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Abstract 

Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a 
challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, 
the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). 
Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular 
level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for 
therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development 
with great potential to promote a personalised approach to medicine. However, an effective targeted 
radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an 
overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal 
characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. 
Considerations for target selection are discussed, i.e. specific presence of the target, expression level and 
pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of 
the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and 
theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues 
and safety pharmacology aspects will be presented, both in general and for the brain in particular. 
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1. Introduction 
Gliomas represent 80% of all primary brain 

tumours and are a heterogeneous group of tumours of 
the central nervous system (CNS). Diagnosis is often 
predicted by patient clinical history, but confirmation 
by neuroimaging is required. Before beginning 
treatment, histological characterisation and 
determination of the malignancy grade is imperative 
[1,2]. Previously, the classification of CNS tumours by 
the World Health Organization’s (WHO) grading 
system was solely based on histology; varying from 
grade I, which is characterised by lesions with low 
proliferative potential and possibility of cure, up to 
grade IV. However, several studies over the past two 
decades illustrate the diagnostic importance of 

characterising the molecular status of the individual 
patient’s brain tumour. Hence, a new WHO 
classification, including both, histology and molecular 
genetic features, was established in 2016 [3,4]. 
Glioblastomas (GB) are classified as grade IV CNS 
tumours; neoplasms which are cytological malignant 
and mitotically active. They are typically associated 
with extensive invasion of the surrounding tissue and 
rapid proliferation commensurate with disease 
progression [5]. 

Individuals who are diagnosed with GB have a 
poor prognosis and the quest for efficient therapy is 
ongoing. The standard GB treatment consists of 
debulking surgery, temozolomide (TMZ) chemo-
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therapy and concomitant external beam radiotherapy 
(EBRT). However, total resection is not possible in 
most patients. Despite optimal treatment protocols; 
the median survival is only 12-14 months [6–9]. 
Current therapies fail as the result of therapeutic 
resistance and heterogeneous tumour cell population 
effects. GB often presents with different grades of 
cell-differentiation within the same tumour, 
indicating the presence of distinct cell populations 
with differing sensitivity to therapy. Resistance is 
often caused by the presence of a small subset of 
highly resistant tumour cells that display stem 
cell-like properties [10,11]. 

Target-based diagnostics and therapeutics focus 
on several mutations and alterations in key molecular 
pathways that have been linked to GB pathogenesis 
and/or prognosis. These include, phosphatase and 
tensin homolog (PTEN) and 1p/19q combined 
deletions, mutations of the isocitrate dehydrogenase 1 
or 2 (IDH) genes and telomerase reverse transcriptase 
(TERT) promoter region, epidermal growth factor 
receptor (EGFR) amplification and tumor protein 
(TP53) mutations [12,13]. The advantage of targeting 
the molecular characteristics that drive the malignant 
GB phenotype with theranostic radiopharmaceuticals 
is the possibility of selectively identifying and 
subsequently treating GB cells without damaging the 
surrounding healthy brain tissue. The identification of 
new GB genetic biomarkers has led to a growing 
interest in the development of new radio-
pharmaceuticals for GB imaging and therapy [14,15]. 

TRT is a strategy in nuclear medicine for the 
treatment of GB enabling the visualization of 
molecular biomarkers and pathways on a subcellular 
level using a biochemical vector coupled to a 
radionuclide either for diagnosis or for therapy. A 
major prerequisite for the administration of TRT is to 
confirm the presence of the GB tumour target using 
non-invasive nuclear imaging techniques before 
deciding on treatment options. This review includes 
an overview of current GB imaging options, a detailed 
perspective on TRT strategies for GB followed by a 
critical assessment of the TRT requirements to reach 
optimal treatment outcome in GB patients. Special 
attention is given to the selection of the optimal target 
and its accessibility, choice of the biochemical vector, 
risk for toxicity and desired validation process. 

2. Nuclear imaging and theranostics in 
neuro-oncology 

Historically, contrast-enhanced magnetic 
resonance imaging (MRI) played an important role in 
the diagnosis and the assessment of treatment efficacy 
in GB. This is still the case, however, the use of 
contrast enhancement is controversial since it is 

non-specific and it primarily reflects the passage of 
contrast material (e.g. gadolinium) across a disrupted 
blood-brain barrier (BBB). Pseudo-progression is 
often incorrectly reflected as tumor progression on 
contrast-enhanced MRI in approximately 20-30% of 
glioma patients, especially within the first three 
months after concurrent chemoradiation. In addition, 
the use of antiangiogenic agents during treatment can 
result in a ‘pseudo-response’ on contrast-enhanced 
MRI [16,17]. To accurately assess treatment response, 
new response criteria for Response Assessment in 
Neuro-Oncology were introduced in 2010 [17]. This 
includes 2D-tumour size as measured on T2- and 
Fluid Attenuated Inversion Recovery (FLAIR)- 
weighted MR images, in addition to contrast- 
enhanced MRI. 

Non-invasive, functional and molecular imaging 
techniques have become recognised as more relevant 
in the last decade, including MR spectroscopy, 
perfusion weighted MRI, Positron Emission 
Tomography/Computed Tomography (PET/CT) or 
Single-photon Emission Computerized Tomography 
(SPECT/CT). PET has a clear advantage over SPECT 
in terms of spatial resolution and is therefore the 
image modality of choice regarding GB 
investigations. Imaging gliomas using PET has been 
reviewed in depth elsewhere [18–21]. When a 
theranostic approach is used for GB treatment, the 
major role of PET or SPECT includes confirmation of 
the presence of the specific molecular target before 
TRT. Carefully interpreted Nuclear Medicine imaging 
facilitates the prediction and monitoring of tumour 
response and individualised dosimetry [22–24]. 
Biodistribution analysis of the imaging partner 
permits improved patient-based treatment and 
thereby prevents unnecessary therapy and associated 
toxicity [25]. This may be achieved by, for example, 
exchanging the therapeutic radionuclide (e.g. 
β-emitter Lutetium-177) with a gamma- or positron- 
emitting radionuclide (e.g. Gallium-68 for PET/CT) 
attached to the relevant biomolecule; ie. using 
[68Ga]Ga-DOTA-TOC-PET/CT imaging combined 
with [177Lu]Lu-DOTA-TATE-targeted radionuclide 
therapy [26]. Another approach is to use a solitary 
radionuclide that emits both therapeutic and 
imageable γ-rays or positrons that allows GB imaging 
using SPECT or PET (e.g. Iodine-131) [7]. 

2.1 Established and emerging PET/SPECT 
radiopharmaceuticals in neuro-oncology 

The transport and cellular mechanism of 
routinely used PET tracers in neuro-oncology is given 
in Figure 1. GB PET radiotracers are predominantly 
biomimetics excessively incorporated by cancer cells 
in response to elevated metabolism or high 
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proliferation. These may include 
desoxy-2-[18F]fluoro-D-glucose ([18F]FDG), L-[11C] 
methyl-methionine ([11C]MET), O-2-[18F]fluoroethyl- 
L-tyrosine ([18F]FET), 3,4-dihydroxy-6-[18F]fluoro-L- 
phenylalanine ([18F]FDOPA) and 3’-deoxy-3’- 
[18F]fluoro-thymidine ([18F]FLT) [20,27–29]. Whilst 
[18F]FDG PET is widely available, the high 
physiological brain uptake of glucose and the 
non-specific uptake in cerebral inflammatory 
processes hampers applications of [18F]FDG PET for 
brain tumor delineation and diagnosis. Amino acid 
radiopharmaceuticals designated for PET have 
improved diagnostic glioma PET imaging towards the 
delineation of tumor extent, treatment planning, 
visualization of treatment-related changes and the 
assessment of treatment response [21]. PET 
radiopharmaceutical choline analogues are 
considered successful as oncological PET probes 
because a major hallmark of cancer cells is increased 
lipogenesis. In the brain, discrimination between 

tumor and normal tissue is feasible because of lower 
physiological uptake of [11C]choline ([11C]Cho) or 
[18F]fluoroethyl-choline ([18F]FCho) by normal brain 
cells [30,31]. The performance of [18F]FCho-PET may 
distinguish high-grade glioma, brain metastases and 
benign lesions in addition to its importance for 
surgery management (including identifying the most 
malignant areas for stereotactic sampling) [32–35]. As 
hypoxia plays an important role in GB pathology, its 
detection and monitoring using PET/SPECT became 
clinically relevant. Radiopharmaceuticals used for 
these investigations include ([18F]fluoro-misonidazole 
([18F]FMISO), [18F]fluoro-azomycin arabinoside 
([18F]FAZA), [18F]fluoro-erythro-nitroimidazole 
([18F]FET-NIM), 2-(2-nitro-1-H-imidazol-1-yl)-N- 
(2,2,3,3,3-penta-[18F]fluoropropyl)-acetamide 
([18F]EF5), [18F]flortanidazole ([18F]F-HX4), and 
Copper(II)-[64Cu]diacetyl-di(N4-methylthiosemicarba
zone ([64Cu]Cu-ATSM)) [36]. 

 

 
Figure 1. Routine PET imaging in neuro-oncology. PET/CT techniques for neuropathologic imaging are dominated by radiopharmaceuticals focussing on altered glucose 
metabolism (desoxy-2-[18F]fluoro-D-glucose ([18F]FDG)), amino acid metabolism (L-[11C]-methyl-methionine ([11C]MET), O-2-[18F]fluoroethyl-L-tyrosine ([18F]FET), 
3,4-dihydroxy-6-[18F]fluoro-L-phenylalanine ([18F]F-DOPA)), proliferation (3’-deoxy-3’-[18F]fluoro-thymidine [18F]FLT)), tumoral hypoxia sensing ([18F]fluoro-misonidazole 
([18F]FMISO), [18F]fluoro-azomycin arabinoside ([18F]FAZA)), and lipid metabolism ([11C]choline ([11C]Cho), [18F]fluoroethyl-choline ([18F]FCho)). Abbreviations: High affinity 
choline transporter (CHT), choline kinase (CHK), equilibrative nucleoside transporter (ENT), 2’-fluoro-2’-deoxy glucose-6-phosphate (FDG-6-P), glucose transporter (GLUT), 
hexokinase (HK), nitroreductase (NTR), partial pressure of oxygen (pO2), Na+-independent plasma membrane amino acid transport (System L), thymidine kinase (TK). Adapted 
with permission from [18], copyright 2017 Codon Publications. 
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An exhaustive list of the emerging PET and 
SPECT radiopharmaceuticals, matched with their 
biological targets, is summarized in Table 1. The 
rational for the use of selected examples is described 
briefly as follows: The translocator protein (TSPO) is a 
mitochondrial membrane protein highly expressed in 
activated microglia, macrophages, and neoplastic 
cells. Imaging with the TSPO ligand [11C]-(R)PK11195 
demonstrated increased binding in high-grade glioma 
compared to low-grade gliomas and normal brain 
parenchyma in patients [37]. [18F]F-GE-180-PET 
further provided a remarkably high tumour-to- 
background contrast in GB [38]. Radiolabeling of poly 
ADP ribose polymerase (PARP) inhibitors is gaining 
interest with numerous preclinical studies and an 
ongoing clinical trial in GB patients using [18F]- 
FluorThanatrace ([18F]F-TT)-PET/CT (NCT04221061) 
[36,39-43]. The first clinical results of [18F]- 
Fluciclovine ([18F]F-ACBC) for GB imaging were 
promising and radiolabelling of receptor tyrosine 
kinase inhibitors and mammalian target of rapamycin 
(mTOR) pathway inhibitors has also shown potential 
[44-51]. It is noted that PET imaging using the 
deoxycytidine kinase substrate [18F]F-clofarabin has 
been shown to be a good imaging tool to localise and 
quantify responses in GB patients undergoing 
immunotherapy [52]. In addition to their application 
as diagnostic biomarkers, the use of theranostic (pairs 
of) radiopharmaceuticals that enable concomitant or 
subsequent imaging and therapy is gaining 
importance although not all have been validated in 
clinical trials. The αvβ3 integrin receptor-targeting 
agent AI[18F]F-NOTA-PRGD2 showed positive results 
in assessing sensitivity to concurrent chemoradio-
therapy in GB patients. Therapeutic radionuclides 
coupled to arginine-glycine-aspartate (RGD) based 
vectors, already available, offer potential theranostic 
applications to target tumour angiogenesis [53]. The 
theranostic potential of [64Cu/67Cu]Cu-cyclam-RAFT- 
c(RGDfK)4 to treat GB in vivo shows promise [54–56]. 
Moreover, as the Food and Drug Administration 
(FDA) approved somatostatin receptor 2 (SSR2) 
targeting, gallium-68-labeled octreotide derivatives 
were approved ([68Ga]Ga-DOTA-TOC; alternately 
[68Ga]Ga-DOTA-NOC and -TATE are utilized) and 
subsequent studied for GB imaging. However, their 
specificity and selectivity towards GB have not yet 
been clinically determined [57,58]. Nevertheless, pilot 
studies in glioma patients with gallium-68- and 
yttrium-90-labeled SSTR2-targeting ligands, have 
been performed [59-62]. Additionally, a fibroblast 
activation protein inhibitor (FAPI) labelled with 
gallium-68 ([68Ga]Ga-FAPI) was introduced into 
clinical investigations and exhibited significant 
uptake in IDH-wildtype GB tumours, grade III and 

