1 Supplementary Materials for

- Annexin-A1 deficiency attenuates stress-induced tumor growth via fatty acid metabolism in mice: an
 Integrated multiple omics analysis on the stress- microbiome-metabolite-epigenetic-oncology (SMMEO)
 axis
- ⁵ Jianzhou Cui, Karishma Sachaphibulkij, Wen Shiun Teo, Hong Meng Lim, Li Zou, Choon Nam Ong, Rudi
- ⁶ Albert, Jinmiao Chen, Lina H. K. Lim^{*}
- 7 *Corresponding author. Lina H. K. Lim Email: <u>linalim@nus.edu.sg</u>

- 10 This file includes:
- 11 Materials and Methods
- 12 Figure S1 to S15
- 13 Tables S1 to S9

- _ _

31			
32			
33			
34			
35			
36			
37			
38			

39 Materials and Methods

40 Real-time PCR

Cell lysis from WT and Anxa1-A1 knockout 4T1 cells rinsed with 1X PBS. RNA extraction was carried out using the GeneJET RNA Purification Kit 41 (Thermo Fisher Scientific, # K0732) according to the manufacturer's instructions. RNA concentration measured using Nanodrop 42 spectrophotometer (BioFrontier Technology). cDNA synthesis from 1µg of RNA based on two steps protocol. Oligo(dT) and nuclease-free water 43 and RNA were incubated for 5 minutes at 65 °C first. They then followed incubation with a master mix is prepared consisting of dNTPs (ProMega), 44 RevertAid Reverse Transcriptase (Thermo Fisher Scientific), RevertAid RT Buffer at 42 °C for 60 minutes and at 90 °C for 5 minutes. cDNA samples 45 are kept at -20 °C till real-time PCR. GoTaq[®] qPCR Master Mix (ProMega, # A6010) was used, and a master mix was prepared with each reaction 46 required. Real-time PCR was run according to protocol below: 50 °C 2 minutes, 1 cycle; 95 °C, 10 minutes, 1 cycle; 95 °C 15 seconds, 60 °C 1 47 minutes, 40 cycles; 50 °C 15 seconds, 1 cycle; 60 °C 1 minute, 1 cycle; 95 °C 30 seconds, 1 cycle; 60 °C 15 seconds, 1 cycle. Real-time PCR was run 48 on ABI 7500 real-time PCR system (Applied Biosystems). GAPDH was used as an internal loading control, with minimum duplicates for each gene. 49

50 Relative expression was calculated using $\Delta\Delta$ Ct approximation. Primers used in this part of the experiment were listed below:

- 51 Mus musculus fatty acid synthase (Fasn):
- 52 Ms-Fasn-F: ATCATTGGGCACTCCTTGGG
- 53 Ms-Fasn-R: CCTCCCAGGACAAACCAACA.
- 54 Mus musculus ATP citrate lyase (Acly):
- 55 Ms- Acly-F: TCGACTCCAGCACCCAGTAG,
- 56 Ms- Acly-R: TTGGACTTGGGACTGAATCTTGG.
- 57 Mus musculus DNA methyltransferase (cytosine-5) 1 (**Dnmt1**):
- 58 Ms- Dnmt1-F: GGACAGTGACACCCTTTCAGTT,
- 59 Ms- Dnmt1-R: TGGGTTTCCGTTTAGTGGGG.
- 60 Mus musculus lysine (K)-specific demethylase 1A (Lsd1):
- 61 Ms- Lsd1-F: TGGTTGTAACAGGTCTTGGAGG,
- 62 *Ms-Lsd1-R: GGAACAGCTTGTCCATTGGC.*

63 Western blot

64 WT and Anxa1-A1 knockout 4T1 cells were harvested, and the concertation of cell lysates was determined using 1X Bradford's Reagent (Bio-

- 65 Rad Laboratories, # 5000002). Protein samples were prepared by adding 5X Loading Dye with 2-Mercaptoethanol to the sample and boiled at
- 66 100 °C for 5 minutes. Samples (20-40 μg) were loaded onto 12% SDS-PAGE gel which was run in 1x running buffer at 100 V for 2.5 hours,
- 67 followed the transfer procedure. After which, the PVDF membranes were blocked using 3% BSA before primary antibodies, and the blots were
- 68 incubated overnight at 4°C shaking. The secondary antibodies were added and were washed prior to chemiluminescent detection. ECL Prime
- 69 Western Blotting Detection Reagent (GE Healthcare Life Sciences) with a GelDoc (Bio-rad Laboratories). The primary antibodies used were
- ANXA1 (sc-12740, Santa Cruz), Fasn (sc-55580, Santa Cruz), Acly (sc-51726, Santa Cruz), Dnmt1 (sc-271729, Santa Cruz), Lsd1(sc-271720, Santa
- 71 Cruz) and β-Actin (#4970, Cell signaling). The secondary antibodies used were goat anti-mouse HRP (#sc-2005, Santa Cruz) and goat anti-rabbit
- 72 HRP (#sc-2030, Santa Cruz).
- 73

75				
76				
77				
78				
79				
80				
81				

Page 2 of 27

- **Figure S1. Schematic of experimental design and samples collection protocol.** Feces, serum, and tumor samples were used to perform 16S rRNA gene (V3 and V4 regions) metagenomics sequencing, GC-MC metabolism analysis, RNAseq, and Whole-Genome Bisulfite Sequencing (WGBS). The interaction network was constructed, and hub genes were identified via multi-omics systematic analysis and machine learning methods.

Page **3** of **27**

Page **4** of **27**

Figure S2. Stress alters gut microbiome composition. (A) Beta Diversity between the non-stressed and stressed group. (B-G) Taxonomic information based on 16S rRNA gene sequences (classified with a confidence threshold of 80%) and expressed as the

fraction of total sequences at three stages. Relative abundance bar plots represent the bacterial composition in feces microbiota at 102 the phylum, class, order, family, genus, species levels, respectively. Each legend box shows the top 10-40 classified taxa among 103 the whole proportion. (H) Circos analysis results of the corresponding abundance relationship between three stress stages and 104 bacterial communities. (I) Relative abundance of five strains between NS and S groups. The x-axis indicates the names of the five 105 strains, and the y-axis provides the relative abundance of each genus. The multiple hypothesis tests and the false discovery rate of 106 rare frequency data were performed to evaluate the significance of the difference between NS and S groups at P < 0.05. (J-L) 107 Summary of feces microbiome of COG Function Classification and KEGG function classification (Level 1 and level3) of assembled 108 109 contigs at three stages when stressed group compared with the non-stressed group.

