

#### Figure S1. Expression of key markers at each differentiation stage of GS iPSCs into HLCs.

(A) Gene expression of pluripotency (*OCT4* and *NANOG*) and definitive endoderm (DE) markers (*SOX17*, *GATA4* and *FOXA2*) in DE cells (n = 3). GS iPSCs were used as control, and the expression is normalized to that of *ACTB*. (B) Immunofluorescence staining of SOX17 and GATA4 in DE cells at the endpoint of stage I (n = 5); scale bar: 100  $\mu$ m. (C) RT qPCR analysis of hepatoblast markers (*AFP*, *HNF4A*, *CK18*, *CK19* and *TBX3*) at the stage II endpoint (n = 3). GS iPSCs were used as control, and the expression is normalized to that of *ACTB*. (D) Immunofluorescence staining of AFP and HNF4A in hepatoblasts at the endpoint of stage II (n = 5); scale bar: 50  $\mu$ m. (E) Representative immunoblots and quantification of OCT4, SOX17, AFP and ALB-like proteins in different stages of GS HLC differentiation. ACTB was used as the loading control (n = 3). (F) Representative dot blot of secreted ALB-like proteins in the culture supernatant during differentiation (n = 3). Data are expressed as mean  $\pm$  SEM; Student's *t*-test comparing to GS iPSCs (A, C and E); one-way ANOVA followed by Dunnett multiple-comparisons test versus GS iPSCs (F); *P* values are indicated.



Figure S2. Gating strategy of flow cytometry in characterizing GS iPSCs and HLCs. Gating strategy of ALB-like (A) and CYP3A4 (B) in GS iPSCs and GS HLCs analyzed by flow cytometry. (C) Percentage of ALB-like- and CYP3A4-positive cells in GS iPSCs and HLCs (n = 3). Data are expressed as mean  $\pm$  SEM; Student's *t*-test between two comparisons; *P* values are indicated.



**Figure S3. Metabolomic profiles of GS HLCs and human donor livers.** (A) Heatmap showing differential metabolites of GS HLCs from the 37 °C, 4 °C 4 h and 4 °C 4 h-37 °C 2 h groups (n = 3 per group). (B) Heatmap showing differential metabolites of human donor livers during cold storage (CS) versus post-transplantation (Rewarmed; n = 10 per group).



# **Figure S4**. The Metabolic pathways and temperature/oxygen supply-induced changes of selected metabolites. (A-C) Schematic diagrams showing pathways of selected metabolites involved in mitochondrial metabolism (A, 5-aminolevulinate; B, L-Carnosine; C, L-Glutamic acid). (D) Violin Plots showing abundance of 5-aminolevulinate, L-carnosine and L-glutamic acid in GS HLCs at annotated conditions.





Е

BODIPY DAPI Merge



F

D

ALB HNF4A



# Figure S5. Differentiation of human embryonic stem cells (ESCs) into HLCs. (A)

Representative images showing sequential cellular morphological changes during human ESC differentiation into HLCs; scale bar: 100  $\mu$ m. (**B**) PAS staining of glycogen storage in human HLCs (n = 5); scale bar: 50  $\mu$ m. (**C**) Analysis of ICG uptake (left) and overnight release (right, n = 5); scale bar: 100  $\mu$ m. (**D**) BODIPY staining of lipid droplets in human HLCs (n = 5); scale bar: 20  $\mu$ m. (**E**) Representative immunoblots of human ALB and ACTB proteins in the endpoint of HLC differentiation (n = 3). (**F**) Immunofluorescence staining of HNF4a and ALB in human HLCs (n = 3); scale bar: 50  $\mu$ m. (**G**) Percentage of ALB-positive cells in human ESC and HLC cultures analyzed by flow cytometry (n = 3).



# Figure S6. Gating strategy of flow cytometry in characterizing propidium iodide

(PI)-positive cells. Gating strategy of PI in GS (A) and human (B) HLCs at indicated conditions analyzed by flow cytometry. (C) Quantification of PI-positive cells in GS and human HLCs (n = 3). Data are expressed as mean  $\pm$  SEM; Student's t-test between two comparisons; *P* value is indicated.