grade IV IDH-mutant gliomas. FAPI-targeted 
theranostics (pairing or gallium-68 and yttrium-90 or 
gallium-68 and lutetium-177) were developed. 
However, due the short retention time, radionuclides 
with shorter half-lives (e.g. rhenium-188, 
samarium-153, bismuth-213 or lead-212) appeared 
preferable [63-65]. Furthermore, a growing number of 
copper-based PET tracers are being studied for use in 
GB investigations, with the emerging theranostic 
copper-64 and copper-67, characterised by a joint 
positron/auger electron and joint beta/gamma 
emission, respectively. In patients, PET imaging using 
[64Cu]CuCl2 has visualized brain cancerous lesions 
and initial investigations using [64Cu]Cu- or 
[62Cu]Cu-ATSM-PET imaging may address the 
hypoxia status of GB, non-invasively [66–69]. 
Preclinically, 64Cu-labelled peptides and 64Cu-labeled 
cetuximab have shown promise in imaging of VEGFR 
and EGFR expression, respectively [70-74]. Other 
preliminary theranostic applications studied in vivo 
include [64Cu]Cu-ATSM, [64Cu/67Cu]Cu-cyclam- 
RAFT-c(RGDfK)4 (αVβ3 integrin), [64Cu]Cu-PEP-1L 
(IL-13 receptor) and [64Cu]Cu-IIIA4 (ephrin type-A 
receptor 3) [55,56,70-77]. Interestingly, prostate- 
specific membrane antigen (PSMA) expression has 
been confirmed in the neovasculature of GB and the 
diagnostic role of radiolabelled PSMA PET/CT or 
PET/MRI in patients with gliomas and GBs has 
recently been reviewed [78-81]. In particular, the 
radiolabeled ligand [68Ga]Ga-Glu-urea-Lys(Ahx)- 
HBED-CC ([68Ga]Ga-PSMA-11) has shown positive 
results in visualizing residual or recurring GB [82,83]. 
A proof of concept for the theranostic potential of 
[68Ga]Ga-PSMA-11/[177Lu]Lu-PSMA-617 in GB has 
demonstrated success in 2 recent case reports [84,86]. 
However, large prospective studies are needed to 
clarify the diagnostic role of the radiolabeled PSMA 
ligands in GB imaging. To date, some studies are 
featuring imaging of cerebral cancer using novel 
[89Zr]Zr-/[18F]F-labelled PSMA compounds; however, 
the preclinical applications particularly using GB 
animal models are limited to one study [87-91]. 

2.2 Selection of the appropriate theranostic 
pair for individualised treatment 

Diverse information summarised in Table 1, 
demonstrates that a broad spectrum of investigations 
in the field of neuro-oncology imaging are well 
underway. Despite the development of a variety of 
imaging strategies, evident in Table 1 for example, 
only the most effective will be evaluated in clinical 
trials and, if deemed appropriate, become routinely 
available in Nuclear Medicine. Theranostics and 
nanotheranostics which include the future of 
theranostics and precision oncology are reviewed 
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[22,94,95]; for such endotherapies, visualization of GB 
tumour tissue is critical to predict prognosis 
accurately including loss in brain function. 
Additionally, the tracer coupled to the therapeutic 
radionuclide and the imaging radionuclide should not 
alter the drug’s binding, pharmacokinetics or BBB 
crossing characteristics. Table 2 lists targeted 
radionuclides and theranostic pairs appropriate for 
GB, including their advantages and disadvantages. 

Examples for GB include [68Ga]Ga-DOTA-SP 
co-injection with [213Bi]Bi-DOTA-SP to assess the 
biodistribution using PET/CT and [68Ga]-pentixafor- 
PET/CT as a tool for in vivo quantification of CXCR4. 
This will facilitate the selection of patients who might 
benefit from CXCR4-directed therapy. Another 
example is [131I]-labeled anti-tenascin murine 81C6 
mAb SPECT to assess the distribution of the 
radiolabeled mAb in brain parenchyma [93-96]. 

Table 1. Investigational PET/SPECT imaging in neuro-oncology 

Biological target  Radiopharmaceuticals($) Vector(ǂ) References 

Amino acid metabolism C [18F]F-ACBC 
[18F]F-tryptophan 
[18F]F-Glutamine 
[18F]F-FSPG 
[123I]iodo-IMT 
[123I]iodo-IPA 

AA 
AA 
AA 
AA 
AA 
AA 

[49,51,311–317] 
[318–323] 
[324] 
[325] 
[326] 
[326–328]  

P [18F]F-ELP 
[18F]F-AMPe 
[18F]F-A(M)Hep 
[11C]-/ [18F]F-tryptophan 
[18F]F-Glutamine 
[18F]F-IMP 

AA 
AA 
AA 
AA 
AA 
AA 

[329,333]  
[331] 
[332] 
[333–335] 
[336,337] 
[338] 

Angiogenesis (Integrin receptor family) C [18F]F-/ [68Ga]Ga-PRGD2  Pep [53,339–342] 

P [64Cu]Cu-PEG4-c(RGDyK) 
[68Ga]Ga-c(GDGEAyK) 
[111In]In-abegrin™  
[99mTc]Tc-NC100692 
[18F]F-fluciclatide 
[18F]F-PPRGD2 
[18F]F-RGD-K5/ [68Ga]Ga-RGD  
[64Cu]Cu-c(RGDfK)]2 
[64Cu]Cu-c(RGDfK)4 
[64Cu]Cu-PEG4-E[PEG4-c(RGDfK)]2 

[64Cu]Cu-Gly3-E[Gly3-c(RGDfK)]2 
[18F]F-alfatide II 

Pep 
Pep 
Ab 
Pep 
Pep 
Pep 
Pep 
Pep 
Pep 
Pep 
Pep 
Pep 

[343] 
[344] 
[345] 
[346] 
[347] 
[348] 
[349] 
[350] 
[54]  
[351] 
[351] 
[352] 

Angiogenesis (Vascular endothelial growth 
factor receptor) 

C [123I]iodo-VEGF-165  Prot [353] 

P [111In]In-ZVEGFR2-Bp2  
[89Zr]Zr-bevacizumab  
[64Cu]Cu-VEGF121  
[64Cu]Cu-VEGF125-136  
[111In]In-hnTf-VEGF  

Abf 
Ab 
Prot 
Pep 
Pro 

[354] 
[355]  
[72,74] 
[356] 
[357] 

Epidermal growth factor receptor  C [11C]-CPD153035  SM [358] 

P [124I]/ [131I]iodo-IPQA  
[11C]-/ [18F]F-ML01/-03/-04  
[64Cu]Cu-/ [111In]In-cetuximab  
[111In]In-/ [125I]iodo-ch806  
[18F]F-BEM-/ [68Ga]Ga-ZEGFR:1907  
[89Zr]Zr-nimotuzumab  
[188Re]Re-U2 (ç) 
[18F]F-B-ME07 (°) 
[111In]In-hEGF 

SM 
SM 
Ab 
Ab 
Abf 
Ab 
ON 
ON 
Ab 

[359] 
[360] 
[361,362] 
[363,364] 
[365] 
[366] 
[367] 
[368] 
[369] 

Chemokine receptor 4 C [68Ga]Ga-pentixafor Pep [94] 

P [11C]methyl-AMD3465  SM [370] 

Ephrin receptors C [89Zr]Zr-ifabotuzumab Ab [371] 

P [64Cu]Cu-IIIA4  
[64Cu]Cu-TNYL-RAW  
[64Cu]Cu-1C1  

Ab 
Pep 
Ab 

[77] 
[40] 
[362] 

Hypoxia C [18F]F-DiFA  
[62Cu]/ [64Cu]Cu-ATSM  
[18F]F-EETNIM  

SM 
SM 
SM 

[372] 
[373–375] 
[376] 

P [18F]F-RP170  
[18F]F-HX4  
[62Cu]/ [64Cu]Cu-ATSM  

SM 
SM 
SM 

[377] 
[378] 
[55,67,75,379] 

Poly (ADP-ribose) polymerase C [18F]F-TT SM [380] 

P [18F]F-/[123I]iodo-olaparib  
[123I]iodo-MAPi,  
[123I]/ [124I]/ [131I]iodo-2-PARPi  
[18F]F-PARPi–(FL)  

SM 
SM 
SM 
SM 

[39,381] 
[382] 
[43] 
[383] 

Glutamate Carboxypeptidase 2 C [89Zr]Zr-IAB2M 
[18F]F-DCFPyL 

Abf 
Pep 

[384] 
[385] 
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[68Ga]Ga-PSMA-617 
[68Ga]Ga-PSMA-11  
[18F]F-PSMA-1007 

Pep 
Pep 
Pep 

[386] 
[38,82,83,387-389] 
[90] 

P [18F]F-DCFPyL 
[68Ga]Ga-PSMA-11 

Pep 
Pep 

[91] 
[91] 

Translocator protein (neuronal type) ($$) C [11C]-PK11195 
[18F]F-GE-180 
[123I]iodo-CLINDE 

SM 
SM 
SM 

[390] 
[38,85,391] 
[392] 

P [18F]F-14 (£) 
[18F]F-VUIS1007 
[18F]DPA-714 
[18F]F-PBR06 
[18F]F-VC701 
[18F]F-AB5186 

SM 
SM 
SM 
SM 
SM 
SM 

[393] 
[394] 
[395–499]  
[400,401] 
[402] 
[403] 

Matrix-metalloproteinases C [131I]iodo-TM-601  SM [239,404] 

P [89Zr]Zr-LEM2/5 
[18F]F-BR-351 
[18F]F-P-chlorotoxin 
[18F]F-iCREKA 
[68Ga]Ga-/ [64Cu]Cu-MMP-14 

Ab 
SM 
SM 
Pep 
Pep 

[405] 
[399] 
[406] 
[407] 
[408] 

Fibroblast activation protein C [68Ga]Ga-FAPI SM [63,409,410] 

P [18F]F-SiFa(Glc)FAPI SM [411] 

Lipid metabolism(++) C [11C]-/ [18F]F-(ethyl)choline  
[11C]-Acetate 

SM 
SM 

[30–32,412,413] 
[414,415] 

P [18F]-FPIA(*) SM [416] 

Fibronectin (neuronal) C [123I]iodo-L19(scFv)2 Abf [417] 

P [18F]F-iCREKA Pep [418] 

Apoptosis C [18F]F-ML10 SM [419,420] 