110

111

Table S1. OTU distribution pattern in fecal microbiome of stressed mice

	OTU_ID	Taxonomy
	OTU62	kBacteria;pFirmicutes;cClostridia;oClostridiales
	OTU59	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;guncultured_bacterium;suncultured_bacterium
	OTU46	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group
	OTU61	kBacteria;pProteobacteria;cAlphaproteobacteria;oRhodospirillales;funcultured;gAmbiguous_taxa;sAmbiguous_taxa
	OTU229	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group
	OTU214	kBacteria;pCyanobacteria;cMelainabacteria;oGastranaerophilales;fAmbiguous_taxa;gAmbiguous_taxa;sAmbiguous_taxa
	OTU139	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;guncultured_bacterium;suncultured_bacterium
	OTU147	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group
	OTU100	kBacteria;pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;guncultured_bacterium;suncultured_bacterium
122		
123		
174		
124		
125		
126		
120		
127		
128		
100		
129		
130		
121		
191		
132		
133		
134		
135		
126		
130		
137		
138		
139		
140		

141				
142				
143				
144				
145				
146				
147				
148				
149				

Page **6** of **27**

Table S2. Microbial compositional changes in WT mice in relation to different diseases

			Qualitative		
	Disease	Organism	outcome ^a	Response	Method
Clostridiales	Periodontal disease	Johnsonella Faecalibacterium	ир	Log2	MiSeq sequencing
	Type 2 diabetes	prausnitzii	down	Log10	qPCR
	Aggressive periodontitis	Peptostreptococcaceae	down	% (abundancy)	16S rDNA pyrosequencing
	Autism spectrum disorders Autoimmune polyendocrine syndrome	Peptoniphilus	up	% (abundancy)	16S rRNA sequencing
	type 1	Catonella	up	% (abundancy)	16S rRNA sequencing
	Crohn's Disease	Ruminococcus gnavus	up	Median intensity	Denaturing gradient gel electrophoresis
	Hepatocellular cancer	Anaerostipes	up	% (abundancy)	16S rRNA sequencing
	Obesity	Catonella morbi	up	% (abundancy)	Metagenomic sequencing
Rhodospirillales	Colorectal cancer	Acidocella	down	% (abundancy)	16S rRNA sequencing
	Inflammatory bowel disease	Gluconobacter oxydans	up	% (prevalence)	16S rRNA sequencing
	Type 1 diabetes	Thalassospira	up	% (prevalence)	16S rRNA sequencing
	Breast cancer	Gluconacetobacter	up	% (prevalence)	16S rRNA sequencing
	Parkinson's disease	Enhydrobacter	up	B-value	16S rRNA sequencing
Gastranaerophilales	Type 1 diabetes	Eubacterium eligens	down	% (abundancy)	16S rRNA sequencing
	Type 2 diabetes	Shuttleworthia	up	% (abundancy)	16S rRNA sequencing
	Non-alcoholic fatty liver disease	Ruminococcus	down	% (abundancy)	16S rRNA pyrosequencing
	Pulmonary tuberculosis	Roseburia	down	% (abundancy)	16S rRNA sequencing
	Coronary artery disease	Roseburia	down	% (abundancy)	16S rRNA sequencing
	Obesity	Lachnospira	up	% (abundancy)	16S rDNA pyrosequencing

172 ^a up: Elevated down: Reduced

Page **7** of **27**

181 Table S3. Differential metabolites in feces between non-stressed and stressed groups at three sampling points

					F	C ^c (S vs N	S)
	NIST	. 2	h	RFQC_CV			
Feces: metabolites	match	m/zª	RT ⁵ (min)	(n=7; %)	D0	D4	D14
Lactic acid	87	117.1	10.76	4	0.46	1.11	1.92
Alanine1	STD	116.1	11.54	6	0.80	2.55	0.93
Alanine2	STD	190.1	11.54	5	0.87	2.45	1.07
Valine	STD	144.1	13.72	14	1.07	1.89	0.65
Urea	94	147.1	13.96	9	2.16	2.39	1.41
Leucine/Isoleucine1	STD	158.2	14.71	7	1.31	1.68	0.63
Glycerol1	93	205.1	14.76	11	0.69	1.61	1.14
Glycerol2	93	218.1	14.76	8	0.62	1.58	1.18
Phosphonic acid	84	299.1	14.81	11	0.85	1.25	0.93
Leucine/Isoleucine2	STD	158.1	15.12	6	1.12	1.87	0.59
Proline	STD	142.1	15.18	4	1.44	2.02	0.73
Glycine	STD	174.1	15.35	4	1.18	2.19	0.74
Serine	STD	218.1	16.27	10	0.70	1.43	1.18
Threonine	STD	219.1	16.73	6	1.03	1.72	0.82
β-Alanine	STD	248.2	17.36	8	0.91	1.25	1.14
L-Methionine	STD	176.1	18.81	9	1.55	0.85	0.86
Aspartic acid	STD	232.1	18.81	3	2.21	1.42	0.27
L-5-Oxoproline	89	156.1	18.92	7	1.48	1.55	0.62
Ornithine	STD	142.1	20.25	7	1.67	3.09	0.37
Phenylalanine	STD	218.1	20.48	7	1.01	1.81	0.72
Xvlose/Arabinose/Ribose1	84	103.1	21.01	6	0.58	1.44	0.82
,,,,	84	217 1	21.05				
Xylose/Arabinose/Ribose2	04	21/.1	21.05	7	0.55	1.63	0.88
Arabinose/Xylose/Ribose	84	307.2	21.10	8	0.55	1.59	0.87
Myristic acid	STD	285.2	23.28	8	0.63	1.28	1.77
Mannose	STD	319.2	24.17	6	0.73	1.52	0.67
Glucose1	STD	147.1	24.32	6	0.78	1.66	0.45
Glucose2	STD	160.1	24.32	7	0.76	1.67	0.42
Glucose3	STD	205.1	24.32	6	0.79	1.67	0.47
Glucose4	STD	319.2	24.32	5	0.77	1.65	0.50
Tyrosine	STD	218.1	24.63	6	0.98	1.78	0.53
Manitol	STD	319.2	24.74	10	1.04	2.27	0.94
Sorbitol	STD	205.1	24.84	3	0.66	1.84	1.01
Palmitoleic acid	STD	311.3	25.52	3	0.54	1.03	1.37
Xanthine	84	294.2	25.67	5	0.65	2.73	0.72
Palmitic acid	STD	313.3	25.72	4	0.63	0.78	1.81
Myo-Inositol1	STD	305.3	26.71	5	0.70	2.30	1.12
Myo-Inositol2	STD	318.2	26.71	3	0.66	2.40	1.45
Linoleic acid	STD	337.3	27.85	5	0.52	0.63	1.55
Oleic acid	STD	339.3	28.05	5	0.53	1.03	1.55
Linolenic acid	STD	335.3	27.96	3	0.66	0.82	1.18
Stearic acid1	STD	341.3	28.27	10	0.64	0.97	1.78
Stearic acid2	STD	356.3	28.27	14	0.62	0.97	1.90
L-Tryptophan	STD	202.1	28.32	9	0.93	1.43	0.90
Gondoic acid	STD	367.3	31.23	5	0.48	0.95	1.74
Sucrose	STD	361.2	34.40	7	0.39	1.54	0.89

184 ^am/z: mass value

^bRT: retention time

186 ^c The ratio of the relative value (vs. internal standard) of metabolites in the stressed (S) and non-stressed (NS) groups of samples; FC > 1
 187 indicates upregulated metabolites, and FC < 1 indicates down-regulated metabolites.