**Figure S7. Effects of 5-ALA supplement to human HLCs.** (**A**) Schematic diagram of cold incubation and rewarming of human HLCs with or without 5-ALA (see **Methods**). Incubation with 1 mM 5-ALA at room temperature (RT) for 10 min only showed little effect on NAD+/NADH ratio (**B**), NADP+/NADPH ratio (**C**) and ATP level (**D**) in human HLCs (n = 3). Data are expressed as mean ± SEM; Student's *t*-test between two comparisons; NS: not significant.



# Figure S8. Dose-effects of 5-ALA treatments on mitochondrial ROS and mitochondrial membrane potential ( $\Delta \psi m$ ) in human HLCs during rewarming. (A) Left: automatic high-content imaging of MitoNeoD fluorescence in human HLCs during rewarming; scale bars: 100 µm; Right: quantification of MitoNeoD intensity per cell (n = 3 experiments). (B) Left: live imaging of JC-1 aggregate- and monomer-fluorescence to assess $\Delta \psi m$ in human HLCs at annotated conditions during rewarming; scale bars: 20 µm; Right: quantification of JC-1 aggregate/monomer intensity (n = 3 experiments). Data are expressed as mean ± SEM; one-way ANOVA followed by Dunnett multiple-comparisons test versus ctrl group; *P* values are indicated.







Α

**Figure S9. DHODH activities in human HLCs.** (A) Rewarming-enhanced DHODH activity in human HLCs following 4-h cold incubation (n = 3). (B) Treatment with 1mM 5-ALA had no significant effect on DHODH activity in rewarmed human HLCs (n = 3). Data are expressed as mean  $\pm$  SEM; Student's *t*-test between two comparisons; *P* value is indicated; NS: not significant.

| Sample | Age     | Gender       | Height        | Weight | BMI            | Cause of     | Previous       |
|--------|---------|--------------|---------------|--------|----------------|--------------|----------------|
| number |         |              | (cm)          | (kg)   | (kg/m²)        | death        | condition      |
| 1      | 35      | Male         | 165           | 70     | 25.7           | Stroke       | Not reported   |
| C      | 11      | Mala         | 125           | 40     | 21.0           | Head         | Not reported   |
| 2      | 11      | Maie         | 155           | 40     | 21.9           | trauma       | Not reported   |
| 3      | 25      | Male         | 174           | 60     | 19.8           | Stroke       | Not reported   |
| 4      | 42      | Female       | 158           | 58     | 23.2           | Stroke       | Hypertension   |
| F      | 15      | Mala         | 172           | 75     | 25.1           | Head         | Not non onto d |
| 3      | 45      | Male         | 1/3           | /3     | 23.1           | trauma       | Not reported   |
| 6      | 25      | Mala         | 172           | (0     | 20.0           | Head         | Not non onto d |
| 6      | 25      | 25 Male      | 1/3           | 60     | 20.0           | 20.0 trauma  | Not reported   |
| 7      | 39 Male | ) ) / [-1- 1 | 1 1(5 (0 22.0 | Head   | Not non onto d |              |                |
| /      |         | 165          | 00            | 22.0   | trauma         | Not reported |                |
| 8      | 49      | Male         | 175           | 78     | 25.5           | Stroke       | Hypertension   |
| 9      | 57      | Male         | 170           | 68     | 23.5           | Stoke        | Not reported   |
| 10     | 32      | Female       | 152           | 50     | 21.6           | Anoxia       | Not reported   |

Table S1. Characteristics of human liver donors.

BMI, body mass index.