Sigma receptor C [18F]F-fluspidine (*)  SM [421–423] 

Somatostatin receptor 2 C [68Ga]Ga-/ [111In]In-octreotide 
[68Ga]Ga-octreotide 

Pep 
Pep 

[58,424] 
[425,426] 

Deoxycytidine Kinase  C [18F]F-clofarabine  SM [52,427] 

Neurokinin 1 receptor C [68Ga]Ga-Substance-P  Pep [93,105] 

Copper Transporter 1 P [64Cu]Cu-(gold)nanocluster(+) (**) [428] 

Carbonic Anhydrase IX  P [18F]F-VM4-037 SM [429] 

Tenascin-C P [99mTc]Tc-TTA1 
[18F]F-/ [64Cu]Cu-GBI-10 

ON 
ON 

[430] 
[431] 

Histone deacetylases P [18F]TFAHA 
2-[18F]BzAHA 

SM 
SM 

[432]  
[433] 

Isocitrate Dehydrogenase 1 P [18F]-triazine-diamine 
[18F]F-/ [131I]iodo-/ [125I]iodo-AGI5198 
[18F]F-/ [ 125I]iodo-X (##) 
[11C]-Acetate 

SM 
SM 
SM 
SM 

[434] 
[435] 
[436] 
[437] 

Iron transport  P [67Ga]/ [68Ga]Ga-citrate SM [438] 

Glutathione transferase P [18F]F-BuEA-GS SM [439,440] 

Hepatocyte growth factor receptor P [89Zr]Zr-/ [76Br]Br-onartuzumab  
[89Zr]Zr-rilotumumab 
[64Cu]Cu-rh-HGF 

Ab 
Ab 
Pep 

[441] 
[442] 
[443] 

Mammalian target of rapamycin  P [89Zr]Zr-transferrin Prot [44,444] 

Tyrosine kinases P [18F]F-dasatinib 
[64Cu]Cu-vandetanib 

SM 
SM 

[445] 
[445] 

Myeloid cells P [89Zr]Zr-anti-CD11b Ab [446] 

Platelet-derived growth factor receptor P [68Ga]Ga-/ [111In]In-ZO9591 
[131I]iodo-/ [18F]F-imatinib 
[18F]F-dasatinib 

Abf 
SM 
SM 

[369,447] 
[448] 
[445] 

Stem cells P [64Cu]Cu-AC133 
[64Cu]Cu-/ [89Zr]Zr-YY146  

Ab 
Ab 

[449] 
[450,451] 

($) radiopharmaceutical are grouped as in preclinical (P) and clinical (C) stages of development; chelating agents for radiometal complexation were not denoted in the names to improve 
clarity of presentation; (++) Fatty acid synthesis (acetate) and choline metabolism for choline; pivalic acid undergoes intracellular metabolism via the fatty acid oxidation pathway (an 
berrant lipid metabolite detection), (£) no trivial name available- UPAC: 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[18F]fluoropyridin-2-yl)-3,5-dihydro-4H- 
pyridazino[4,5-b]indole-1-acetamide, (##) no names given - a small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported 
butyl-phenyl sulfonamide enzyme inhibitors, (*) currently in clinical translation, (ç) DNA-based oligonucleotide (aptamer), (°) RNA based oligonucleotide (aptamer), (**) protein-mimic 
cluster, (+) dual-imaging modality – investigatory (proof-of-concept), ($$) expressed on glioma-associated macrophages and microglia, ( ǂ ) vectors: amino-acid (AA), antibody (Ab), 
antibody fragment (Abf), small biomolecule (SM), peptide (Pep), protein (Prot), oligonucleotide (ON). 

 

3. Selection of the optimal target for 
imaging and TRT of GB 

An important consideration for the selection of a 
GB target for TRT is the abundance of the molecular 

target present in the tumour versus its negligible 
presence in normal cells. The target must have proven 
of relevance for therapy and the finally selected 
compound must demonstrate bioequivalence at the 
target site and the radiopharmaceutical must be 
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retained within the tumour. The pathology of most 
GB tumours is not based on the dysregulation of a 
single pathway and therefore, a strategy with a 
multi-targeted design should also be considered [97]. 

For a more detailed explanation of the principles of 
optimal target selection for diagnostic, therapeutic 
and theranostic applications in nuclear medicine, 
please refer to the review by Lee et al. [98]. 

 
 

Table 2. Physical properties and pro/cons of therapeutic radionuclides studied for glioblastoma therapy 

Isotope Range  
(in vivo) 
(mm) 

T ½ (h) Paired 
Isotope 

Pro’s for GB TRT Cons for GB TRT Studies in GB 

225Ac  
100.0% 
ɑ  

0.04-0.10 238.10 68Ga • In vivo range optimal for recurrent/residual GB. 
• High LET/RBE efficient towards hypoxic GB 

areals. 
• DOTA-complexation-simple and universal (some 

peptides, small molecules and mAb-fragments). 
• T ½ allows transport; RIT compatible; ideal if no 

leakage from the target site (upon compound 
internalization). 

• Relatively long T ½ + multiple 
alpha particles generated (rapid 
decay chain)  substantial 
225Ac-based cytotoxicity [105]. 

• Recoiled daughters may influence 
stability. 

• Not readily available worldwide. 

C Substance P (NK-1) [93] 

P E4G10 mAb (Cadherin 5) [452]; 
IA-TLs (αvβ3 integrin) [453]; 
Pep-1L (IL13RA2) [454] 

213Bi  
2.2% α 
97.8% 
β- 

0.05-0.10 0.77 68Ga 
44Sc 

• In vivo range optimal for recurrent/residual GB. 
• High LET/RBE efficient towards hypoxic GB 

areals. 
• DOTA-complexation – simple and universal 

(some peptides, small molecules and 
mAb-fragments). 

• Short T ½ + gamma-energy combination efficient 
even upon lack of persistent internalization [105]. 

• Availability: 225Ac-/213Bi-generators. 
• Energy (440 keV) allows for PK/D assays. 
• Optimal formulation for intratumoral injection or 

CED, highly localized radioactive decay versus 
low off target effects [130]. 

• Short T ½ compromises the 
residence time required in 
essential (infiltrating) GB cells, i.e. 
ratio between cell membrane 
coverage (receptor affinity) and 
time is key (Note: irrelevant for 
intratumoral injection or CED).  

C Substance P (NK-1) 
[105,114,241,242] 

211At 
42.0% ɑ  
58.0% 
EC 
 

0.05 [127] 7.20 
[127] 

123I 
76Br 
 

• In vivo range optimal for recurrent/residual GB. 
• High LET/RBE efficient towards hypoxic GB 

areals. 
• Longer T ½ allows for multistep synthetic 

procedures and transport. 
• Daughter (211Po): emits KX-rays useful for sample 

counting and in vivo scintigraphic imaging [244]. 
• Well-suited for intratumoral injection or CED, 

highly localized radioactive decay versus low off 
target (systemic) effects [130]. 

• Limited to mAb (smaller 
fragments). 

• Production exclusive to a rare 
25-30 MeV cyclotron (± 30 sites 
worldwide). 

• Often low biological/ 
chemical stability [455]. 

C 81C6 mAb G (tenascin-C) [244] 
 

P L8A4 mAB (EGFRvIII) [456] 

131I 
97.2% 
β– 

 2.8% γ 
 

0.80  
[127] 

192.00 
[127] 

✔ 
 

• In vivo range (long) efficient on the common GB 
type (bulky/heterogeneous/2.6-5.0 mm). 

• Good availability and relatively inexpensive. 
• Longer T ½ allows transport, compatible for RIT. 
• Well-understood radiochemistry; universally 

applicable (peptides, small molecules, mAb). 
• 10% gamma emission makes it a theranostic 

(clinical SPECT – or gamma cameras widespread 
application for patient dosimetry) [260]. 

• Limited SPECT imaging capacity 
(suboptimal quantitative imaging); 
poor spatial resolution (high 
energy collimators/thick crystal 
detectors setup). 

• Radiolabeled proteins degrade 
rapidly when internalized into 
tumors; recurrence of 
[131I]iodo-tyrosine and 131I-activity 
in the blood pool  thyroid 
toxicity plausible. 

C 81C6 mAb (tenascin-C) 
[98,208,209,446] 
BC-2/4 mAb (tenascin-C)  
[204,207] 
chTNT-1/B mAb (DNA-histone 
H1) [236–238] 
TM601 [239] 
Phenylalanine (IPA) [458] 

    P L19SIP (Fibronectin) [459,460] 
PARPi (PARP1) [280] 
I2-PARPi (PARP1) [43] 
L8A4 mAB (EGFRvIII) [461,462]  
IPQA (EGFR) [359] 
Hyaluronectin glycoprotein [463] 
Phenylalanine (IPA) [464–466] 

90Y 
100.0% 
β– 

5.30 
[127] 

64.10 
[127] 

68Ga 
86Y 
111In 

• In vivo range (long) efficient on the common GB 
type (primary/bulky/ 
heterogeneous/≥ 3 cm). 

• DOTA-complexation-simple and universal (some 
peptides, small molecules and mAb-fragments). 

• Stably retention by GB cells even after 
endocytosis [108]. 

• Emits highly energetic β-particles [108], ideal for 
therapy of radioresistant GB. 

• Longer T ½ allows transport, compatible for RIT. 

• Limited efficiency for minimal 
residual or recurrent GB: needs to 
be matched with GB tumor size to 
prevent off target (normal brain) 
toxicity. 

• Impractical for nuclear imaging, 
i.e. high activities (>300 MBq) 
required (only succeeded for 
microsphere- 
based therapies (SIRT) for treating 
liver tumours [162]. 

• Limited dose administration 
(preventing nephrotoxic and 
hematotoxic side effects). 

C Octreotide (SSTR) [59–61] 
Lanreotide (SSTR) [62] 
BC-2/4 mAb (tenascin-C) [467] 
Biotin [149] 
Substance-P [241]  

P Abegrin [468] 

177Lu 
100.0% 
β– 

0.62-2.00 
[127] 

158.40 
[127] 

✔ or 
68Ga 
89Zr 
99mTc 

• Isotope characteristics capable of affecting GB 
lesions typically ⌀ < 3 mm diameter [474]. 

• Longer T ½ is compatible with the PK/D and 
radiochemistry for mAb and proteins [127]. 

• Fairly straightforward conjugation chemistry 
[127,470]. 

• Moderately nephrotoxic and 
hematotoxic (< 90Y). 

C Substance-P (NK-1) [241] 
PSMA-617 [84,86] 

P 6A10 Fab (CAXII) [471] 
CXCR4-L (CXCR4) [472] 
VH-DO33 (LDLR) [473] 
2.5D/2.5F (Integrin) [474] 



Theranostics 2021, Vol. 11, Issue 16 
 

 
http://www.thno.org 

7918 

• Good availability and low cost [469]. 
• Emission of low-energy gamma – true theranostic 

[127]. 
• [177Lu]Lu-mAb: higher specificity index (i.e. less 

non-specific cell killing) than analogous 
[90Y]Y-mAb [156]. 

L8A4 mAb (EGFRvIII) [475,476]  
IIIA4 mAb (EphA3) [77] 

188Re 
100.0% 
β– 

5.00-10.8 16.98 ✔ • In vivo range (long) efficient on the common GB 
type (primary/bulky/heterogeneous/≥ 3 cm). 

• Readily available and inexpensive via 
188W-/188Re-generator (carrier-free, high specific 
activity). 

• Gamma emission suitable for imaging (better 
image quality than 186Re). 

Unfavorably-low energy 
characteristics [114]. 
Radioactive source material for 
generator production: Reactor-based 
188W production only in 2–3 reactors 
worldwide [482]. 