Page **8** of **27**

194 Table S4. Differential metabolites in serum between non-stressed and stressed groups at three sampling points

195

193

					FC ^c	(S vs NS)	
Serum metabolites	NIST match	m/z ^a	RT ^b (min)	RSQC_CV (n=10; %)	D0	D4	D14
Lactic acid	87	117.1	10.76	12	2.26	1.95	0.99
Alanine1	STD	116.1	11.54	8	3.07	2.28	1.30
Alanine2	STD	190.1	11.54	10	1.58	1.69	1.22
Valine	STD	144.1	13.72	12	2.37	9.00	1.79
Urea	94	147.1	13.96	10	1.74	3.55	0.98
Leucine/Isoleucine1	STD	158.2	14.71	7	2.66	7.98	2.31
Glycerol1	93	205.1	14.76	12	1.17	1.69	1.27
Glycerol2	93	218.1	14.76	10	1.33	2.47	1.43
Phosphonic acid	84	299.1	14.81	14	0.94	2.63	1.36
Leucine/Isoleucine2	STD	158.1	15.12	9	0.79	1.45	0.66
Proline	STD	142.1	15.18	11	2.35	2.32	1.90
Glycine	STD	174.1	15.35	9	0.70	0.95	0.77
Serine	STD	218.1	16.27	13	1.14	0.93	0.80
Threonine	STD	218.1	16.73	10	1.63	2.80	0.61
L-Methionine	STD	176.1	18.81	10	2.50	3.00	0.77
Aspartic acid	STD	232.1	18.81	9	2.25	3.18	2.00
L-5-Oxoproline	89	156.1	18.92	6	1.78	3.24	1.57
Ornithine	STD	142.1	20.25	13	1.05	1.14	0.62
Phenylalanine	STD	218.1	20.48	12	1.70	2.15	0.98
Lauric acid	STD	257.2	20.64	13	1.34	1.22	1.25
L-Ornithine	STD	142.1	23.15	11	1.10	1.50	0.94
Citric acid1	STD	273.1	23.18	12	0.53	1.70	0.48
Citric acid2	STD	347.2	23.18	15	0.68	2.00	0.38
Myristic acid	STD	285.2	23.28	12	2.07	1.71	2.59
, Mannose	STD	319.2	24.17	11	1.52	7.00	1.96
Glucose1	STD	147.1	24.32	9	1.26	3.42	1.31
Glucose2	STD	160.1	24.32	9	1.49	4.02	1.45
Glucose3	STD	205.1	24.32	7	1.13	4.24	1.55
Glucose4	STD	319.2	24.32	8	1.32	5.18	1.43
Tvrosine	STD	218.1	24.63	11	5.71	8.42	5.12
Sorbitol	STD	205.1	24.84	14	0.76	1.07	1.14
Palmitoleic acid	STD	311.3	25.57	12	0.34	0.40	0.66
Xanthine	84	294.2	25.67	13	0.44	1.33	0.50
Palmitic acid	STD	313.3	25.72	12	0.66	0.81	0.85
Mvo-Inositol1	STD	305.3	26.71	10	0.93	1.16	0.69
Myo-Inositol2	STD	318.2	26.71	11	0.97	0.93	1.19
Linoleic acid	STD	337.3	27.85	13	0.80	1.05	1.37
Oleic acid	STD	339.3	27.91	10	1.17	0.90	1.65
Linolenic acid	STD	335.3	27.96	13	1.20	1.33	1.33
Stearic acid	STD	341.3	28.27	19	1.04	1.51	1.04
I-Tryptophan	STD	202.1	28.32	2	0.94	0.94	0.73
Gondoic acid	STD	367.3	31.23	12	0.75	0.70	1.31
Docosahevaenoic acid	STD	117.1	33.05	16	0.92	2.00	0.78
Sucrose	STD	361.2	34 40	12	1.00	0.67	1.00

- 198 ^am/z: mass value
- 199 ^bRT: retention time
- ^c The ratio of the relative value (vs. internal standard) of metabolites in the stressed (S) and non-stressed (NS) groups of samples; FC > 1 indicates
- 201 upregulated metabolites, and FC < 1 indicates down-regulated metabolites.

202

203

204

205

206

Page **9** of **27**

Table S5. Correlation among taxonomic units of fecal microbiome and fatty acids

OTU_ID	Relationship	Taxonomy
OTU112	positive	pPatescibacteria;cSaccharimonadia;oSaccharimonadales;fSaccharimonadaceae;gCandidatus_Saccharimonas;suncultured_bacterium
OTU122	positive	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;guncultured;sClostridium_spCulture-27
OTU128	positive	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gLachnospiraceae_NK4A136_group
OTU142	positive	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gBlautia;sLachnospiraceae_bacterium_609
OTU188	positive	pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;guncultured_bacterium;suncultured_bacterium
OTU190	positive	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gLachnospiraceae_NK4A136_group;suncultured_bacterium
OTU199	positive	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminiclostridium_5;suncultured_bacterium
OTU223	positive	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gCandidatus_Soleaferrea
OTU3	positive	pBacteroidetes;cBacteroidia;oBacteroidales;fRikenellaceae;gAlistipes
OTU34	positive	pDeferribacteres;cDeferribacteres;oDeferribacterales;fDeferribacteraceae;gMucispirillum
OTU37	positive	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;guncultured;suncultured_bacterium
OTU46	positive	pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group
OTU72	positive	pBacteroidetes;cBacteroidia;oBacteroidales;fTannerellaceae;gParabacteroides
OTU108	negative	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gTyzzerella;suncultured_bacterium
OTU118	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;guncultured;sunidentified
OTU13	negative	pBacteroidetes;cBacteroidia;oBacteroidales;fBacteroidaceae;gBacteroides;sAmbiguous_taxa
OTU149	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminiclostridium_6
OTU16	negative	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gLachnospiraceae_UCG-001;suncultured_bacterium
OTU165	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gButyricicoccus;sAmbiguous_taxa
OTU198	negative	pBacteroidetes;cBacteroidia;oBacteroidales;fBacteroidaceae;gBacteroides;sBacteroides_uniformis
OTU207	negative	pBacteroidetes;cBacteroidia;oBacteroidales;fTannerellaceae;gParabacteroides;suncultured_bacterium
OTU215	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminococcaceae_UCG-014;suncultured_rumen_bacterium
OTU219	negative	pBacteroidetes;cBacteroidia;oBacteroidales;fMuribaculaceae;guncultured_bacterium;suncultured_bacterium
OTU47	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gIntestinimonas;suncultured_bacterium
OTU6	negative	pTenericutes;cMollicutes;oAnaeroplasmatales;fAnaeroplasmataceae;gAnaeroplasma;suncultured_bacterium
OTU74	negative	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gRoseburia;sClostridium_spClone-44
OTU81	negative	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminiclostridium;suncultured_bacterium
220		
221		

Page **10** of **27**

Α

227

225 226

- Figure S3. Correlation analyis. (A) Correlation between fecal microbiota and fecal metabolites under stress exposure. The color
- indicates the Spearman correlation coefficient distribution. Red represents a significant positive correlation (p < 0.05), green
- represents a significantly negative correlation (p < 0.05) (B)The Pearson correlation coefficients were calculated for log2
- transformed ratios of the metabolites between feces and serum sample in the stressed group compared with non-stressed groups.