# Table S2. Other reagents.

| Reagents                                                    | Catalog #       | Supplier             |
|-------------------------------------------------------------|-----------------|----------------------|
| Matrigel hESC-Qualified Matrix                              | 354277          | Corning, USA         |
| mTeSR1 Complete Kit                                         | 85850           | Stem Cell            |
|                                                             | 83850           | Technologies, Canada |
| Human Hepatocyte Medium &<br>Bullet kit (CC-3199 & CC-4182) | CC-3198         | Lonza, Switzerland   |
| Fetal Bovine Serum                                          | 1099141C        | Thermo, USA          |
| Hibernate-A medium                                          | A1247501        | Thermo, USA          |
| low-glucose Dulbecco's<br>Modified Eagle Medium             | C11885500BT     | Thermo, USA          |
| Accutase Cell Dissociation<br>Reagent                       | A1110501        | Thermo, USA          |
| 6-well cell culture plate                                   | 353046          | Falcon, USA          |
| RPMI 1640 Medium                                            | 11875093        | Thermo, USA          |
| B-27 Supplement(50X)                                        | 17504044        | Thermo, USA          |
| CHIR-99021 (CT99021)                                        | S1263           | Selleck, USA         |
| Y27632                                                      | HY-10071        | MCE, USA             |
| Activin A                                                   | AF-120-14E-1000 | PeproTech, USA       |
| Advanced F12                                                | 16234010        | Thermo, USA          |
| GlutaMAX Supplement                                         | 35050061        | Thermo, USA          |
| Penicillin-Streptomycin                                     | 15140-122       | Thermo, USA          |

| Human HGF                                                    | 100-39      | PeproTech, USA     |
|--------------------------------------------------------------|-------------|--------------------|
| Oncostatin M                                                 | 300-10      | PeproTech, USA     |
| Dexamethasone                                                | D4902       | Sigma, USA         |
| Paraformaldehyde                                             | 30525-89-4  | Sigma, USA         |
| Bovine serum albumin (BSA)                                   | V900933     | Sigma, USA         |
| Triton X-100                                                 | T8787       | Sigma, USA         |
| ALEXA FLUOR 488 DONKEY                                       | A21206      | Invitrogen, USA    |
| ALEXA FLUOR 594 DONKEY                                       | A21203      | Invitrogen, USA    |
| ALEXA FLUOR 647 DONKEY                                       | A31573      | Invitrogen, USA    |
| DAPI                                                         | D9542       | Sigma, USA         |
| Hoechst 33342                                                | H3570       | Thermo, USA        |
| RNeasy Mini Kit                                              | 74104       | Qiagen, Germany    |
| cDNA Reverse Transcription Kit                               | 11117831001 | Roche, Germany     |
| AceQ Universal SYBR qPCR<br>Master Mix                       | Q511-02     | Vazyme, China      |
| Mammalian protein extraction<br>Reagent                      | 78501       | Thermo , USA       |
| Protease Inhibitor Cocktail                                  | 87786       | Thermo, USA        |
| Pierce BCA Protein Assay Kit                                 | 23227       | Thermo , USA       |
| Immobilon-P PVDF, 0.45 μm                                    | IPVH00010   | Millipore, Germany |
| Skim milk                                                    | 232100      | BD, USA            |
| Immobilon Western<br>Chemiluminescent HRP Substrate<br>(ECL) | P90719      | Millipore, Germany |
| PAS staining kit                                             | 3952        | Sigma, USA         |
| Indocyanine Green                                            | 1340009     | Sigma, USA         |
| BODIPY 493/503                                               | D3922       | Thermo, USA        |
| Cell Counting Kit-8                                          | CK04        | Dojindo, Japan     |
| Propidium iodide                                             | P4170       | Sigma, USA         |
| JC-1                                                         | C2005       | Beyotime, China    |
| MitoNeoD                                                     | 563761      | Medkoo, USA        |
| NAD/NADH-Glo Assay kit                                       | G9071       | Promega, USA       |
| NADP/NADPH-Glo Assay kit                                     | G9081       | Promega, USA       |
| Luciferase Assay System                                      | E1500       | Promega, USA       |
| DHO                                                          | D7128       | Sigma, USA         |
| DCPIP                                                        | D1878       | Sigma, USA         |
| Rotenone                                                     | R8875       | Sigma, USA         |