C Nimotuzumab (EGFR) [248,483] 

P PEG-nanoliposome [440] 
BMSC implantation [479] 
Nanocarriers (CXCR4) [150] 
Lipid nanocapsules [480,481] 
Microspheres in fibrin glue gel 
[482] 
U2 DNA aptamer (EGFRvIII) 
[483,484] 

64Cu 
18.0% 
β+  
39.0% 
β– 
42.5% 
EC  
0.5% γ 

β 1.00 
AE 0.13 
[485] 

12.70 ✔ • Readily available. 
• Radiometal complexation well understood and 

universally applicable (most peptides/ 
mAb/small molecules and nanoparticles). 

• Combined β+/β– emission makes it a true 
theranostic. 

• Radioisotope salts ([64Cu]CuCl2): the higher 
intratumoral accumulation of Cu correlates with 
overexpression of human copper transporter 1 
(hCTR1) in GB cancer cells [486]. 

• AE cascade from EC are considered high LET 
radiation with ~ 2 keV of average energy [485]. 

• Radiometal complexation can be 
unstable in vivo [486,487]. 

• Lack of radiometal-specific 
chelating agents. 

• Radiation dosimetry: complex 
decay scheme affects absorbed 
dose from high-LET AE emissions 
[485]. 

P  CuCl2 [54,75,184,498,489] 
Cyclam-RAFT-c(RGDfK)4  
(αvβ3 integrin) [54] 
Pep-1L (IL13RA2) [454] 
ATSM (Hypoxia) [75] 
IIIA4 mAb (EphA3) [77] 
TNYL-RAW (EPHR) [40] 
1C1 mAb (EphA2) [362] 
 

67Cu 
100.0% 
β–  

0.20 62.40 ✔ or 
64Cu 
 

• Treats small residual or recurrent GB lesions (⌀ ≤5 
mm) [56]. 

• Combined β+/β– emission makes it a true 
theranostic. 

• Supports SPECT imaging of patient dosimetry 
[490]. 

• Biochemistry of copper is well studied; 
radiometal complexation well understood and 
universally applicable (most peptides/mAb/ 
small molecules and nanoparticles) [56,491]. 

• No off-target toxicity reported (bone or organs). 
• Radioisotope salts ([67Cu]CuCl2): the higher 

intratumoral accumulation of copper correlates 
with overexpression of human copper transporter 
1 (hCTR1) in GB cancer cells [486]. 

• Large amounts rarely available; 
limits research and clinical trial 
design [491]. 

P RAFT-c(RGDfK)4 (αvβ3 integrin) 
[56] 

125I 
100.0% 
EC 

0.002 1425.60 111In 
 

• Isotope applicable in brachytherapy for GB. 
• Systemic immune-therapy well tolerated [163]. 

• Very long T½ may impose 
limitations for clinical use 
(radioprotection, therapeutic 
efficacy, slow dose rate). 

• Gamma emission energy not 
siutable for nuclear imaging. 

• Range and energy is not effective 
for heterogeneous radioresistent 
GB. 

C 425 mAb (EGFR) 
[163,166,167,227,492,495] 

      P L8A4 mAB (EGFRvIII) [499,500] 
UdR [165,496] 
806 mAb (EGFRvIII) [363] 

123I 
97.0% 
EC 
3.0% γ 

0.001-0.01 13.20 ✔ 
 

• Short T ½ and gamma emission energy suitable 
for scintigraphic imaging in vivo. 

• More suitable choice for potential use in RIT (as 
to 125I) [156]. 

• Not widely available (<131I). 
• T ½ is not compatible for PK/D 

investigation. 

P MAPi (PARP1) [382] 

111In 
100.0% 
EC 

0.04 67.20 ✔ 
 

• Characteristic suitable for in vitro GB studies. 
• True theranostic: gamma emission energy allows 

scintigraphic imaging in vivo. 

• Complexation chemistry required; 
incorporation kinetics slow for 
radiolabeling mAb (no direct 
radiometal conjugation). 

P GA17 Ab (α3 integrin) [497] 
806 mAb (EGFRvIII) [497] 

(✔) Theranostic radionuclide, (*) human case study, convection enhanced delivery (CED), pharmacokinetic/dosimetry studies (PK/D), glioblastoma (GB), radioimmunotherapy (RIT), 
oxygen enhancement ratio (OER), polyethylene glycol (PEG), Bone-marrow mesenchymal stem cells (BMSC), electron capture (EC), linear energy transfer (LET), Auger electron (AE), 
single-photon emission computed tomography (SPECT), physiological half-life (T ½ ). 

 

 

3.1 GB target abundance, stability and 
specificity 

Large-scale genomic (Cancer Genome Atlas 
(TCGA)) and proteomic analysis of GB tumours have 
uncovered potential targets that are deemed relevant 
to both imaging and therapy [99,100]. Abundantly 
expressed targets reduce the absolute need for a 

radiopharmaceutical to have high molar activity 
(MA). Furthermore, due to the correlation between 
specific activity and MA, this provides the 
opportunity to use radionuclides with lower specific 
activity for the radiosynthesis. Antigenic targets are 
usually tumour cell surface-expressed 
macromolecules, which are easily accessible by 
compounds present in the blood pool or extracellular 
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fluid. In the case of GB, this includes cell surface 
glycoproteins [101,102], enzymes such as PSMA 
[79,80], glycolipids [103], stromal components [11], 
components of blood vessels (e.g. VEGF) [104] and 
signal transduction molecules (e.g. growth factor 
receptors) [97]. As an example, the target of 
substance-P (SP), the neurokinin-1 receptor, is an 
appropriate target due to the high prevalence on the 
membrane of GB cells with strong expression on the 
tumour vasculature, allowing concomitant dual 
targeting [105]. Another example is tenascin, an 
extracellular matrix glycoprotein overexpressed by 
GB and minimally presented in normal tissue with a 
significant role in angiogenesis, which demonstrated 
encouraging results in TRT trials with GB [106]. As 
the tumour microenvironment (TME), hypoxia and 
glioma stem cells are pivotal in GB progression and 
resistance, their cell surface markers and specific 
pathways present attractive and important target 
options [5,10,11,107]. 

A homogeneous antigen expression and a very 
high affinity of the drug to the target are more 
important for α-emitting and AE-emitting 
radiopharmaceuticals, due to the fact that there is no 
cross-fire effect. For radio-immunotherapy (RIT), the 
antigen expression should be >100000 sites per cancer 
cell with a uniform density on the surface of all 
tumour cells, no expression on normal cells, and no 
dispersion into the bloodstream [108]. The choice of 
the vector is another challenge as antibodies provide 
the highest total in-tumour accumulation, while 
smaller molecules such as peptides provide the 
highest tumour-to-normal organ dose ratios [109,110]. 

Another desirable aspect for successful imaging 
and effectiveness of TRT is the degree of receptor 
internalisation (or of other surface macromolecules) 
upon binding, causing continued accumulation of the 
radionuclide intracellularly. Phenotypic instability is 
a reason for caution as complex epigenetic factors 
exist which can upregulate or downregulate target 
activation. The theranostic approach is particularly 
useful since it allows the visualisation and 
quantification of the specific molecular target during 
planning of the adequate therapeutic approach and 
more importantly during therapy follow-up. The 
necessity for continuous validation of target 
expression in GB therapy is considered in the ACT IV 
trial on rindopepimut in patients with EGFRvIII- 
positive GB. This study showed a striking loss of 
EGFRvIII expression at recurrence in both groups of 
the trial, suggesting that EGFRvIII expression is 
unstable, which could limit its use as a target for TRT 
[97]. 

In addition, it should be noted that the interplay 
of receptors, compound binding and cellular uptake 

pathways may cause receptor saturation upon 
injection of therapeutic doses. TRT approaches for GB 
treatment are gaining momentum and have been 
reviewed [14,111,112]. However, in this review, an 
extensive overview of prospective targets on GB is 
presented (Figure 2). Other indications for TRT in 
neuro-oncology, include grade I-III glioma (e.g. 
radiolabeled SP and anti-EGFR TRT), brain metastasis 
(e.g. 177Lu]Lu-/[225Ac]Ac-PSMA-617), meningioma 
(e.g. radiolabelled DOTA-TOC and DOTA-TATE), 
lymphoma (e.g. [90Y]-ibritumomab tiuxetan) and 
neuroblastoma (e.g. [131I]iodo-MIBG) [113,114]. 

When the identified targets in GB are compared 
with recent reviews listing current targeted therapies 
for GB, many possible strategies, which have received 
little attention, exist for imaging and TRT of GB 
[7,15,97,115]. Such unexplored pathways include: the 
phosphatidylinositol 3-kinase/Akt/mTOR pathway, 
the cell cycle pathway, the DNA repair pathway, the 
notch pathway, the hypoxia pathway and immune 
checkpoints. Unfortunately, issues such as specificity, 
selectivity, sensitivity, and feasible radiochemistry 
(especially molecular stability) challenge the design 
and synthesis of radiopharmaceuticals [116]. 

3.2 Blood-brain barrier permeability 
Upon successful target selection, the most 

important factor in managing GB is the ability of the 
designed radiopharmaceutical to cross the BBB and 
reach this target. Failure to adequately circumvent the 
BBB and heterogeneous perfusion to the tumour 
could be partially responsible for any suboptimal 
compound delivery to brain tumours and the lack of 
tangible progress in the implementation of targeted 
therapeutics [117]. Figure 3 gives an overview of the 
different mechanisms to cross the BBB, including 
passive mechanisms (1-3), mediated mechanisms (4-6) 
and a strategy to bypass the BBB (7) [118,119]. The 
mechanism is significantly affected by the choice of 
the vector, i.e. radiolabelled small molecules, peptides 
or monoclonal antibodies (mAbs). Small molecules 
have multiple options to cross the BBB while 
antibodies are very limited (0.1-0.2%/ID) 
[12,92,119-123]. Compromised integrity of the BBB is a 
pathophysiological component of GB infiltration 
which influences the passage of radiopharmaceutical 
drugs, by increasing the fraction of paracellular 
diffusion (Figure 3 (3)). Importantly, this increased 
BBB permeability is dynamic, heterogeneous and can 
be absent along the infiltrating edges of the GB 
tumour [5,117,118]. This is confirmed by 
contrast-enhanced MRI where often not all GB 
components are characterized by gadolinium uptake, 
which represents leakage. Affinity for efflux 
transporters can counteract the uptake across the BBB 
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(Figure 3 (2)) and it should be noted that compound 
assortment by any existing intact BBB transport will 
be performed regarding enantiomers of several PET- 
radiopharmaceuticals (small molecules) [118,123]. 
Hence, the radiopharmaceutical design needs to be 
well adjusted and may have to account for an 
enhanced BBB passage [124]. Even when the 
radiopharmaceutical is capable of crossing the BBB, 
diffusion and distribution throughout the GB tumor 
will be encumbered by an increased interstitial 
pressure, pooling in excessive (central) necrotic tissue 
or cystic regions, or by close proximity to ventricles 
[105]. 