Table S6. Correlation among fecal and serum fatty acids metabolites

Feces	Serum	Correlation coefficient-rho	Relation
F-Gondoic acid	S-IVIYO-INOSITOI2	0.875456071	positive
F-Gondoic acid	S-Sorbitol	0.88205238	positive
F-Gondoic acid	S-Paimitic acid	0.884070967	positive
F-Gondoic acid	S-Gondoic acid	0.896855856	positive
F-Gondoic acid	S-Paimitoleic acid	0.978161733	positive
F-Gondoic acid	S-LINOIEIC acid	0.997396232	positive
F-Linoleic acid	S-Myristic acid	0.869682552	positive
F-Linoleic acid	S-Oleic acid	0.893170939	positive
F-Linoleic acid	S-Linoleic acid	0.939096188	positive
F-Linoleic acid	S-IVIYO-INOSITOI2	0.974617318	positive
F-Linoleic acid	S-Gondoic acid	0.983922284	positive
F-Linoleic acid	S-Palmitoleic acid	0.997602825	positive
F-Linolenic acid	S-Palmitic acid	0.853221516	positive
F-Linolenic acid	S-Myo-Inositol2	0.903878077	positive
F-Linolenic acid	S-Gondoic acid	0.922682264	positive
F-Linolenic acid	S-Palmitoleic acid	0.989214884	positive
F-Linolenic acid	S-Linoleic acid	0.990961788	positive
F-Myristic acid	S-Linolenic acid	0.903971946	positive
F-Myristic acid	S-Palmitoleic acid	0.906086352	positive
F-Myristic acid	S-Sorbitol	0.965585477	positive
F-Myristic acid	S-Palmitic acid	0.966695352	positive
F-Myristic acid	S-Linoleic acid	0.987964318	positive
F-Oleic acid	S-Linolenic acid	0.858913605	positive
F-Oleic acid	S-Sorbitol	0.936271129	positive
F-Oleic acid	S-Palmitic acid	0.937773557	positive
F-Oleic acid	S-Palmitoleic acid	0.942410269	positive
F-Oleic acid	S-Linoleic acid	0.998231541	positive
F-Palmitic acid	S-Myristic acid	0.861027811	positive
F-Palmitic acid	S-Oleic acid	0.885270777	positive
F-Palmitic acid	S-Linoleic acid	0.944891283	positive
F-Palmitic acid	S-Myo-Inositol2	0.970605429	positive
F-Palmitic acid	S-Gondoic acid	0.980691029	positive
F-Palmitic acid	S-Palmitoleic acid	0.998649162	positive
F-Palmitoleic acid	S-Palmitoleic acid	0.895225315	positive
F-Palmitoleic acid	S-Linolenic acid	0.914379678	positive
F-Palmitoleic acid	S-Sorbitol	0.971786108	nositive
F-Palmitoleic acid	S-Palmitic acid	0 97279173	nositive
F-Palmitoleic acid	S-Linoleic acid	0.97279173	positive
F-Stearic acid1	S-Myo-Inositol2	0.985788272	positive
F-Stearic acid1	S-Gondoic acid	0.910807845	positive
E-Stoaric acid1	S-Linoloic acid	0.994282899	positivo
F-Stearic acid1	S-Balmitolois acid	0.980284039	positivo
F-Stearic acid2	S-Painintoleic aciu	0.995309791	positivo
F-Stearic acid2	S-IVIYO-ITIOSILOIZ	0.925551900	positivo
F-Stearic acid2	S-Gondolc acid	0.940091718	positive
F-Stearic acid2	S-Linoleic acid	0.983398681	positive
F-Stearic acid	S-Paimitoleic acid	0.995095441	positive
F-Gondoic acid	S-Alanine1	-0.996507092	negtive
F-Gondoic acid	S-Lactic acid	-0.990088181	negtive
F-Gondoic acid	S-Serine	-0.962267965	negtive
F-Gondoic acid	S-Proline	-0.949870261	negtive
F-Gondoic acid	S-L-Tryptophan	-0.925006613	negtive
F-Gondoic acid	S-Ornithine	-0.859114022	negtive
F-Linoleic acid	S-Proline	-0.999225926	negtive
F-Linoleic acid	S-L-Tryptophan	-0.993832888	negtive
F-Linoleic acid	S-Lactic acid	-0.990532456	negtive
F-Linoleic acid	S-Ornithine	-0.966740322	negtive
F-Linoleic acid	S-L-Methionine	-0.950956747	negtive
F-Linoleic acid	S-Alanine2	-0.949212986	negtive
F-Linoleic acid	S-Alanine1	-0.935108159	negtive
F-Linoleic acid	S-Phenylalanine	-0.881100727	negtive
F-Linoleic acid	S-Serine	-0.850319063	negtive
F-Linolenic acid	S-Lactic acid	-0.996917173	negtive
F-Linolenic acid	S-Alanine1	-0.989364312	negtive
F-Linolenic acid	S-Proline	-0.967510629	negtive
F-Linolenic acid	S-L-Tryptophan	-0.946890598	negtive
F-Linolenic acid	S-Serine	-0.943436476	negtive
F-Linolenic acid	S-Ornithine	-0.889343389	negtive
F-Linolenic acid	S-L-Methionine	-0.86243403	negtive
F-Linolenic acid	S-Alanine2	-0.859591419	negtive
F-Myristic acid	S-Serine	-0.998843707	negtive
F-Myristic acid	S-Alanine1	-0.989667273	negtive
F-Myristic acid	S-Lactic acid	-0.932905655	negtive
F-Myristic acid	S-Proline	-0.854888669	negtive
F-Oleic acid	S-Alanine1	-0.998845622	negtive
F-Oleic acid	S-Serine	-0.989661559	negtive
F-Oleic acid	S-Lactic acid	-0.963081493	negtive
F-Oleic acid	S-Proline	-0.900605655	negtive
F-Oleic acid	S-L-Tryptophan	-0.867121199	negtive
F-Palmitic acid	S-Proline	-0.99839748	negtive
F-Palmitic acid	S-Lactic acid	-0.992755622	negtive
F-Palmitic acid	S-L-Tryptophan	-0.991769538	negtive
F-Palmitic acid	S-Ornithine	-0.962178972	negtive
F-Palmitic acid	S-L-Methionine	-0.945472664	negtive
F-Palmitic acid	S-Alanine2	-0.943637448	negtive
F-Palmitic acid	S-Alanine1	-0.941088785	negtive
F-Palmitic acid	S-Phenylalanine	-0.872801489	negtive
E-Palmitic acid	S-Serine	-0 85038136	negtive
E-Palmitoloic acid	S-Sorino		nostivo

