Supplementary Information

Figure S2. Tumor-suppressing capability of OAC2-treated tumor cell-derived CM. The double asterisk indicates p < 0.01. CN = control, and CM = conditioned medium. (A-C) Reduction in EdU-based proliferation, scratch-based migration, and transwell invasion in 4T1.2 cells by OAC2 (5 μ M)-treated 4T1.2 tumor cell-derived CM. (D-E) Reduction in EdU-based proliferation and scratch-based migration in EO771 cells by OAC2-treated 4T1.2 tumor cell-derived CM. (F-G) Reduction in EdU-based proliferation and scratch-based migration in EdU-based proliferation and scratch-based migration in MDA-MB-231 breast cancer cells by OAC2-treated 4T1.2 tumor cell-derived CM.

CMs in EO771 mammary tumor cells. The double asterisk indicates p < 0.01. CN = control, Oct4 = Oct4 plasmids, c-Myc = c-Myc plasmids, C+O = c-Myc and Oct4, and CM = conditioned medium. (**A**-**B**) Reduction in MTT-based viability and scratch-based migration of EO771 cells by Oct4- and c-Myc-overexpressing 4T1.2 tumor cell-derived CMs. (**C-D**) Inhibition MTT-based viability and scratch-based migration of EO771 mammary tumor cells by c-Myc/Oct4-overexpressing EO771 tumor cell-derived CM. (**E-F**) Inhibition of MTT-based viability and transwell invasion of TRAMP prostate tumor cells by c-Myc/Oct4-overexpressing TRAMP tumor cell-derived CM.

A5 osteocytes, Oct4 = Oct4 plasmids, c-Myc = c-Myc plasmids, and CM = conditioned medium. (A-B) Reduction in MTT-based viability and scratch-based migration of 4T1.2 cells by Oct4- and c-Myc-overexpressing MLO-A5 osteocytes-derived CM.

Figure S6. Effects of the Yamanaka factors (Oct4, c-Myc, Sox2, and Klf4) on Kdm3a and the selected tumor-promoting genes (Lrp5, MMP9, Runx2, TGF β , and Snail). CN = control, CM = conditioned medium, Oct4 = Oct4 plasmids, siOct4 = Oct4 siRNA, c-Myc = c-Myc plasmids, C+O = c-Myc and Oct4, Sox2 = Sox2 plasmids, and Klf4 = Klf4 plasmids. (A) Plasmid-based overexpression and siRNA-based silencing of Yamanaka factors to generate tumor cell-derived CM. (B) Downregulation of Kdm3a and the tumor-promoting genes by Oct4 overexpression and their upregulation by Oct4 silencing in 4T1.2 cells. (C-D) Downregulation of Kdm3a and the tumor-promoting genes by c-Myc and Oct4 overexpression, as well as OAC2 treatment in 4T1.2 cells. (E) No detectable change in the expression of Kdm3a and the selected tumor-promoting genes by the overexpression of Sox2 and Klf4 in 4T1.2 cells.

Oct4 in 4T1.2 cells.

Figure So. Effects of shehening enolase 1 (Eno1), Hsp90ab1 (Hsp), Ee12, and vinculin (VCL) in 411.2 cells. CN = control, CM = conditioned medium, and si = siRNA. (**A-B**) Elevation of transwell invasion of 4T1.2 tumor cells by CM, which was derived from 4T1.2 cells treated with siRNAs specific for Eno1, Hsp90ab1, Eef2, and VCL. (**C**) Stimulation of scratch-based migration of 4T1.2 tumor cells by 4T1.2 cell-derived CM, which was treated with siRNAs specific to Eno1, Hsp90ab1, Eef2, and VCL. (**D**) Elevation of the levels of Lrp5, MMP9, Runx2, TGF β , and Snail in 4T1.2 cells in response to 4T1.2 cell-derived CM, treated with enolase 1 siRNA, Hsp90ab1 siRNA, Eef2 siRNA, and vinculin siRNA, respectively.

recombinant protein. (**D**) Reduction in the levels of Lrp5, MMP9, Runx2, TGF β , and Snail by Hsp90ab1 recombinant protein. (**E**)Reduction in c-Myc in 4T1.2 cells by Eno1 recombinant proteins.