3.3 Strategies to enhance general 
pharmacokinetics and BBB penetration 

A very successful strategy to bypass the BBB for 
GB TRT is loco-regional compound injection or 
convection enhanced delivery (CED). This is possible 
because 95% of GBs manifest as a unifocal lesion that 
recurs within a 2 cm margin at the primary site [105]. 
Most clinical RIT studies for malignant gliomas were 

performed via local administration [104,125,126]. 
Human studies using locoregional administration 
also showed promise in terms of tumour cell 
incorporation of AE-emitters [127]. In a clinical study 
by Krolicki et al., local injection of [213Bi]Bi-DOTA-SP 
was successfully performed 2-4 weeks after 
stereotactic implantation [105]. This group 
recommends an injection of corticosteroids and 
antiepileptic drugs thirty minutes before 
administration and up to 3 mL of injection volume. 
Co-injection of an imaging and therapeutic 
radionuclide (e.g. [68Ga]Ga-DOTA-SP combined with 
either [213Bi]Bi-DOTA-SP or [225Ac]Ac-DOTA-SP) 
enabled its distribution in the tumour to be monitored 
and subsequently the radioactivity occurrence in the 
whole body [105]. For CED, a catheter system, 
stereotactically placed intratumourally or into the 
post-surgical cavity, employs a pump to provide 
continuous positive pressure for local drug delivery 
(ranging from 0.1 to 10 μl/min) (Figure 3 and Figure 
4) instead of a bolus injection [128,129]. This was 
proved to be a safe and effective drug delivery 

 
 

 
Figure 2. Overview of current clinical and preclinical targeted radionuclide therapy studies in glioblastoma. Abbreviations and footnoted content: Anaplastic 
astrocytoma (AA), convection enhanced delivery (CED), glioblastoma (GB), recurrent (rec), deoxyribonucleidic acid (DNA), monoclonal antibody (mAb), targeted radionuclide 
therapy (TRT), (*) human case study [46,54,55,59-62,76,77,84,86,93,96,105,106,114,126,149,150,165-167,184,227,229,231,233-244,280,359,363,369,379,382,452-454,456-461, 
463,467,468,471,472,473,476,478,483,488,494,495,497,508-515]. 
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method, reaching a higher concentration of the drug 
within the GB tumour, and lack of systemic toxicity. 
This is especially favourable for α-particle emitters 
with relatively short half-lifes, such as bismuth-213 
(45 min) or astatine-211 (7.2 h), as most of the 
radioactive decay will occur within the relevant cavity 
before being distributed throughout the body via the 
systemic and lymphatic systems [130]. Clinical trials 
applying CED are highlighted in recent reviews 
[111,131,132]. It should be noted that pre-therapy PET 
or SPECT imaging following traditional IV tracer 
injection contributes little information regarding TRT 
agent distribution, if CED is applied. When the 
position of a critical lesion makes local application of 
CED impossible, brain delivery of radio-
pharmaceuticals can still be improved by different 
strategies. In addition to the transcellular lipophilic 
pathway, the use of BBB shuttles constitute an elegant 
strategy to target the brain, including receptor- 
mediated transcytosis (RMT), carrier-mediated 
transcytosis (CMT) or adsorptive-mediated 
transcytosis (AMT) (Figure 3) [118,133]. RMT is 
another elegant strategy for the delivery of 
macromolecular pharmaceuticals (up to 80 nm in 
diameter) in the treatment of GB. However, the 
widespread expression of these receptors in other 
tissues, the small dissociation rate and potential 
toxicity require careful consideration [5,118]. 
Alternatively, relevant strategies modifying the PK of 
radiopharmaceuticals were recently reported 
[134,135]. Chimeric cell-penetrating peptides (CPP) 
can hereby aid the transportation of drugs (also 
tumour targeting peptides) unable to pass the BBB, by 
conjugating it to a brain drug-targeting vector. This 
CPP complex can cross the BBB via transcytosis; 
Mendes et al. reviewed this aspect for applications for 
GB therapy (Figure 3) [5]. Multiple prodrug strategies 
have been employed to facilitate transport into the 
CNS for brain tumour visualization and treatment, for 
instance carrier/ligand-drug conjugates [102]. The 
brain drug-targeting vector can be an endogenous 
peptide, a modified protein, or a peptidomimetic 
mAb that undergoes RMT through the BBB on 
endogenous receptor systems. One such example is 
[111In]In-EGF-SPECT-imaging, using a radiolabeled 
peptide conjugated to the transferrin receptor (TfR) 
targeting mAb OX26, which has been shown to detect 
brain tumours without EGF transport [136]. The 
diagram in Figure 5 demonstrates other strategies to 
increase BBB penetration. A fractionated dose 
administration over time could be advantageous to 

accommodate changes in blood flow and reductions 
in interstitial pressure caused by tumour reduction 
(Figure 5 (3)) [137]. A physical approach is the 
combination of low-intensity focused ultrasound 
(FUS) pulses with circulating microbubbles, which 
enhanced brain tumor delivery of trastuzumab, 
improving survival in a rat glioma model (Figure 5 
(4)) [118,133,138]. The issue of a limited BBB 
penetration of mAbs, due their molecular size and 
hydrophilicity, may be overcome by using smaller 
antibody fragments or engineered antibodies [139]. 
Other noteworthy delivery platforms shuttling 
antibodies to the brain (tumour) may include 
liposomes, nanoparticle-based systems, CPPs, and 
whole cell-based concepts, actively studied in GB 
[5,140–146]. This can be combined with a 
pre-targeting approach, i.e. the administration of a 
non-radiolabeled antibody first, allowing it to localise 
to solid tumour sites, followed by a subsequent 
administration of a small molecular weight, 
radioactive moiety with high affinity for the tumour 
reactive antibody [108]. This strategy was successful 
using a three step ytterium-90 labelled biotin-anti- 
tenascin-PRIT approach in glioma. However the 
significant immunogenicity of streptavidin may cause 
negative side effects [147-149]. An active targeting 
approach, such as the encapsulation in polymeric 
nanocarriers, can be used to optimise confinement of 
the radioactivity near the GB cells (including daughter 
atoms) (Figure 5 (6)) [5,14,150]. The latter resulted in 
positive pre-clinical results [150,151]. In clinical 
studies of high-grade gliomas (treated with liposomal 
doxorubicin plus RT and TMZ) limited therapeutic 
efficacy was evident [118,150–152]. Finally, it should 
be noted that translation of nanoparticle-mediated 
delivery systems to the clinic is time-consuming, 
costly, and difficult. 

4. Requirements for a successful radio-
nuclide therapy agent in glioblastoma 

In the last decade, TRT has shown not only to be 
useful in a palliative context but also to prolong 
progression-free, overall survival and improve the 
quality of life of cancer patients [22]. Despite a general 
success of TRT implementation for numerous human 
investigations, such as GB therapy, and some 
unparalleled treatment responses, universally 
applicable guidelines and requirements addressing 
the use of such theranostic radiopharmaceuticals are 
yet to be established. 
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Figure 3. Mechanisms for transport of radiopharmaceuticals across the blood-brain barrier. Abbreviations: convection enhanced delivery (CED), cell-penetrating 
peptides (CPP), monoclonal antibody (mAb), P-glycoprotein (P-gp), tight-junction (TJ). 

 
Figure 4. Convection enhanced delivery (CED) of a radiopharmaceutical. CED is a strategy whereby a drug is delivered directly into the tumor parenchyma via 
implanted catheters. Catheters are coupled with a pump to provide continuous positive-pressure microinfusion. Unlike systemic therapy, CED bypasses the blood-brain barrier 
(BBB) therefore making drug distribution relatively independent of its molecular charge and size [129]. 

 

4.1 Selection of the radionuclide, optimal LET 
and range 

The three types of radionuclides considered for 
TRT of GB are α-, β- and Auger electron-emitting 
radionuclides. Lutetium-177, iodine-131, rhenium- 
186, rhenium-188 or yttrium-90, are commonly 
utilized for the treatment of GB. However, targeted 
α-particle therapy (TAT) using astatine-211, 
actinium-225 or bismuth-213, is gaining momentum 
[153]. The physical properties and the advantages 

versus disadvantages of relevant therapeutic 
radionuclides, in particular for GB TRT, are 
summarised in Table 2 and Figure 6. Matching the 
radionuclide correctly (including decay pathway, 
effective tissue range, linear energy transfer (LET) and 
relative biological effectiveness (RBE)) to tumour 
characteristics (size, radiosensitivity and level of 
heterogeneity) is one of the primary considerations to 
maximise therapeutic efficacy in TRT [153–155]. The 
extent and location of the GB tumour in the 
pre-therapy state or after surgical debulking is 
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another major factor influencing the selection process 
of the appropriate radionuclide (type and/or energy), 
hence the importance of PET/SPECT imaging to 
investigate the state of therapy. 

β-emitting radionuclides, such as iodine-131 and 
yttrium-90, are used in approximately 90% of current 
clinical TRT applications [154]. Their cross-fire effect 
(100-300 cell diameters) and relatively long range 
(0.2-12 mm) make them particularly efficient for the 
treatment of common bulky, heterogeneous primary 
(not necessitating homogenous distribution) and 
recurrent GB with an average size of >0.5 cm. The 
variety of β-emission ranges with different energies 
promotes tailoring of treatment to the size of the brain 
tumour (Table 2) [154–156]. For example, yttrium-90 
(max range 12 mm) could be used for medium-large 
GB masses, while lutetium-177 (range 2 mm) would 
be a favourable treatment for smaller GB tumours 
[14]. However, their lower LETs (0.2-2 keV/μm) and 
RBEs makes these β-emitters only efficient in case of 
adequate tumour oxygenation and proliferation and 
maybe less suitable for the treatment of radioresistant 
and hypoxic types of GB. 

α-particles offer unique radiobiological 
characteristics, including a short tissue range (40-100 
μm) and high LET, resulting in a high tumour cell- 
killing efficiency and corresponding RBE [155,157]. 
Calculations have shown that as few as five high LET 
α-particle traversals through the cell nucleus are 
enough to kill a cell, whereas 10,000-20,000 low LET 

β-particles are needed to achieve the same biological 
effect [130]. In addition, TAT is also suggested as a 
facilitator to overcome tumoral resistance to 
chemotherapy and the effect of radiation 
independently to O6-methylguanine-DNA methyl-
transferase promoter methylation status; the most 
important predictor factor in TMZ treatment [93]. Of 
all known α-particle-emitting radionuclides, three: 
actinium-225, astatine-211 and bismuth-213 have 
received the most attention for TAT and RIT. These 
may be able to eradicate cerebral micro-metastases, 
minimally recurrent GB lesions or residual GB 
tumours [153,154,156]. 

Auger electrons (AE) emitters are characterized by 
an even shorter range (<100 nm) combined with a 
high LET and RBE. Importantly, since AE emitters are 
less dependent on the oxygenation state of the tumour 
environment, these high LET emitters could overcome 
the negative effects of hypoxia and necrosis 
[14,125,153,158-160]. AE emitters might be applicable 
for TRT of small GB lesions but several limitations for 
AE-therapy may pose major obstacles for clinical 
translation in GB therapy. Homogenous antigen 
expression within the GB tumour is necessary as 
target-negative GB cells will potentially escape the 
lethal effects of AE-mediated therapy. This is a 
challenge for heterogeneous types of GBs especially. 
AE-emitting radionuclides are most efficient when 
incorporated into DNA. When shuttled into the 
vicinity of the cell nucleus where they cause direct 

DNA double strand breaks (DSB). 
Hence internalisation into the GB 
cells and into the nucleus is a key 
design aspect when considering the 
properties of the radionuclide 
combination with suitable 
pharmaceuticals [155]. Tumour- 
targeted macromolecules including 
antibodies that bind to internalising 
receptors have been investigated: a 
locoregional administration of 
these favours GB cell incorporation 
[161,162]. For example, binding of 
the radiopharmaceutical [125I]iodo- 
mAb-425 to the extracellular 
domain of the EGFR results in 
internalisation of the antibody–
receptor complex. The specific 
nuclear binding of the complex 
then transfers iodine-125 into the 
cell nucleus and enables its use as a 
radiation source [163]. Another 
important criterion of AE emitters 
is a high MA. It has a direct effect 
on the amount of energy delivered 

 

 
Figure 5. Strategies to enhance blood-brain barrier (BBB) penetration. (1) harnessing the homing ability 
of certain stem cells, (2) low affinity to efflux pumps or co-administration with inhibitors of efflux pumps, (3) targeted 
irradiation, (4) a combination of low-intensity focused ultrasound (FUS) pulses and circulating microbubbles, (5) 
infusion of hypertonic solutions, such as mannitol or vasodilatator and bradykinin analog RMP-7 and (6) 
nanoparticle-mediated delivery systems [118]. 
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to a single tumour cell per receptor-recognition event 
and may cause a lack of essential crossfire effects 
[155]. Although preclinical studies have shown 
substantial therapeutic efficacy of AE-emitters, the 
small number of human investigations have generally 
not reported clinical efficacy with the exception of 
some positive results with [125I]iodo-deoxyuridine 
([125I]iodo-UdR) [164,165] and [111In]In-DTPA- 
octreotide [160,167]. Treating GB patients with a 
[125I]iodo mAb 425/TMZ combination resulted in 
improvements of survival with minimal normal tissue 
toxicity, which subsequently led to the registration of 
a Phase III clinical trial (NCT01317888) [166,167]. 