F-Paimitoleic acid	S-Serine	-0.999733433 negtive
F-Palmitoleic acid	S-Alanine1	-0.985773182 negtive
F-Palmitoleic acid	S-Lactic acid	-0.923610607 negtive
F-Stearic acid1	S-Lactic acid	-0.998882518 negtive
F-Stearic acid1	S-Alanine1	-0.984334291 negtive
F-Stearic acid1	S-Proline	-0.974940593 negtive
F-Stearic acid1	S-L-Tryptophan	-0.95647879 negtive
F-Stearic acid1	S-Serine	-0.932612147 negtive
F-Stearic acid1	S-Ornithine	-0.903200769 negtive
F-Stearic acid1	S-L-Methionine	-0.877833947 negtive
F-Stearic acid1	S-Alanine2	-0.87514315 negtive
F-Stearic acid2	S-Lactic acid	-0.999531153 negtive
F-Stearic acid2	S-Alanine1	-0.981261075 negtive
F-Stearic acid2	S-Proline	-0.978510744 negtive
F-Stearic acid2	S-L-Tryptophan	-0.961206375 negtive
F-Stearic acid2	S-Serine	-0.926471929 negtive
F-Stearic acid2	S-Ornithine	-0.910224562 negtive
F-Stearic acid2	S-L-Methionine	-0.885689845 negtive
F-Stearic acid2	S-Alanine2	-0.883081019 negtive

Page **12** of **27**

GeneSymbol	Log2 (FC) (N /NS)	Corrected p-value	Feature
Zxdb	-5.096215333	9.13E-19	ncRNA exonic
Tulp4	-4.981679629	1.55E-53	ncRNA_intronic
Lurap1l	-4.701111268	1E-11	upstream
Psg29	-4.499466251	4.07E-05	intergenic
Lurap1	-4.377086037	1E-11	ncRNA_exonic
EVala	-4.264348601	1E-13 1E-11	
Lurap11	-4.218415443	1E-11 1E-11	unstream
Gm3500	-4.066443276	7.21E-15	ncRNA intronic
Evala	-3.853417098	1E-13	ncRNA intronic
Gm21699	-3.798701345	1.03E-13	intergenic
Eva1a	-3.773287448	1E-13	ncRNA_intronic
Pih1d3	-3.740240714	0.002375431	intergenic
Nfatc1	-3.706540714	5.00E-61	ncRNA_intronic
P4ha1	-3.705333769	6.38E-22	intergenic
Syngap1	-3.605555277	6.01E-62	
EVala Scab1b17	-3.584125584	1E-13 5 93E-05	intergenic
Gm21645	-3.502500341	0.004765755	intergenic
Gm5796	-3.47912587	1.50E-44	intergenic
Syngap1	-3.462443194	2.25E-117	ncRNA_intronic
Inpp4b	-3.401712671	1.88E-125	intergenic
Gm21699	-3.376729802	1.99E-13	intergenic
Vmn2r37	-3.27753398	0.005333929	intergenic
Lrp1b	-3.243454037	0.002344967	
Silis7504 Vwbag	-3.10/42/5/1	2.30E-47 1.23E-13	intergenic
Gm37371	-2.853787307	0.006755345	unstream
Tbr1	-2.733998643	1.33E-15	intergenic
Fibin	-2.729352424	0.000503212	intergenic
Tbr1	-2.70570914	6.33E-18	intergenic
Ctag2	-2.675838934	2.09E-25	intergenic
Kctd16	-2.661504056	0.003483593	intergenic
<it4< td=""><td>-2.649154807</td><td>7.32E-92</td><td>intergenic</td></it4<>	-2.649154807	7.32E-92	intergenic
Leacam3	-2.600112927	2.04E-07	
Nos1	-2.393053421 _2.518458005	1C-11 7 78F-162	
Kir5a	-2.510456095	0.003180533	ncRNA_intronic
Sbspon	-2.495120793	0.000979253	intergenic
Fam3c	-2.484746464	0.001318026	intergenic
Plxna2	-2.478125399	1E-11	ncRNA_intronic
Runx1t1	-2.402734039	2.32E-39	intergenic
Nos1	-2.387318337	3.01E-142	ncRNA_intronic
Nos1	-2.3624263	1.39E-160	ncRNA_intronic
		0.001620567	intergenic noDNA overia
21xnaz Sm21761	-2.28/55598	1E-11	
Sm5640	-2.272023179	0.000341133	ncRNA intronic
Cdh12	-2.205675026	0.009297906	intergenic
Nos1	-2.182961018	3.67E-144	ncRNA intronic
Pag1	-2.170934422	6.16E-05	intergenic
Plxna2	-2.157039629	1E-11	ncRNA_intronic
Qrfpr	-2.121872004	3.82E-26	intergenic
Gm10147	-2.060473862	2.17E-05	intergenic
Nkx2-4	-2.057715502	0.000213684	Intergenic
RP24-334B8.20	-2.040641998	0.000453942	Intergenic poPNA intropic
Sm10139	-1.987320800	0.002895695	intergenic
D630023014Rik	-1.955012545	0.001915673	intergenic
Gia1	-1.918027362	5.79E-06	intergenic
Obox7	-1.828911065	0.007704503	intergenic
Lce1d	-1.745771492	2.50E-07	intergenic
RP24-26706.1	-1.742420029	0.008828072	ncRNA_exonic
Syne1	-1.727179036	3.68E-06	ncRNA_intronic
Idpoz5	-1.619519723	0.005176686	ncRNA_exonic
1933402D24KIK		0.007640747	intergenic
5m21608	-1 532239391	0.000123485	intergenic
=bn2	-1.513235744	5.62E-15	intergenic
_rrc4c	-1.480501439	4.84E-13	ncRNA_intronic
Psg20	-1.472426485	8.99E-05	ncRNA_intronic
34galt5	-1.454985709	5.88E-19	intergenic
Podxl	-1.450948442	8.98E-27	intergenic
_rp1b	-1.442297272	0.009893232	ncRNA_intronic
grmc1	-1.413138927	3.9/E-59 2.025 12	upstream
Snc4	-1.301124938	3.03E-13 1 09E-13	
Set1	-1.367509141	5.44E-06	intergenic
Fri1	-1.365845214	0.002308285	intergenic
Cdh10	-1.360747344	0.002717908	intergenic
Astn2	-1.354349569	0.005746336	intergenic
/whaq	-1.349661488	0.00197287	intergenic
/whaq	-1.349661488	0.00197287	intergenic
otogalnac1	-1.347270939	0.001251423	ncRNA_intronic
lenmi Nkricia	-1.323876367	0.001611079	Intergenic
יעו דרד ת קאי דרד ת	-1.290084000 _1 978850279	0.001021907 2 1/F-05	intergenic
L700015G11Rik	-1.273672247	2.14L-03 1.03F-05	intergenic
Alk	-1.270863085	1.61E-05	ncRNA intronic
am71e2	-1.255898214	2.58E-10	ncRNA_intronic
Nudt10	-1.249718567	3.91E-05	ncRNA_exonic
Gm37825	-1.221904098	2.71E-09	intergenic
Kcnn2	-1.203671013	3.28E-14	ncRNA_intronic
am20388	-1.173410616	0.00448148	ncRNA_intronic
mmpzi Snd1	-1.170772901	1.01E-U8 1 77E-09	
/mn2r120	-1.133184019	3.86F-08	intergenic
Frim14	-1.090107900	7.62F-56	ncRNA exonic
Fas2r134	-1.082391542	3.02E-39	intergenic
Cdc42bpb	-1.071083098	0.000171091	intergenic
Poteg	-1.052780728	2.52E-09	intergenic
Hcn1	-1.041914879	4.45E-53	upstream
Prdm6	-1.029051898	4.48E-08	upstream
Nudt10	-1.025938214	8.23E-05	ncRNA_exonic
Map3k15	-1.017684148	1.75E-39	upstream
Snd1	-1.01612741	6.65E-08	ncRNA_intronic
Gm3252	1.002810378	1.58E-11	upstream
lag2 (cpd2oc	1.006002091	1.19E-101	ncRNA_exonic
kunasos Jarida	1.00706058	2.33E-42	
		2.U0E-200 2.72E.07	intergonia
- CALLS	1.0117/3300	2.1 JL-J1	inter genic