| Antimycin A                                               | A8674       | Sigma, USA                        |
|-----------------------------------------------------------|-------------|-----------------------------------|
| NaN <sub>3</sub>                                          | S2002       | Sigma, USA                        |
| Cytochrome c                                              | C2867       | Sigma, USA                        |
| decylubiquinone                                           | D7911       | Sigma, USA                        |
| Electron transport chain Complex<br>IV activity assay kit | BC0940      | Acmec, China                      |
| 5-Aminolevulinic acid<br>hydrochloride                    | HY-N0305    | MCE, USA                          |
| Krebs-Henseleit bicarbonate buffer                        | K3753       | Sigma, USA                        |
| DMEM/F12                                                  | 36254       | Stem Cell<br>Technologies, Canada |
| Knockout Serum Replacement                                | A3181502    | Thermo , USA                      |
| Non-Essential Amino Acids                                 | 11140-050   | Thermo , USA                      |
| L-Glutamine                                               | 25030-081   | Thermo , USA                      |
| L-Ascorbic acid                                           | HY-B0166    | MCE, USA                          |
| b-FGF                                                     | 233-FB-025  | R&D , USA                         |
| University of Wisconsin solution                          | SPS-1       | Organ Recovery<br>Systems, USA    |
| In Situ Cell Death Detection Kit                          | 11684795910 | Roche, USA                        |
| p-dimethyl aminobenzaldehyde                              | 100-10-7    | Sigma, USA                        |
| glacial acetic acid                                       | 64-19-7     | Sigma, USA                        |
| perchloric acid                                           | 7601-90-3   | Sigma, USA                        |
| porphobilinogen                                           | 487-90-1    | Sigma, USA                        |
| Amicon Ultra-15 Centrifugal Filter<br>Unit                | UFC9050     | Millipore, Germany                |

# Table S3. Sequences of qPCR primers and siRNAs.

| qPCR target | 5' primer            | 3' primer            |  |
|-------------|----------------------|----------------------|--|
| genes       |                      |                      |  |
| OCT4        | CAAACGACCATCTGCCGCT  | GGTTCTCATTGTTGTCTGCT |  |
|             | TT                   | TCCTC                |  |
| NANOG       | GGAGCAATCAGACCTGGA   | CTCCAAGACTGGCTATTCC  |  |
|             | ACAAC                | AAGACT               |  |
| SOX17       | ACCTTCACAATGCTGAGTT  | GGTACTTGTAGTTGGGATG  |  |
|             | GAG                  | GTCT                 |  |
| GATA4       | TACGCATCTCCTGTCAGCC  | TGACTCTCAGCCAAGACCA  |  |
|             | AGT                  | GACT                 |  |
| FOXA2       | CGCCTTCAATCATCCTTTCT | CTGTTCGTAGGTCTTGAGG  |  |
|             | CCATC                | TCCATT               |  |
| AFP         | GGCATGAAGTGAATCCTGT  | TGGTGGAGGAACATAGGTC  |  |

|           | GAACC                | TCATCT              |  |
|-----------|----------------------|---------------------|--|
| HNF4A     | GGGTGTCCATTCGCATCCT  | GAGGCAGGCGTACTCATTG |  |
|           | TGA                  | TCAT                |  |
| CK18      | AGAACCGAGAGGAGCTGG   | AAGGACTGGACTGTGCGTC |  |
|           | ACAA                 | TCA                 |  |
| СК19      | GGCATGAAGTGAATCCTGT  | TGGTGGAGGAACATAGGTC |  |
|           | GAACC                | TCATCT              |  |
| TBX3      | AGGAGACAGGAACTTCGG   | AGTGGACACTGCTGGTGAG |  |
|           | ATGAGT               | GAA                 |  |
| ALB       | GGTGATATGGCTGACTGCT  | AGTGGAGGGATGGTAGGA  |  |
|           | GTG                  | GTATCT              |  |
| AAT       | CACCACTGCTCTCTTCATTC | GCTCAGTCCACTTGTCCAA |  |
|           | TTCCT                | ATTGTC              |  |
| APOA1     | CGGCATTTCTGGCAGCAAG  | GCAGAGGTTTCAAATTGGG |  |
|           | ATG                  | TCACA               |  |
| TTR       | GCTTCTCACCATCTACTCCT | TTCACAGACACCTCCACAG |  |
|           | CCTC                 | CAG                 |  |
| #1siALAS1 | CAGCAACGTCTTCTGCAAA  |                     |  |
| #2siALAS1 | CCAATGACTCAACCCTCTT  |                     |  |

