661 Patients with advanced gastric cancer who underwent curative resection between january 2010 and december 2018

309 Fresh gastric tumor and adjacent nontumor tissues

352 Paraffin-embedded gastric tumor and adjacent nontumor tissues

123 Paraffin-embedded tumor tissues from external cohort

475 IHC staining of FABP4,

 CADM3 and HDAC1Clinical prognostic and correlation analysis

Identified FABP4 biomarker for further studies

B

Detect the expression of FABP4

D

C

Figure S3
AAPDH

B MGC-803 BGC-823
C AGS
MGC-803

MGC-803

K

E

C

F
\rightarrow Lenti-scr -- Lenti-shFABP4

Figure S5

\square

Figure S6

A

B

C

Figure S7
A
B

Ctrl	+	+	-	-
FABP4	-	-	+	+
siCtrl	+	-	+	-
PAR-Y	-	+	-	+

External cohort ($\mathrm{n}=123$)

Relative HDAC1 expression

$$
4-1020
$$

HDAC1 IHC score

$$
-
$$

I CNV \rightarrow Mutation \rightarrow Methylation $\rightarrow \begin{aligned} & \text { Histone } \\ & \text { deacetylation }\end{aligned}$

[^0][^1]

(1)

r

Table S1. Primers used for qRT-PCR

Name	Sequence (5'-3')
FABP4-F	ACTGGGCCAGGAATTTGACG
FABP4-R	CTCGTGGAAGTGACGCCTT
CADM3-F	GCTCTGTGAACCATGAATCTCT
CADM3-R	ATCATCGCAGTTGGTGTGTATA
GAPDH-F	TGCACCACCAACTGCTTAGC
GAPDH-R	GGCATGGACTGTGGTCATGAG

Table S2. Clinical characteristics and FABP4 expression of 352 gastric cancer patients in internal cohort and 123 gastric cancer patients in external validation cohort.

Characteristic		Internal cohort					External validation cohort				
		Total (case [\%])	FABP4 low (case [\%]	FABP4 high (case [\%])	$\chi 2$	\boldsymbol{P}	Total (case [\%])	FABP4 low (case [\%])	FABP4 high (case [\%]	$\chi 2$	\boldsymbol{P}
Age (years)					0.205	0.651				0.168	0.682
	<65	$\begin{aligned} & 205 \\ & {[58.2]} \end{aligned}$	$\begin{aligned} & \hline 122 \\ & {[34.7]} \end{aligned}$	$\begin{aligned} & 83 \\ & {[23.6]} \end{aligned}$			$\begin{aligned} & 74 \\ & {[60.2]} \end{aligned}$	$\begin{aligned} & 48 \\ & {[39.0]} \end{aligned}$	$\begin{array}{\|l\|} \hline 26 \\ {[21.1]} \end{array}$		
	≥ 65	$\begin{aligned} & 147 \\ & {[41.8]} \end{aligned}$	$\begin{aligned} & \hline 91 \\ & {[25.9]} \\ & \hline \end{aligned}$	56 [15.9]			$\begin{aligned} & \hline 49 \\ & {[39.8]} \end{aligned}$	$\begin{aligned} & \hline 30 \\ & {[24.4]} \end{aligned}$	$\begin{aligned} & 19 \\ & {[15.5]} \end{aligned}$		
Gender					0.013	0.908				0.001	0.975
	Female	$\begin{aligned} & \hline 90 \\ & {[25.6]} \\ & \hline \end{aligned}$	54 [15.3]	$\begin{aligned} & \hline 36 \\ & {[10.2]} \end{aligned}$			$\begin{aligned} & 33 \\ & {[26.8]} \end{aligned}$	21 [17.1]	$\begin{aligned} & 12 \\ & {[9.8]} \end{aligned}$		
	Male	$\begin{aligned} & 262 \\ & {[74.4]} \end{aligned}$	$\begin{aligned} & 159 \\ & {[45.2]} \end{aligned}$	$\begin{aligned} & 103 \\ & {[29.3]} \end{aligned}$			$\begin{aligned} & 90 \\ & {[73.2]} \end{aligned}$	$\begin{aligned} & 57 \\ & {[46.3]} \end{aligned}$	$\begin{aligned} & 33 \\ & {[26.8]} \end{aligned}$		
BMI					0.919	0.338				/	/
	≤ 25	$\begin{aligned} & \hline 292 \\ & {[83]} \end{aligned}$	$\begin{aligned} & \hline 180 \\ & {[51.1]} \end{aligned}$	$\begin{aligned} & \hline 112 \\ & {[31.8]} \\ & \hline \end{aligned}$			/	/	/		
	>25	$\begin{aligned} & \hline 60 \\ & {[17]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 33 \\ & {[9.4]} \end{aligned}$	$\begin{aligned} & \hline 27 \\ & {[7.7]} \end{aligned}$			/	/	/		
Tumor size (mm)					9.507	0.002*				1.225	0.268
	<50	$\begin{aligned} & 182 \\ & {[51.7]} \end{aligned}$	$\begin{aligned} & 96 \\ & {[27.3]} \end{aligned}$	$\begin{aligned} & \hline 86 \\ & {[24.4]} \end{aligned}$			$\begin{aligned} & 14 \\ & {[11.4]} \end{aligned}$	7 [5.7]	7 [5.7]		
	≥ 50	$\begin{aligned} & 170 \\ & {[48.3]} \end{aligned}$	$\begin{aligned} & \hline 117 \\ & {[33.2]} \\ & \hline \end{aligned}$	53 [15.1]			$\begin{aligned} & 109 \\ & {[88.6]} \end{aligned}$	$\begin{aligned} & 71 \\ & {[57.7]} \end{aligned}$	$\begin{aligned} & 38 \\ & {[30.9]} \end{aligned}$		
Tumor location					0.879	0.830				4.680	0.197
	Upper	$\begin{aligned} & 105 \\ & {[29.8]} \end{aligned}$	67 [19]	$\begin{aligned} & 38 \\ & {[10.8]} \end{aligned}$			39 [31.7]	21 [17.1]	18 [14.6]		
	Middle	60 [17]	$\begin{aligned} & 34 \\ & {[9.7]} \end{aligned}$	$\begin{aligned} & \hline 26 \\ & {[7.4]} \end{aligned}$			$\begin{aligned} & 37 \\ & {[30.1]} \end{aligned}$	24 [19.5]	$\begin{aligned} & 13 \\ & {[10.6]} \end{aligned}$		
	Low	$\begin{aligned} & 147 \\ & {[41.8]} \end{aligned}$	88 [25]	59 [16.8]			$\begin{aligned} & 46 \\ & {[37.4]} \end{aligned}$	$\begin{aligned} & 33 \\ & {[26.8]} \end{aligned}$	$\begin{aligned} & 13 \\ & {[10.6]} \end{aligned}$		
	Overlap	$\begin{aligned} & 40 \\ & {[11.4]} \end{aligned}$	$\begin{aligned} & 24 \\ & {[6.8]} \end{aligned}$	$\begin{aligned} & 16 \\ & {[4.5]} \end{aligned}$			$\begin{aligned} & 1 \\ & {[0.8]} \end{aligned}$	0 [0]	1 [0.8]		