Gm8797	1.014227904	1E-11	intergenic
Zic2	1.017446096	1.74E-40	upstream
Ndrg4	1.018273594	1.28E-71	ncRNA_intronic
Onecut2	1.018567452	2.97E-46 2.57E-30	upstream
Celsr1	1.020897921	9.17F-64	
lgsec1	1.023475738	3.99E-21	intergenic
6030419C18Rik	1.023657922	2.94E-23	upstream
Foxn3	1.024093096	1.97E-199	intergenic
Jph1 Tto24	1.025181223	4.70E-42	ncRNA_exonic
Fbn2	1.02/350/06	0.31E-110 2.03E-19	
Necab2	1.028682168	1.19E-62	ncRNA_exonic
Nol4I	1.028842323	3.77E-13	ncRNA_exonic
Foxn3	1.030943066	1.00E-10	intergenic
Foxp2	1.032498577	1.39E-19	upstream
Ptprt	1.032861417	5.81E-47	ncRNA_intronic
Iqsec1	1.033063403	1.24E-19 5 79E-104	Intergenic
Dlgap4	1.034130965	2.37F-52	upstream
Cadm1	1.037547541	3.90E-12	ncRNA intronic
Eid2	1.038686039	4.68E-77	upstream
Foxn3	1.040011252	1.00E-10	intergenic
Slc2a13	1.040336588	2.38E-68	ncRNA_intronic
Gm2238	1.042032693	3.83E-35	ncRNA_exonic
GM2238 Eafr2	1.045400142	4.81E-45 6.92E-56	
Gprasp1	1.053439379	1.30F-16	ncRNA_intronic
Neto1	1.053711497	2.90E-28	upstream
Fignl2	1.055328987	8.11E-08	intergenic
Elmo1	1.05792395	1.31E-38	upstream
Bnc2	1.061613886	5.04E-28	ncRNA_intronic
	1.062833899	1.04E-51 0.74E-12	upstream
Brsk2	1.071809406	1.61F-70	upstream
Dab1	1.072565014	1.32E-33	ncRNA intronic
Adgrb1	1.080518078	3.03E-80	ncRNA_intronic
Ttc34	1.084050714	1.07E-83	upstream
Tpk1	1.084333908	1.44E-05	intergenic
Erbb4	1.089900711	3.16E-63	ncRNA_intronic
Acyp2 Grid1	1.090983814	1.576-12	Intergenic
Samd5	1.097905615	3.22F-57	
Fbn2	1.09836931	6.03E-19	ncRNA_exonic
Cadps2	1.098850193	1.95E-61	ncRNA_intronic
Enah	1.099803681	3.75E-35	ncRNA_intronic
Arhgap20	1.099808256	7.65E-62	upstream
Grid1	1.100919323	9.54E-54	upstream
Cebpa	1.10509527	2.48F-52	upstream
Fzd8	1.105821521	1.21E-73	ncRNA exonic
Nol4I	1.109743298	1.41E-20	ncRNA_intronic
Auts2	1.110145842	1.88E-50	upstream
Ptprm	1.111947416	8.20E-72	ncRNA_intronic
NKX6-2	1.119266325	5.32E-81 6.34E-17	
Sall3	1.122084373	2.90E-62	ncRNA intronic
Sgpp2	1.131291808	2.05E-43	upstream
Foxq1	1.136563062	2.22E-66	ncRNA_exonic
Cdh2	1.137923522	2.28E-48	ncRNA_intronic
V1rd19	1.153545258	0.005347362	intergenic
FOXI2 Ppm1h	1.153748959	3.45E-33	
Kit	1.160276629	1.49E-01 1.02F-42	upstream
Necab2	1.168847652	3.23E-07	ncRNA intronic
Grid1	1.169427247	3.86E-50	upstream
Fgfr2	1.174989555	1.19E-53	ncRNA_intronic
Rora	1.178213365	1.53E-45	upstream
Eid2	1.178492283	4.04E-77	upstream
Ptprm Nbl1	1.194630593	1.75E-60	
Plxnd1	1.201471997	2.32E-113	ncRNA_intronic
Mc2r	1.20423295	2.24E-219	intergenic
Tbx2	1.205817126	2.80E-31	upstream
Kcnq4	1.207115085	3.17E-76	ncRNA_intronic
Alkbh5	1.211451559	3.70E-05	intergenic
Gm2030 Stox2	1.211908287	0.006437206	
Camk2n1	1.219376316	3.09E-27	upstream
Rragd	1.226416573	6.35E-21	upstream
1700008P02Rik	1.23628497	0.000266145	intergenic
4933412E24Rik	1.239960771	0.00273385	intergenic
58101 1700005 A 21 Bill	1.24/123551	2.81E-73 9.80E-14	nckNA_exonic
Shisa7	1.24720709	1.21F-47	ncRNA exonic
Rnf157	1.26884742	0.001581862	ncRNA_intronic
Shcbp1	1.269657357	0.003927351	intergenic
Fam214a	1.275251618	2.23E-53	upstream
lgkv4-58	1.281556151	3.63E-80	intergenic
Dcaf13 Grao1	1.30836556	5.02E-13 1.98E-11	
Necab2	1.315031514	1.04E-54	upstream:downstream
Ebf3	1.328688358	3.09E-34	intergenic
Vmn2r37	1.344736145	0.00348062	intergenic
Adgrb1	1.349550355	4.65E-28	upstream
SIc7a2	1.354648452	1.81E-85	upstream
Caomi Caonh4	1.3/052/656	2.91E-79 6 51E-05	
Kcna4	1.407612613	8.86E-112	ncRNA intronic
Rec114	1.446299499	1.16E-114	intergenic
Sox13	1.471733622	1.66E-82	ncRNA_intronic
lgkv4-58	1.496385258	3.99E-111	intergenic
Nsd1	1.514472983	0.0046802	ncRNA_intronic
DUSP22	1.526385921	1.46E-58	upstream
Mterf1h	1.52/000525	4.912-105 8.49F-07	intergenic
lck	1.537990219	3.78E-88	intergenic
Adgrb1	1.547468918	1.23E-35	upstream
1700095A21Rik	1.558351817	7.41E-15	intergenic
Asph	1.560087832	8.58E-05	intergenic
Gm15319	1.569020941	4.85E-07	intergenic
Alk	1.020515035 1.647094219	3.40E-39 4 13F-06	upstream ncRNA_intropic
Bmp4	1.662177535	7.17E-73	ncRNA_intronic
Cabp1	1.742826592	1.26E-114	ncRNA_intronic
Cabp1	1.798889814	5.75E-152	ncRNA_intronic
Pop4	1.845594597	6.05E-11	intergenic