4.2 Optimal radionuclide half-life for 
therapeutic application 

The physical half-life of the therapeutic 

radionuclide should match the biological half-life of 
the targeted compound in order to obtain an optimal 
effective half-life for therapy. However, the 
administration route is important. When injected into 
the GB tumour, matching the physical and biological 
half-life that may be less crucial but the locoregional 
distribution time of the compound taken to reach the 
GB cells is particularly relevant. The residence-time of 
a radiopharmaceutical in vivo can be typically several 
days (especially with intact mAbs) or merely a few 
minutes for small molecules. In case of IV 
administration, a fast (or moderate) blood clearance 
capability might be more suitable as this allows for 
the use of radionuclides with shorter physical 
half-lives and minimal hematologic toxicities 
[111,122]. However, a very short physical half-life 
places limits in terms of radiopharmaceutical 

preparation time and supply chain 
between preparation and injection. 

Both the target location and the 
mechanism of tumoural cell uptake 
should match the selected radio-
nuclide for therapy. If the target is 
expressed on the cell membrane, a 
β-emitter and a half-live of 45 min 
could suffice, with the prerequisite 
that the compound reaches the 
target in an appropriate time frame 
(to avoid multiple treatment cycles). 
Short-lived radionuclides might 
influence the uptake by infiltrating 
GB cells negatively, which plays a 
major role in GB progression and 
recurrence (Figure 7) [168]. Given a 
compound is internalised 
post-binding without leakage from 
the target site, an AE- or α-particle 
emitter, providing a longer half-life 
e.g. up to 10 days should be 
considered. Negligible toxicity can 
only be expected if it is proven that 
the radionuclide is fully entrapped 
within intracellular macromolecular 
structures. In a situation where 
permeation out of the tumor cell can 
not be excluded, a high-energy, 
short-lived radionuclide (e.g. 
bismuth-213) may be recommended. 
In the case of AE-emitters, a longer 
half-life is required to provide the 
necessary time for its internalisation 
into the nucleus. 

 

 
Figure 6. Characteristics of β-emitting radionuclides versus α particle- and Auger 
electron-emitting radionuclides. Abbreviations: Linear energy transfer (LET), relative biological effectiveness 
(RBE), specific activity (SA) [130,147,155,156]. 
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Figure 7. Illustration of glioblastoma (GB) cell invasion at the tumor lesion rim in an orthotopic F98 GB rat model. (A) Contrast enhanced T1-weighted 
magnetic resonance image. Higher contrast leakage in the tumour rim and in the centre of the tumour corresponds to central tumour necrosis. (B) Hematoxylin & Eosin staining. 
(C) 4′,6-diamidino-2-phenylindole (DAPI) nuclear staining of another F98 GB rat brain section. (D-E-F) Tumour cells infiltrating the surrounding normal brain tissue, see arrows. 
(E-F) Abundant blood vessels in the perinecrotic tumour, see dashed arrows. Adapted with permission from [507], copyright 2014 Journal of Neuro-Oncology. 

 
As an example, the 7.2 h half-life of astatine-211 

is long enough for multistep mAb labelling 
procedures and is a reasonable match with the PK of 
intact mAbs and fragments administered in 
non-intravenous settings [125]. Based on the 
information provided in this and the previous section 
there is no universal fit. Radionuclides for TRT with a 
physical half-life ranging from six hours to seven days to 
enable optimal distribution of the radio-
pharmaceutical in commonly large infiltrative GB 
tumours and to allow feasible production logistics, 
may be recommended [154,169]. 

4.3 Selection of a combined treatment 
strategy 

Generally, a combined treatment strategy is 
suggested to advance GB treatment efficacy aim to 
address the following challenges: i) the infiltrative 
character of the tumour beyond a safety margin 
makes it impossible to surgically resect all GB cells, ii) 
systemic chemotherapy reaches the cerebral 
compartment only to a limited extent and iii) hypoxia 
and an acidotic milieu of the intratumoral and 
peritumoral microenvironment reduce the efficacy of 
EBRT and chemotherapy. Additionally, tumour 
heterogeneity and the multiple pathways involved 
could lead to signalling redundancy [93]. Currently, 
TRT can be considered as a potent, additive treatment 
after the standard treatment for primary GB or as an 
auxiliary treatment when the tumour tissue seems to 
be radio- and/or chemoresistant. In case of recurrent 
GB, TRT could now be considered as a primary option 
or as salvage therapy if re-EBRT or re-chemotherapy 

becomes ineffective. Intracavitary RIT, in combination 
with EBRT, has recently been reviewed as a 
therapeutic strategy of high potential [106]. As is the 
case for EBRT, TRT causes DNA damage and is 
therefore likely to be enhanced by combination with 
chemotherapeutic radiosensitisers. 

Since radiopharmaceuticals (mainly peptides 
and mAbs) have relatively reduced drug-drug 
interactions, combinations of radiopharmaceuticals 
with chemotherapeutics may reduce interactions 
compared to a combination of different 
chemotherapeutics [135,137]. Advantageously, if 
locally administered, no systemic side effects are 
caused which may increase the systemic toxicity of 
chemotherapy [105]. Hence, TRT is now applied in 
combined-modality regimen [170]. Basu et al. 
suggested that combining standard treatments with 
peptide receptor radionuclide therapy (PRRT) is 
attractive for patients with relatively aggressive and 
metastatic tumours. Monotherapy will probably be 
unsuccessful as inter-tumour or inter-patient 
heterogeneity can play a key role in many cancers, 
particularly in GB. Hence, therapies aiming to 
interfere with the protective tumour micro- 
environment (TME) may also use a combined 
strategy, pairing TRT with emerging cytotoxic agents 
instead of conventional chemotherapy [10,171]. Other 
strategies might combine two synergistic TRT agents. 
Next to different ionizing radiation (featuring efficacy 
against different tumour sizes), molecular carriers 
with different biological properties (antibodies, 
peptides, organic molecules) and binding affinities to 
multiple tumour-associated targets are the tools to 
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cause the desired antitumoral effects 
[110,170,172,173]. Pre-clinically, the combination of 
both [64Cu]Cu-cyclam-RAFT-c(RGDfK)4 and 
[64Cu]Cu-ATSM achieved a desired anti-GB effect 
compared to either radiopharmaceutical because of 
the more uniform intratumoural distribution of 
radioactivity [55]. 

5. Toxicity of TRT 
5.1 Treatment related cerebral toxicity 

In current clinical practice, the treatment of GB 
tumours with standard EBRT is still compromised by 
the dose-limiting early and late toxicity to the normal 
brain tissue [125]. Worsening cerebral edema and 
focal deficit are considered as early EBRT induced 
toxicity, while delayed toxicity symptoms may 
include leukoencephalopathy and cognitive decline, 
parkinsonism and radiation necrosis (RN). The major 
variables influencing the development of RN in EBRT 
are the radiation dose, fraction size and irradiation 
volume [16,174,175]. Due to the localisation in a closed 
cavity, the risk of symptomatic increase of the 
intracranial pressure is high [105]. Toxicity also 
increases with greater utilization of stereotactic 
radiosurgery and combined modality therapy for 
brain tumours [16,154,176]. Figure 8 illustrates these 
therapy related side effects and how they sometimes 
mimic a recurrent tumour on contrast-enhanced MRI 
[16,176,177]. TRT induces toxicity during and after the 
treatment of GB. Its severity depends on a variety of 
factors covered in the following section. 

5.1.1 Toxicity influenced by the targeting efficiency 
Toxicity to the brain is heavily dependent on the 

threshold of expression on a relevant target in the 
normal brain tissue as compared to the tumor (see 
3.1., for crucial considerations on target selection). 
Ideally, the therapeutic index should be infinitely 
high to acquire high efficiency with minimal health 

risks, but in practice, this is impossible to achieve 
[108]. However, compared to systemic chemotherapy, 
TRT already offers a marked improvement by 
allowing a tumour specific treatment. Substantial 
off-target distribution of the radiopharmaceutical 
often leads to tissue toxicity which may be 
widespread, with radiosensitivity the limiting factor. 
For example, this has been reported for the bone 
marrow (typically >1.5 Gy) or for lung and kidneys 
(1.5–2.0 Gy) [108,178]. Particularly for RIT, 
determining parameters for an appropriate 
pretargeting strategy will have a great effect on the 
toxicity profile which would otherwise be prohibitive. 
However, the longevity of this therapy efficiency 
remains to be determined [148,149]. With regard to 
normal tissue protection, in certain cases blocking 
agents can be used. For example, as both astatine and 
iodine belong to the halogen elements, a 
pre-treatment with potassium perchlorate can 
effectively prevent uptake of free astatine-211 and 
iodine-131 in cells expressing the sodium iodine 
symporter, e.g. in the thyroid [130]. 

5.1.2 Toxicity influenced by radionuclide stability and 
the nuclear recoil effect 

The stability of the radiolabelling, minimal 
dissociation from the targeting vector or dissociation 
after binding the target, are of utmost importance to 
prevent free radionuclides dispersing to off-target 
organs. This may be caused by formation of unstable 
complexes between the radiometal and a possibly 
unsuitable chelating agent. This potentially causes 
chemical instability, metabolism of the 
radiopharmaceutical or a higher affinity of the 
chelator for other metals resulting in transchelation 
and transmetallation processes [179]. A crucial 
mechanism unique to α-emitting isotopes is the 
nuclear recoil effect causing the release of radioactive 
daughter nuclei (often α-emitters themselves) from 
the original radiopharmaceutical. This mechanism 

 

 
Figure 8. Contrast-enhanced T1-weighted brain magnetic resonance imaging (MRI) of glioblastoma (GB). (A) Common presentation of bulky bifrontal GB with 
irregular (nodular) contrast enhancement surrounding central tumor necrosis. (B) Illustration of radiation necrosis appearing as multiple foci of pathological contrast 
enhancement, periventricular in the left and right frontal lobe as well as anteriorly and posteriorly in the corpus callosum. (C) Nodular contrast-enhancement in a GB tumor on 
T1-weighted brain MRI pre-resection. (D) New irregular contrast-enhancement at the resection cavity at 1 year after a complete surgical resection reflecting tumor recurrence 
or treatment-related changes which have a similar appearance on MRI [31]. 
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and the resulting toxicity has been reviewed in great 
depth in current literature [180,181]. For application in 
GB, toxicity may be circumvented by local 
administration preventing the (daughter) alpha 
emitters to reach systemic circulation, as 
demonstrated for TAT using [225Ac]Ac-DOTAGA-SP 
TAT [105]. Toxicity can also be prevented by 
internalisation of the radiopharmaceutical following 
binding and entrapment within GB cells [168]. 
Although there are no nuclear recoil effects associated 
with astatine-211, the properties of this isotope cause 
unique challenges and pitfalls regarding stability as 
previously reviewed [182,183]. Copper-64, an ideal 
example, circumvents toxicity associated with free 
radionuclide (due to instability or other sources) 
because free copper-64 also targets tumor tissue in 
vivo [184]. Further reports investigating the recoil 
effect and suitable strategies to avoid its 
pathophysiology are anticipated. 