# Table S4. Primary antibodies.

| Antibody | Catalog # | Supplier   | Concentration    |
|----------|-----------|------------|------------------|
| SOX17    | sc-130295 | Santa Cruz | IF 1:50 WB 1:200 |
| GATA4    | sc-25310  | Santa Cruz | IF 1:50 WB 1:200 |
| HNF4a    | 3113      | CST        | IF 1:1000        |
| AFP      | sc-51506  | Santa Cruz | IF 1:50 WB 1:200 |
| AAT      | sc-59438  | Santa Cruz | IF 1:200         |
| ALB      | CLF301-2  | CEDARLANE  | IF 1:1000        |
| ALB      | sc-271605 | Santa Cruz | WB 1:200         |
|          |           |            | FCM 1:200        |
| OCT4     | sc-5279   | Santa Cruz | WB 1:200         |
| ACTB     | 4970S     | CST        | WB 1:1000        |
| CYP3A4   | Sc-53850  | Santa Cruz | FCM 1:200        |
| 4-HNE    | Ab46545   | Abcam      | WB 1:1000        |

# Supplementary methods

# **RNA sequencing**

Total RNA was prepared from isolated perfused rat livers in UW solution group or UW + 5-ALA group. A total amount of 1µg RNA per liver was used as input material. The NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB, USA) was used to generate cDNA libraries according to manufacturer's protocol and index codes were added to attribute sequences to each sample. The products were purified (AMpure XP system) and library quality was assessed on Bioanalyzer 2100 system (Agilent USA). Clustering of the index-coded samples was performed using TruSeq PE Cluster Kit v3-cBot-HS (Illumia, USA) on cBot Cluster Generation System. After cluster generation, the prepared libraries were sequenced on an Illumina Novaseq platform and 150 bp paired-end reads were generated.

# **Quality control**

Raw data (raw reads) of fastq format were firstly processed through in-house perl scripts. In this step, clean data (clean reads) were obtained by removing adapter, and excluded reads containing ploy-N and low-quality from raw data. At the same time, Q20, Q30 and GC content the clean data were calculated. All the downstream analyses were based on the clean data with high quality.

#### **Reads mapping to the reference genome**

Reference genome and gene model annotation files were downloaded from ensemble website directly[1]. Index of the reference genome was built using Hisat2 v2.0.5 and paired-end clean reads were aligned to the reference genome using Hisat2 v2.0.5[2].

# Quantification of gene expression level

For quantification of gene expression, reads pairs were excluded that have their two ends mapping to different chromosomes or mapping to same chromosome but on different strands, and only count read pairs that have both ends aligned. Only the reads aligned to exons, and with the mapping quality score larger than 10 were counted using the featureCounts v2.0.1 package[3].

# **Differential expression analysis**

Differential expression analysis was performed by DESeq2 R package (1.26.0)[4] using a model based on the negative binomial distribution. The resulting P-values were adjusted using the Benjamini and Hochberg's approach for controlling the false discovery rate.

# Heatmap and Enrichment analysis

Genes with the adjusted P-value < 0.05 and  $\log_2$ Foldchange > 0.5 were considered to be significantly differentially expressed. Heatmap of genes were plotted using R, and functional enrichment analyses of differentially expressed genes were performed by the clusterProfiler R package(3.14.3)[5].

#### References

1. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018; 46: D754-D61.

2. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37: 907-15.

3. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30: 923-30.

4. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15: 550.

5. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16: 284-7.