Gm5784	1.892391027	0.003821498	upstream
lgf2bp3	1.991028467	2.15E-37	ncRNA exonic
Krtap11-1	2.222392421	0.009020037	intergenic
Tbc1d9	2.226827385	1.08E-18	ncRNA intronic
Brinp1	2.244887059	1.01E-06	intergenic
Mc2r	2.294970712	1.41E-75	intergenic
Tmem121	2.428236997	0.001109918	intergenic
Tmem121	2.428236997	0.001109918	intergenic
Olfr1507	2.466600305	2.60E-07	intergenic
Olfr1354	2.537656786	0.000360903	intergenic
Wdfy3	2.563385419	2.24E-10	intergenic
Gm3993	2.831276269	1.31E-09	intergenic
Gm3558	2.886570638	6.73E-36	ncRNA_intronic
Gm11554	2.901762717	4.77E-07	upstream
Mid1	2.92201733	9.50E-05	ncRNA_intronic
Ick	2.956019154	2.84E-287	intergenic
E030030I06Rik	3.049696961	7.32E-29	ncRNA_intronic
Gm3383	3.059034433	1.02E-08	ncRNA_intronic
Ick	3.071910967	5.61E-200	intergenic
Gm20388	3.301169548	8.17E-06	ncRNA_intronic
Zfp640	3.332914846	2.40E-30	intergenic
Gnl3l	3.528711481	1.85E-36	intergenic
Ezh2	4.807354811	1.24E-06	intergenic
Gm21800	4.978127975	1.75E-08	intergenic
lghv1-25	5.018872185	3.23E-09	downstream
4930447F04Rik	5.30762038	6.55E-12	intergenic

Page **15** of **27**

249 Figure S4. Stress affects the epigenetic signature and gene expression changes in breast tumors. (A) Percentage of methylated cytosines in each 250 context between the NS and S groups. (B) The number of each DNA methylation context in NS and S groups. (C) Normalized mCs in different genomic 251 regions or elements. The vertical axis on the left represents the normalized mC/C in the two groups. (D) Distribution of DNA methylation levels in different 252 genomic functional regions between NS and S groups. Different functional regions were divided into 20 segments, then methylation density and average methylation rate were calculated for each segment. (E) Sankey diagram presenting the DMG-genomic region-chromosome stream. The height of each vertical 253 254 block represents the total number of relevant DMGs. The DMGs located in the same genomic regions, and chromosomes are linked by streams across the 255 vertical blocks. (F) Hierarchical Clustering Heatmap. The overall results of FPKM cluster analysis, clustered using the log2(FPKM+1) value. The red color 256 indicates genes with high expression levels in the stressed group sample, and the blue color indicates genes with low expression levels in the stressed group 257 sample. The color ranging from red to blue indicates that log2(FPKM+1) values wherefrom large to small. (G, H) Gene ontology analysis of unregaled DEGs 258 and downregulated DEGs in stressed groups. Biological process (BP); Cellular component (CC); Molecular function (MF). One-way analyses of variance (ANOVA) were used to determine the inter-group differences between two groups for one or two variables (*p < 0.05). 259

Figure S5. Gene set enrichment analysis (GSEA) was performed using the whole gene list generated from up- and down-regulated DEGs. This whole gene list was pre-ranked based on T-score, then uploaded to GSEA software

270				
271				
272				
273				
274				
275				
276				

в

Figure S6. G1 genes Pearson correlation and KEGG analysis. (A) Pearson correlation analysis of G1 genes; R = -1, p = 0.027. Epi and RNAseq stand for the fold change in given genes in stressed samples (R = 0.44, p = 0.2). (B) KEGG pathway analysis of G1 genes. The horizontal axis represents the log10 P-value. The vertical axis represents the different KEGG pathways. KEGG,

Kyoto encyclopedia of genes and genomes.

286			
287			
288			
289			
290			
291			
292			

Page **18** of **27**

Figure S7. Kaplan-Meier survival curves in different breast (A), Gastric (B) and lung cancer (C) types with low and high expression level of CDH10 and TBC1D9.

Page **19** of **27**

Figure S8. Metabolite-Gene-Disease Interaction Network. Metabolite-gene-disease interaction network analysis using selected
 metabolites, DEGs, and DMGs. Metabolites are represented by blue diamonds, genes by circles, and related diseases by blue
 squares. The correlation network is composed of 20 metabolite compounds combined with 31 genes and other relevant diseases.
 Metabolites with KEGG annotations from the merged data set were mapped to KEGG reference pathways, and interaction
 networks were generated in MetaboAnalyst5.0 (p < 0.005).

316		
317		
318		
319		
320		
321		
322		
323		

Page 20 of 27

KEGG pathway

в

Α

Page **21** of **27**

339 340

Figure S10. ANXA1^{-/-} alters gut microbiome under stress exposure. The changes in the fecal microbiota after stress were explored using the Mann-Whitney U test at different taxon levels (A-F, at the phylum, class, order, family, genus, and species levels).

Page 22 of 27

+0

С

347

348

349

abundant taxa between NS controls and S ANXA1^{-/-} mice. Taxonomic cladogram obtained from LEfSe analysis of 16S sequences (relative abundance $\ge 0.5\%$). (Red) taxa enriched in NS samples; (Green) taxa enriched in S samples. The brightness of each dot is proportional to the effect size. **(B)** ANXA1^{-/-} stress-enriched taxa are indicated with a positive LDA score (green), and taxa enriched in non-stress have a negative score (red). Only taxa meeting an LDA significant threshold >2 are shown. **(C)** Cladogram depicting the bacterial OTUs detected in the ANXA1^{-/-} mice's fecal microbiota. Branch colors reflect the different OTUs. The intensity and width of the outer ring reflect the average relative abundance of each OTU across all stress timepoints.