Num	Gene names	Mol[kDa]	CN	Oct4	OAC2	Num	Gene names	Mol[kDa]	CN	Oct4	OAC2
1	Hspa8	70.9	74	328	250	51	Tpm3:Tpm3-rs7	29.0	20	38	37
2	Eno1	47.1	61	296	236	52	logap1	188.8	0	16	18
3	Pkm	57.8	51	192	166	53	Prdx1	22.2	7	26	22
4	Ppia	18.0	44	180	128	54	Fkbp4	51.6	3	24	15
5	Hspa5	72.4	46	122	158	55	Lgals3	19.9	14	39	22
6	Hsp90ab1	83.3	37	121	120	56	Mdh2	35.6	0	13	19
7	Aldoa	39.4	36	123	105	57	Sptan1	282.9	0	14	18
8	Lgals1	14.9	19	99	87	58	Hnrnpa2b1	37.4	14	31	29
9	Flna	280.5	31	102	91	59	Cmpk2	50.0	0	26	5
10	Eef2	95.3	13	80	62	60	Ak2	26.5	4	22	16
11	Tpi1	32.2	12	72	55	61	Cct8;Cctq	59.6	0	20	10
12	Actn4	105.0	9	63	54	62	ldh1	46.7	2	15	18
13	Vcp	89.3	9	66	47	63	Cct3	60.6	2	18	15
14	Actg1	41.8	32	70	88	64	Uba1	117.8	0	16	13
15	Pgk1	44.6	8	59	48	65	Gdi2	50.5	0	17	12
16	FInb	277.8	5	61	38	66	Rplp2	11.7	2	23	10
17	Pfn1	14.9	9	68	39	67	Hist1h2bj;Hist1h2bk	13.6	11	25	25
18	Plec	506.5	13	63	46	68	Psma7;Psma8	27.9	2	16	16
19	Ldha	36.5	13	63	46	69	Mtap	31.1	4	20	15
20	Nme 2	30.2	17	67	43	70	Wdr1	66.4	2	19	12
21	Eef1a1	50.1	29	73	59	71	G3bp1	56.2	0	17	10
22	Myh9	226.4	13	36	52	72	Hist1h2ah;Hist1h2aa	13.7	8	20	22
23	Vcl	116.7	10	43	39	73	Grn	63.5	0	12	14
24	Hsp90aa1	84.8	9	42	36	74	Srsf1	28.3	0	13	13
25	Calm1	16.8	18	51	44	75	Pgd	53.3	2	18	12
26	Cfl1	18.6	13	47	38	76	Psme1	27.4	0	17	9
27	GAPDH;Gapdh;m3839	35.8	17	52	40	77	Lap3	56.1	0	18	8
28	Lmna	74.2	30	67	50	78	Atic	64.2	3	14	17
29	Pdia3	56.7	15	47	39	79	Eef1g	50.1	6	22	15
30	Gpi;Gpi1	62.8	2	32	25	80	Ahcy	47.7	0	16	9
31	Msn	67.7	19	50	41	81	Cltc;mKIAA0034	192.0	0	11	13
32	Pgam1	28.8	6	36	28	82	Anxa2	38.6	6	18	18
33	Arhgdia	23.4	11	38	35	83	Serpinb6a;Serpinb6	42.6	0	13	11
34	Fasn	272.4	3	27	29	84	Pnp;Pnp2	32.3	0	21	3
35	Tln1	272.1	0	27	23	85	Psat1	40.5	2	15	12
36	Tuba1b;Tuba1c;Tuba1a	50.2	16	35	46	86	Pls3	70.6	0	13	10
37	Tkt	67.6	16	44	37	87	Ctsl	37.6	42	44	62
38	Ywhae	29.2	11	39	31	88	Ncl	76.9	15	24	28
39	TagIn2	22.4	7	37	24	89	Ctsb	37.3	3	16	12
40	Dpysl2	62.3	8	34	27	90	Pa2g4	43.7	2	15	11
41	Prdx 6	24.9	9	40	23	91	Ckb	42.7	0	13	9
42	FInc	291.1	0	25	16	92	Got1	46.2	0	14	8
43	Gm 1821;Ubc;Uba52;Ubb	17.2	23	48	38	93	Cct5	59.6	0	14	8
44	Eif5a;Eif5a2	16.3	6	35	17	94	Sptbn1	274.2	0	10	11
45	Actn1	103.1	3	24	21	95	Mif	12.5	7	18	17
46	Hspa4	94.2	11	35	26	96	Gstp1;Gstp2	23.6	2	14	11
47	Ywhaz	27.8	12	34	28	97	Eprs	170.0	0	12	9
48	Pabpc1	70.7	2	27	15	98	Hmga1	11.6	2	15	10
49	Stip1	62.5	10	37	21	99	Cct2	57.5	0	14	7
50	Tubb5	49.7	12	22	37	100	Vars	140.2	2	17	8

Suppl. Table 1. List of 100 proteins that were expressed higher in Oct4-overexpressing and OAC2-treated CMs than the control CM in mass spectrometry-based proteomics analysis.

Of note, MS/MS counts were used for the relative protein quantitation. The proteins identified with at least 1 unique peptide and 2 MS/MS counts were considered for the final analysis.