5.1.3 Toxicity influenced by physical properties of the 
radionuclides 

When comparing TRT with EBRT, some distinct 
similarities exist, however, the two treatment 
modalities have profound differences. Like EBRT, the 
therapeutic index and the total absorbed dose 
delivered to the tumour determine the therapeutic 
success of TRT. Both irradiation types induce DNA 
damage, which leads to cell cycle arrest, DNA damage 
repair, cell proliferation, senescence or apoptosis. 
However, in GB, irradiation induced 
neovascularization, preferential activation of the 
DNA damage checkpoint and enhanced DNA repair 
capacity (mediated by the presence of glioma stem 
cells) leads to radioresistance and recurrence 
[185-187]. Evidence is also suggesting that 
radiotherapy has lasting effects on the structure and 
composition of the GB microenvironment, facilitating 
tumor aggressiveness upon recurrence [188]. 
Interestingly, combining EBRT or TRT with 
radiosensitizing agents could sensitize GB tumors to 
irradiation effects, while minimizing deleterious side 
effects towards surrounding normal tissues [189]. 

Although normally well tolerated, TRT 
sometimes imposes unnecessary radiation burden 
onto normal tissue in the vicinity of the tumour. This 
may occur due to the inadequate selection of 
radionuclide (β−-emitters with the highest crossfire 
effect) with a larger particle path length than the 
tumour outline would suggest [190]. An important 
difference between EBRT and TRT is the rate at which 
the total dose is delivered, which impacts the 
biological outcome. A dose of 30 Gy delivered to a 
tumour over a period of many weeks at a dose rate 
that is exponentially decreasing, as is typically the 

treatment regimen with TRT, will have a very 
different effect from that of the same amount 
delivered at the much higher dose rate used in EBRT 
[127]. It is plausible that apoptosis might be one of the 
mechanisms that is responsible for the higher levels of 
cell death at low dose rates in TRT, while others 
hypothesise that synchronisation in sensitive phases 
of cell cycle or defects in the detection of low levels of 
DNA damage might lie at the origin [178,191–202]. In 
addition, radiation-induced bystander effects (RIBE) 
may play a significant role at low dose rates 
[155,178,199,202-206]. It is also increasingly apparent 
that the paradigm of direct cell killing by the 
induction of DNA DSB is insufficient, since cell killing 
has been observed when only the cell cytoplasm was 
irradiated (known as non-DNA-centered effects) and 
in non-irradiated areas due to RIBE. In glioma cells 
RIBE has been shown to be mediated by nitric oxide, 
p53 and phosphoinositide 3-kinase. Importantly, 
similar signaling pathways are induced in bystander 
cells that are not traversed directly by α-particles 
[207,208]. Off-target effects (e.g., bystander and 
abscopal effects) must be considered both at low and 
high doses, although it is still not known whether 
epidemiologically, these effects will be traduced 
statistically to an increase or decrease of the risk for 
healthy tissues [209]. Interestingly, radiation may 
serve as a mechanism to improve the effectiveness of 
immunotherapy (e.g. anti-PD-L1) and change 
immunologically ‘cold’ GB tumors to ‘hot’ tumors by 
recruiting immune cells, resulting in a 
radiation-induced abscopal response [210]. Abscopal 
effects of both EBRT and TRT attenuating growth of 
metastatic lesions elsewhere in the body is less 
relevant as GB is typically restricted to a single lesion 
(95%) within the central nervous system, with a low 
frequency of metastasis (0.5%) [105,211,212]. Further 
studies are needed to validate the inverse dose-rate 
effect and to improve understanding of the 
radiobiological mechanisms involved. 

5.1.4 Toxicity influenced by dosimetry 
The European Association of Nuclear Medicine 

Dosimetry Committee listed the steps required for an 
adequate TRT dosimetric assessment [134,213]. 
Accurate individualised patient dosimetry with 
diagnostic functional imaging (SPECT/CT or 
preferably higher resolution PET/CT) or similar 
techniques are necessary to obtain an accurate 
risk-benefit analysis regarding normal tissue toxicity 
[178,214]. Ideally, isotopes of the same element should 
be used for diagnostic imaging and therapy to 
improve detection of therapeutic radiopharmaceutical 
biodistribution (e.g. yttrium-86 for yttrium-90). TRT 
related dosimetric calculations must be performed for 
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both target organs and organs-at-risk. The commonly 
used approach is based on the medical internal 
radiation dose (MIRD) formalism [215,216]. More 
technical details on three-dimensional image-based 
dosimetry in TRT is described elsewhere 
[162,202,217-218]. As individual parameters, the 
dimension of the cavity, the degree of 
radiopharmaceutical binding to the cells and the 
percolation into the brain-adjacent tissue were 
combined [222]. Dosimetry using Monte-Carlo 
simulations also showed valuable insights for TRT of 
early brain metastases and concluded a preference for 
α-emitters [223]. For very short range TRT agents such 
as AE emitters, it might be necessary to determine the 
absorbed dose at a cellular level, instead of only at the 
organ level [108,134,155]. However, current imaging 
techniques do not possess the resolution required to 
resolve activity distributions at the microscopic or 
even nanoscopic scale. Hence, pre-clinical studies on 
cellular dosimetry and organ dosimetry using tumour 
xenograft models are essential [155,162]. In addition, 
in the field of TAT, developments in microdosimetry 
are expanding [216,224,225]. 

5.1.5 Toxicity influenced by immunogenicity 
A specific toxicity concern in RIT is the induction 

of antibody immunogenicity post-administration. 
This elicits a human anti-mouse or human 
anti-chimeric antibody response, which can result in 
anaphylaxis or symptoms of serum sickness 
[135,156,226]. This was noted in a phase II trial in 192 
GB patients of adjuvant RIT with [125I]iodo-mAb 425. 
Four patients developed human anti-mouse 
antibodies preventing further administration. The 
development of humanized and fully human mAbs 
could prevent this immunogenic response [155,227]. 
The avidin–biotin pretargeting system in GB has also 
shown to induce high immunogenicity of streptavidin 
in almost all patients (90%) [147,148]. Small peptides 
(<4 kDa) are generally believed to be poor 
immunogens, despite some exceptions being 
observed [135]. To limit immunogenicity (preferable a 
LD50 > 1.5 g per kg of body weight), small molecules 
and peptides are preferable to mAbs. The design of 
these radiopharmaceuticals should involve strategies 
to reduce immunogenicity such as avoiding the 
inclusion of antigenic amino acid sequences and 
employing structural modifications, such as 
glycosylation or PEGylation, which tend to shield 
antigenic determinants from detection by the immune 
system [135,154]. 

5.1.6 Toxicity specifically associated with the CED 
tumour administration route 

In CED, the therapeutic agent is delivered 

directly into the tumor which imposes a significant 
concentration differential across the tumour 
boundary dependant on leakage into the surrounding 
tissue, thereby minimising systemic toxicity and 
neurotoxicity. Local injection also minimizes renal 
risk from potential tubular re-uptake of the 
radiopharmaceutical [105,228]. Inflammation adjacent 
to the catheter tract and at the catheter tip is shown to 
be limited to within a 50 mm radius and CED does not 
produce cerebral edema or any measurable increase in 
intracranial pressure [128,129]. However, increased 
interstitial fluid pressure within the brain tumour can 
drive the infusate into relatively low-pressure areas in 
surrounding normal tissues. Furthermore, catheter- 
induced tissue damage can occur and backflow may 
be significant in cortical infusions, leading to 
subsequent widespread distribution of the agent 
within the subarachnoid space. The latter can also be 
induced by leakage from the postsurgical cavity to 
cerebrospinal fluid spaces, in the event of a 
connection, which is a major contraindication for TRT. 
It can lead to an inflammatory reaction of the brain, a 
diminished concentration of the radiopharmaceutical 
within the tumour and an increased risk for 
widespread neurotoxicity [105,128]. An adequate 
stereotactic positioning of catheters and a careful 
application of the compound is of utmost importance. 
Co-injection of the imaging counterpart together with 
the therapeutic dose allows short time imaging of the 
tumor and study of the whole body distribution, and 
is recommended for monitoring adequate 
distribution [93]. 

5.2 Clinical toxicity resulting from TRT of GB 
In general, current clinical results show that 

newly diagnosed and recurrent brain tumor patients 
who have been treated with TRT often show only 
limited adverse effects. It should be noted that not all 
clinical trials contain plausible evidence on clinical 
toxicity. The most relevant examples for each 
radioisotope are described in the following 
paragraphs. 

5.2.1 Iodine-131 
In phase I/II trials including diverse malignant 

gliomas different iodine-131-labelled tenascin-mAbs 
were injected directly into the tumor or the resection 
cavity, resulting in minimal toxicity [96,126,229–233]. 
Systemic and neurological toxicity were negligible in 
10 recurrent GB patients receiving doses ranging from 
111-1147 MBq per cycle [131I]iodo-BC-2 stereotaxically 
[231]. Similarly, in 30 recurrent GB patients, a higher 
intratumoral dose of 1100 MBq [131I]iodo-BC-4 did not 
result in adverse systemic effects [236]. This approach 
was confirmed in a large phase I/II clinical trial 
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including 111 patients who suffered diverse 
malignant gliomas. For the phase II component, 
patients received a mean dose of 1.29–2.78 GBq with 
minimal toxicity [233]. In another phase II trial, 43 
patients with recurrent malignant glioma (GB: n=33), 
3.7 GBq of [131I]iodo-m81C6 was injected directly into 
the surgically created resection cavity (SCRC) 
followed by chemotherapy with acceptable 
tolerability and toxicity. Acute, primarily reversible, 
hematologic toxicity was the most common 
significant adverse event (23%). In 12% of the 
population acute neurotoxicity developed but this 
resolved spontaneously or after short-term 
corticosteroid administration in all except one patient 
[96]. The maximum-tolerated dose of [131I]iodo-m81C6 
into the SCRC was 4.44 GBq in a phase I trial which 
involved 42 malignant glioma patients with no prior 
EBRT or chemotherapy [232]. A dosimetric study did 
not detect neurological toxicity while minimal 
hematologic toxicity occurred with the maximum 
tolerated administration of 3.7 GBq [131I]iodo-m81C6 
[95]. Akabani et al. in 2005 suggested an optimal 
absorbed dose of 44 Gy to the 2 cm cavity margins to 
reduce the incidence of neurologic toxicity [234]. 

In 2008, a targeted 44 Gy boost of 
[131I]iodo-m81C6 was delivered to the SCRC followed 
by EBRT and chemotherapy in 21 newly diagnosed 
malignant glioma patients (GB, n=16), which was well 
tolerated and had an encouraging survival outcome 
[235]. The dosing regimen of an [131I]iodo-chTNT-1/B 
mAb targeting DNA histone H1 complex (Cotara®) 
was determined to be 37.0 to 55.5 MBq/cm3 without 
toxicity [236-238]. In a cohort of 51 patients with 
histologically confirmed malignant glioma (GB n=45) 
which received Cotara via CED and the 
treatment-emergent, drug-related CNS adverse 
events included brain edema (16%), hemiparesis 
(14%), and headache (14%). These events were mostly 
reversed with corticosteroid co-treatment. Systemic 
adverse events were predominantly mild [238]. 
Intracavitary-administered [131I]iodo-TM-601, a 
recombinant version of chlorotoxin, was well 
tolerated, without dose-limiting toxicities or clinically 
significant acute adverse events during infusion of 
[131I]iodo-TM-601 at any dosage being observed 
during the 22-day observation period. Grade 3 or 4 
toxicities related to the study drug or method of 
administration were not observed in the immediate or 
long-term follow-up periods [239]. In a human trial of 
systemic endo radio-therapy with [131I]iodo-IPA (up 
to 6.6 GBq), patients did not present with acute or late 
radiotoxicity, neurotoxicity, and haematological or 
renal adverse events were not observed. This 
first-in-human investigation was performed in two 
patients with progressive gliomas, which were 

initially diagnosed as low-grade astrocytoma (WHO 
II) and oligodendroglioma (WHO II), respectively 
[240]. 