357

358

359

-

Table S8. OTU distribution pattern in fecal microbiome of stressed ANXA1^{-/-} mice

	OTU_ID	taxonomy
ANXA1 ^{-/-} -D4 and D14		
shared	OTU112	pPatescibacteria;cSaccharimonadia;oSaccharimonadales;fSaccharimonadaceae;gCandidatus_Saccharimonas;suncultured_bacterium
	OTU15	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gLachnospiraceae_NK4A136_group;suncultured_bacterium
	OTU28	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae
	OTU33	pBacteroidetes;cBacteroidia;oBacteroidales;fMuribaculaceae;guncultured_bacterium;suncultured_bacterium
	OTU5	pBacteroidetes;cBacteroidia;oBacteroidales;fRikenellaceae;gAlistipes;suncultured_bacterium
	OTU60	pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;gAmbiguous_taxa;sAmbiguous_taxa
	OTU106	pFirmicutes;cClostridia;oClostridiales;fRuminococcaceae;gRuminococcaceae_UCG-014
	OTU146	pBacteroidetes;cBacteroidia;oBacteroidales;fMuribaculaceae
ANXA1 ^{-/-} -D14 Unique	OTU141	pFirmicutes;cClostridia;oClostridiales;fLachnospiraceae;gLachnospiraceae_NK4A136_group
	OTU30	pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;guncultured_bacterium;suncultured_bacterium
	OTU38	pFirmicutes;cClostridia;oClostridiales;fClostridiales_vadinBB60_group;gAmbiguous_taxa;sAmbiguous_taxa
	OTU192	pFirmicutes;cClostridia;oClostridiales

Table S9. Microbial compositional changes in ANXA1^{-/-} mice in relation to different diseases

			Qualitative		
	Disease	Organism	outcome ^a	Response	Method
				Log (ng target DNA/µg	
Saccharimonadia	Bacterial vaginosis	Veillonella	u	total DNA)	qPCR
	Colorectal cancer	Bacteroides	u	Log10	qPCR
	Obesity	Bacteroides	d	Log10	qPCR
	Periodontal disease	Pseudoramibacter alactolyticus	u	Log10	MiSeq sequencing
	Type 2 diabetes	Faecalibacterium prausnitzii	d	Log10	qPCR
Lachnospiraceae	Sjögren syndrome	Stomatobaculum	d	% (prevalence)	16S rRNA sequencing
	Atopic eczema	Coprococcus eutactus	d	% (abundancy)	
	Cirrhosis	Blautia	d	Median abundancy (%)	16S rRNA pyrosequencing
	Short bowel syndrome	Blautia	d	% (abundancy)	MiSeq sequencing
	Non-alcoholic fatty liver disease	Coprococcus	d	% (abundancy)	qPCR
	Sjögren syndrome	Moryella	d	% (abundancy)	16S rRNA sequencing
	Clostridium difficile infection	Anaerostipes	u	% (abundancy)	16S rRNA sequencing
	Type 2 diabetes	Lachnobacterium	d	% (abundancy)	16S rRNA sequencing
Bacteroidales	Autism	Bacteroides coprocola	d	% (abundancy)	bTEFAP
	Autoimmune polyendocrine syndrome				
	type 1	Bacteroides	d	% (abundancy)	16S rRNA sequencing
	Cirrhosis	Rikenellaceae	d	Median abundancy (%)	16S rRNA pyrosequencing
	Colorectal cancer	Prevotella copri	d	% (abundancy)	16S rRNA sequencing
	Constipation	Odoribacter	d	% (abundancy)	16S rRNA sequencing
	Cystic fibrosis	Bacteroides intestinalis	d	% (abundancy)	bTEFAP
	Obesity	Bacteroides	d	Log10	qPCR
	Oral cancer	Porphyromonas gingivalis	d	% (prevalence)	16S rRNA sequencing
	Pervasive developmental disorder NOS	Prevotella copri	d	% (abundancy)	bTEFAP
				Number of identifiable	
	Pouchitis	Parabacteroides	d	sequences	16S rRNA sequencing

376 ^a u: Elevated d: Reduced

AKO Feces-Serum Correlation_Network s-Glucose4 s-Serine s-Glucose3 s-Proline s-Stearic acid s-Oleic acid s-L-5-Oxoproline s-Myo-Inositol2 s-L-Tryptophan s-Threonine s-Sorbitol s-Alanine2 s-Myo-Inositol1 f-L-Tryptophan s-Palmitoleic acid f-Mannose s-Citric acid2 s-L-Methionine f-Manitol f-Gondoic acid f-Phenylalanine s-Myristic acid f-Xylose/Arabinose/Ribose2 f-Urea f-Aspartic acid s-Mannose f-Alanine1 f-Glucose3 f-Linoleic acid s-Sucrose 1-Threonine f-Xanthine f-L-5-Oxoproline f-Tyrosine f-Sorbitol s-Urea f-Leucine/Isoleucine1 f-Ornithine degree s-Valine f-L-Methionine **f**-Serine f-β-Alanine f-Palmitoleic acid f-Glucose2 s-Leucine/Isoleucine1 f-Leucine/Isoleucine2 44.5 -Oleic acid f-Proline s-Alanine1 f-Myo-Inositol2 -f-Myristic acid f-Stearic acid1 f-Myo-Inositol1 44.0 s-Leucine/Isoleucine2 relation f-Alanine2 f-Palmitic acid f-Linolenic acid positive f-Glycerol1 s-Phenylalanine s-Linoleic acid negtive f-Glycine f-Glycerol2 f-Sucrose f-Stearic acid2 -f-Glucose1 f-Glucose4 s-Glycerol1 f-Phosphonic acid f-Xylose/Arabinose/Ribose1 s-Glucose1 s-Citric acid1 f-Arabinose/Xylose/Ribose f-Valine s-Linolenic acid s-Ornithine s-Palmitic acid s-Glycine s-Glucose2 s-Tyrosine s-Lauric acid s-Xanthine s-Gondoic acid s-Phosphonic acid s-Glycerol2 s-Docosahexaenoic acids-L-Ornithine s-Aspartic acid s-Lactic acid f-Lactic acid D С

В

378

Α

379

- **Figure S12. Correlation analysis of ANXA1**^{-/-} feces and serum metabolites. (A) Net map to display the correlations of fecal and
- 381 serum metabolites in stressed ANXA1^{-/-} mice. (B-D) Variable importance of metabolites from serum samples from stressed
- 382 ANXA1^{-/-} mice was analyzed using three machine learning approaches. From left to right, GLM, GBM, and DRF with 3-fold cross-
- validation; training AUC = 1 and testing AUC = 1.

384

385

Figure S13. ANXA1 deficiency influences fatty acid synthesis. (A) Real-time PCR analysis was performed using cDNA prepared from 4T1 WT and Anxa1 -/- cells. The data shown are representative of three independent experiments and expressed as the mean ± SD. ns>0.05, paired t-test. (B) Western blot analysis of fatty acid synthesis protein expression in 4T1 WT and Anxa1 -/-cells. Anti-β-Actin antibody for loading control. AKO, Anxa1 -/- cells.

Figure S14. ANXA1 deficiency influences DNA methylation and demethylation. (A) Real-time PCR analysis was performed using cDNA prepared from 4T1 WT and Anxa1 -/- cells. The data shown are representative of three independent experiments and expressed as the mean ± SD. * p<0.05, paired t-test. (B) Western blot analysis of methylation and demethylation protein expression in 4T1 WT and Anxa1 -/- cells. Anti-β-Actin antibody for loading control. AKO, Anxa1 -/- cells.

Figure S15 Pair-wise gene expression correlation analysis for Anxa1 and selected hub genes (OXT and PLIN1) using breast cancer TCGA and GTEx expression data in GEPIA.

Page **27** of **27**