. 2021; 7: 1515-1525.

117. Takahashi Y, Yasui T, Minami K, et al. Radiation enhances the efficacy of antitumor immunotherapy with an immunocomplex of interleukin-2 and its monoclonal antibody. Anticancer Res. 2017; 37: 6799-6806.

118. Kansara M, Thomson K, Pang P, et al. Infiltrating myeloid cells drive osteosarcoma progression via GRM4 regulation of IL23. Cancer Discov. 2019; 9: 1511-1519.

119. Wang C, Zhou X, Li W, et al. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway. Cancer Lett. 2017; 403: 271-279.

120. Englisch A, Altvater B, Kailayangiri S, et al. VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatr Blood Cancer. 2020; 67: e28313.

121. Liebsch L, Kailayangiri S, Beck L, et al. Ewing sarcoma dissemination and response to T-cell therapy in mice assessed by whole-body magnetic resonance imaging. Br J Cancer. 2013; 109: 658-666.

122. Blaeschke F, Thiel U, Kirschner A, et al. Human HLA-A* 02: 01/CHM1 allo-restricted T cell receptor transgenic CD8 T Cells specifically inhibit Ewing sarcoma growth in vitro and in vivo. Oncotarget. 2016; 7: 443267-43280.

123. Imamura M, Shook D, Kamiya T, et al. Autonomous growth and increased cytotoxicity of natural killer cells expressing membrane-bound interleukin-15. Blood. 2014; 124: 1081-1088.

124. Ojo EO, Sharma AA, Liu R, et al. Membrane bound IL-21 based NK cell feeder cells drive robust expansion and metabolic activation of NK cells. Sci Rep. 2019; 9: 1-12.

125. Evans CH, Liu F, Porter RM, et al. EWS-FLI-1-targeted cytotoxic T-cell killing of multiple tumor types belonging to the Ewing sarcoma family of tumors. Clin Cancer Res. 2012; 18: 5341-5351.

126. Charan M, Dravid P, Cam M, et al. GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int J Cancer. 2020; 146: 3184-3195.

127. Sun L, Li Y, Jiang Z, et al. $V\gamma 9V\delta 2$ T cells and zoledronate mediate antitumor activity in an orthotopic mouse model of human chondrosarcoma. Tumor Biol. 2016; 37: 7333-7344.