$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { Differentiation } & & & & 9.190 & 0.02^{*} & & & & 4.508 & 0.034^{*} \\ \hline & \text { Well/Moderately } & \begin{array}{l}133 \\ {[37.8]}\end{array} & 67[19]\end{array} \begin{array}{l}66 \\ {[18.8]}\end{array}\right]$
$* P<0.05$ was considered significant

Supplementary Figure Legends

Figure S1. Flow diagram of the study. (A) Patient enrolment and study overview. (B) The expression of FABP family members in RNA-sequence. (C) IHC positive control for FABP from 3 cases of GC. Scale bars, $100 \mu \mathrm{~m}$.

Figure S2. FABP4 expression and prognostic value in human GC. (A) KaplanMeier survival analysis of FABP4 expression in the internal cohort of patients with GC. The log-rank test was used to determine the P values. (B) Univariate and multivariate regression analyses were performed in the internal cohort ($\mathrm{n}=352$). (C-D) KaplanMeier and univariate and multivariate regression analyses were performed in the external cohort $(\mathrm{n}=123)$.

Figure S3. Biological effects of FABP4 on GC cells in vitro. (A-C) Western blotting analysis of the protein levels of FABP4 and FABP5 in various GC cell lines and the construction of stably transfected GC cells. (D-G) The effects of FABP4 on the invasion, migration and adhesion of GC cells were detected by Transwell and adhesion assays. (H-I) Cell Counting Kit-8 was used to evaluate the effects of FABP4 on cell proliferation. (J-K) The effects of FABP4 on apoptosis of the cells were determined by flow cytometry.

Figure S4. Biological effects of FABP4 on GC cells in vivo. (A-F) The results obtained using a subcutaneous xenograft model of MGC-803 cells in BALB/c nude mice showed that FABP4 had no effect on the proliferation of GC cells in vivo ($\mathrm{n}=3$ for each mouse group). Tumour size was measured at indicated time points. Tumours were weighed after mice were sacrificed.

Figure S5. Verification of the relationship between FABP4 and CADM3 expression and evaluation of the function of CADM3 in vitro. (A) Both up-regulated and downregulated candidate genes $(\mathrm{n}=5)$ were selected for validation in public database TCGA and GSE15459. (B) CADM3 expression in various FABP4 groups of the external cohort was calculated. (C) Scatter plots showing the correlations between FABP4 and

CADM3 expression in the GSE15459 dataset. (D) Kaplan-Meier survival analysis of CADM3 expression in the internal cohort of patients with GC. (E-F) Detection of CADM3, CADM2 and CADM4 by western blotting after vector transfection. (G-H) Rescue experiment on the role of CADM3 in FABP4- associated metastasis showed that no significant difference in the invasive capacity of GC cells was found either when FABP4 was re-introduced with CADM3 knocked down or when FABP4 was disrupted with CADM3 overexpressed.

Figure S6. Analysis of the association between PPAR- γ and FABP4 in GC. (A) Potential protein-protein interactions of FABP4 were predicted using the STRING database. (B) Changes in PPAR- γ protein levels induced by various concentrations of rosiglitazone were assessed by western blotting. (C) Construction of the CADM3 promoter-luciferase reporter gene plasmid system.

Figure S7. Verification of the relationships between FABP4 and PPAR- γ by functional rescue assays. (A) The results of the Transwell assays showed that the effect of FABP4 overexpression on the migration and invasion of MGC-803 cells was reversed by PPAR- γ siRNA. (B) The results of the Transwell assays showed that the effect of FABP4 knockdown on the migration and invasion of MGC-803 cells was reversed by rosiglitazone $(20 \mu \mathrm{M})$.

Figure S8. HDAC1-mediated chromatin inaccessibility reduces FABP4 expression in GC. (A) Analysis of FABP4 alterations in various types of GC. (B) Association between FABP4 DNA methylation and mRNA expression was analysed using cBioPortal. (C) Schematic diagram of the upstream regulatory mechanisms of FABP4. (D) Associations between HDAC1 and FABP4 and HDAC1 and CADM3 expression detected using the TCGA-STAD and GSE15459 datasets. (E) Association between HDAC1 and CADM3 IHC scores in two independent cohorts.

[^0]: ($1-2$

[^1]: ros