5.2.2 Yttrium-90 
Adverse events remained well controllable with 

the fractionated dosage regimen of [131I]iodo- or 
[90Y]Y-anti-tenascin mAb applied in 55 malignant 
glioma patients (GB n=40) [229]. In 73 recurrent GB 
patients treated with the “3 step” [90Y]Y-biotin based 
loco-regional RIT, safety and efficacy was also shown 
[149]. [90Y]Y-DOTAGA-SP was locally administered 
into the tumours of 14 pilot study patients except for 
critically located tumours which were injected with 
[177Lu]Lu-DOTAGA-SP and [213Bi]Bi-DOTAGA-SP 
instead. Drug-related toxicity did not present but 
disease stabilisation or improved neurologic status 
was observed in 13 of the 20 patients while 
neurological function improved in 5 out of 14 GB 
patients within 2 weeks [241]. In a prospective phase I 
study involving 17 GB patients, [90Y]Y-DOTAGA–SP 
treatment was well tolerated by all patients without 
acute toxicity or other side effects [247]. Of 43 GB 
patients treated with 0.4 to 3.7 GBq of 
[90Y]Y-DOTA-lanreotide using a fractionated 1- 6 
therapy cycle, disease regression and a subjective 
improvement in quality of life measures was reported 
in 5 patients while 14 patients presented with 
stablised disease [62]. When [90Y]Y-DOTA-TOC was 
administered to 3 GB cases in three or four fractions at 
intervals of 3 to 4 months (1.7 to 2.2 GBq), the only 
observed adverse effects were a reoccurrence of an 
epileptic seizure for one patient and a mild transient 
headache for another. In general all patients reported 
an improved quality of life [59]. In an extended pilot 
study by Schumacher et al., 10 low-grade and 
anaplastic glioma patients received local 
administration of varying fractions of 
[90Y]Y-DOTA-TOC, either into the tumour or the 
resection cavity without associated intermediate- to 
long-term toxicity [60]. 

5.2.3 Rhenium-188 
The radiolabelled anti-EGFR ligand [188Re]Re- 

nimotuzumab was administered intracavitary to 3 
patients with anaplastic astrocytoma and 8 GB 
patients in an open, uncontrolled, dose-escalation 
phase I clinical trial. In patients treated with 370 MBq 
(n=6) transitory worsening of pre-existing 
neurological symptoms was observed. Two patients 
treated with 555 MBq (n=4) developed early severe 
neurological symptoms and one patient also 
developed late severe toxicity involving RN. Single 
doses of [188Re]Re-nimotuzumab were also 
locoregionally administered to 9 recurrent GB 
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patients with a maximum tolerated dose of 370 MBq 
[243]. 

5.2.4 Lutetium-177 
A progressive pontine GB case, pretreated with 

EBRT and TMZ, [177Lu]Lu-DOTAGA-SP (1.13 GBq) 
was injected via a transcerebellar catheter without 
side effects. Clinical and radiologic improvement 
lasted for 5 months. It is of note that two more cases 
within the same study (but presenting with 
oligoastrocytoma and astrocytoma, WHO grade III) 
received higher doses of [177Lu]Lu-DOTAGA-SP (2.25 
and 6.38 GBq). Impaired neurologic function 
markedly improved significantly in both within 2 
weeks after injection. However, intermediate or 
long-term toxicity could not be evaluated in a patient 
who died following tumor progression [241]. 

5.2.5 Astatine-211 
Anti-tenascin 81C6 mAb was also labelled with 

astatine-211 (71–347 MBq) and injected in the 
surgically created resection cavity of 18 recurrent 
malignant brain tumors (GB, n=14). While dose- 
limiting toxicity did not occur, 6 patients experienced 
reversible grade 2 neurotoxicity, and the median 
survival time for GB patients was 52 weeks. This 
compares favourably to 23–31 weeks for patients 
receiving conventional therapies [244]. 

5.2.6 Bismuth-213 
In a pilot study 5 patients with critically located 

gliomas (WHO grades II-IV) were locally injected 
with [213Bi]Bi-DOTA-SP. Treatment was tolerated 
without additional neurological deficit or local or 
systemic toxicity [242]. In a case presenting with 
progressive GB, intracavitary injection of 375 MBq of 
[213Bi]Bi-DOTAGA-SP was tolerated well [241]. Nine 
recurrent GB patients received 1 - 6 intracavitary 
doses of [213Bi]Bi-DOTA-SP in 2-month intervals 
(median 5.8 GBq), which was well tolerated with mild 
transient adverse reactions (mainly headaches caused 
by transient perifocal edema) [114]. In a more recent 
trial treatment with activity up to 11.2 GBq 
[213Bi]Bi-DOTA-SP was well tolerated in 20 patients 
with recurrent GB with mild and transient adverse 
reactions (edema, epileptic seizures, aphasia) [93,105]. 
During [213Bi]Bi-DOTA-SP infusion, facial erythema 
was observed in a few patients: a systemic effect 
caused by a small amount of [213Bi]Bi-DOTA-SP 
absorbed into the blood [105]. 

5.2.7 Actinium-225 
Local administration of [225Ac]Ac-DOTAGA-SP 

was well tolerated, with mild, transient observations 
of edema, aphasia or epileptic seizures [93,105]. In one 
patient with the tumour located in the left temporal 

lobe, injection of the [225Ac]Ac-DOTAGA-SP induced 
hemiparesis and hemianopia 3 days later, lasting 
several months [105]. 

5.2.8 Iodine-125 
In a phase II clinical trial [125I]iodo-mAb 425 was 

administered intravenously or intra-arterially as an 
adjuvant therapy in 118 GB patients (mean dose of 5.2 
GBq). Acute and chronic toxicity presented as an 
exception in 1 of the 118 patients as hypothyroidism 
[166]. In a second phase II clinical trial of 192 GB 
patients subjected to surgery and EBRT followed by 3 
weekly intraveneous injections of 1.8 GBq, grade 3/4 
toxicological events did not occur [227]. 

6. Validating new radiopharmaceuticals 
The transition of radiopharmaceutical 

therapeutics to a clinical setting have been extensively 
reviewed, including therapeutic radionuclide 
production, preclinical evaluations and Good 
Manufacturing Practice (GMP) perspectives; 
however, these mostly lack information that would 
address GB specifically [245,246]. Current regulatory 
status and broad guidelines regarding the clinical 
translation of radiopharmaceuticals, with particular 
emphasis to the European context, has also been 
reviewed [247–249]. Further guidance is anticipated 
specifically regarding radiopharmaceuticals targeting 
GB, necessary because of the complex radiobiological 
considerations they entail. Thus, the need for 
monographs for therapeutic products is urgent and 
standardisation of quality control and assurance 
procedures are of utmost importance. A major 
limitation of radiopharmaceutical commercialisation 
is meeting product demand and special requirements 
of the market in nuclear medicine adequately. An 
excellent example of the translation to the clinical 
setting is the report on Lutathera® 
([177Lu]Lu-DOTA-TATE), describing its product 
characteristics, quality control procedures with an 
application guide [57]. In this section the relevant 
knowledge, technicalities and major factors 
influencing the validation of radiopharmaceuticals, 
especially for prospective GB imaging and therapy 
will be discussed. 

6.1 Target-based selection of compound 
candidates 

Since the physiology and pathology of GB 
tumours is so unique, it is important to use 
complimentary techniques to increase the probability 
of accurate characterisation. After identifying a 
promising GB target (Section 3.1), exploration of 
target specific compound candidates involves 
stringent in vitro investigations. Carager et al. 
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discusses most recent systems for in vitro brain cancer 
research but those selected are defined by the targeted 
GB pathophysiology [250]. Importantly, the advent of 
in vitro three-dimensional GB colloid models include a 
better representation of in vivo cell environments (eg. 
hypoxic cell status) which could result in more 
accurate predictions of efficacy and sensitivity before 
any in vivo investigations are launched [251–253]. 
Central necrosis may occupy as much as 80% of the 
total GB tumor mass and includes “dormant” hypoxic 
tumor cells that may be very radioresistant [189,254]. 
In addition, the use of an in silico molecular modelling 
step addressing the design of radiopharmaceuticals 
for GB is strongly recommended. For the selection 
process of the optimal complexation strategy for 
radiometal-complexing bioconjugates, it should be 
noted that available published data, often published 
concerning the non-medicinal isotopes of a certain 
radiometal (available from radioassays for in vitro 
investigations), are not applicable as input for further 
compound candidate selection. Designing 
radiopharmaceuticals by adaptation of naturally- 
occurring bioactive molecules, conventional drug 
candidates, or established molecular imaging probes 
remains a sound approach. That being said, however, 
the timelines and success rates may potentially be 
improved by incorporating proteomics, genomics and 
computational methods in the design process of new 
candidates [255,256]. Elegant study examples are the 
in silico modelling of antibody immunogenicity 
potential and the calculation of radiobiological 
mechanisms applied to cancer cells for translation to 
bulky tumours [81,257]. Interestingly, Rockne et al. 
suggest the creation of a virtual in silico tumour with 
the same growth kinetics as that in a particular patient 
to predict efficacy based on in vitro responses. 
Although this study looked at the response to RT, 
translating this concept to radiopharmaceutical 
design is plausible [258]. In silico modelling offers the 
means of combining both in vitro data and 
computational power to create intricate 
pharmacokinetic-pharmacodynamic modelling to 
facilitate the design process and potential to improve 
therapeutic outcome. Therefore it should be 
incorporated into the theranostic protocol [259]. 

6.2 Radiosynthesis requirements 
A variety of strategies and optimised protocols 

for efficient labelling of peptides, mAbs and other 
targeting vectors have been published but specific 
details to develop GB-specific radiopharmaceuticals 
are scarce [259-262]. The vast application of radio- 
metal isotopes emphasises the intricate nature of 
complexation chemistry in GB therapy. When 
considering metal therapeutic radionuclides, the 

choice of chelators to be incorporated in the 
radiopharmaceutical to yield the most stable complex 
is crucial for recommending a metal-radioisotope as 
appropriate (Table 2) [263–266]. If certain in vitro 
applications to characterize a radiopharmaceutical are 
preferred, it is important to meet the stipulated 
criteria qualifying their use, when performing these 
tests on cells or tissue. For example, the radioligand 
association constants obtained from any chelator- 
ligand pair (without any radioisotope) can already 
differ markedly from its radioisotope-chelator-ligand 
complex derived from radiosynthesis (also relevant to 
its formulation). In addition, free radionuclides in 
vivo, either from lack of complexation integrity or 
poor labelling, can lead to unfavourable organ 
toxicity. If radiopharmaceutical instability (in vivo or 
benchtop) is an issue, multiple strategies for 
stabilization thereof have been reviewed [267]. For 
instance, it is considered good practice to add 
diethylenetriamine pentaacetate (DTPA) after 
radiolabelling some metallic based therapeutic 
radiopharmaceuticals to chelate any uncomplexed 
radionuclides. 

The chemical considerations of astatine-211 and 
iodine-131 as therapeutic halogens are unique with 
different constraints [182,268-270]. Production and 
isolation of astatine-211 is well described and feasible 
but complete radiopharmaceutical production 
infrastructure is less widely spread. Lindegeren et al. 
describes the inherent intricacies involved and 
provides insights into how the chemistry 
infrastructure could be developed [269]. One of the 
most important factors to consider is the MA of the 
final radiopharmaceutical. If the production methods 
introduce carrier molecules into the formulation (e.g. 
carrier-added lutetium-177) then the targeting vectors 
labelled with non-radioactive nuclides (such as 
lutetium-176) may compete with target binding 
reducing uptake of the radiopharmaceutical. An 
example of a sophisticated system is to use 
uncomplexed copper-64 dichloride produced with 
high specific activity for GB without additional 
influences on MA. Optimal internalisation can take 
place at the target through the copper transporter in 
GB [184]. 

6.3 Quality control validation 
Since therapeutic radiopharmaceuticals have 

unique characteristics including different types of 
emissions and half-lives, quality control can be 
challenging. The methods used are often spairingly 
applied to therapeutic radiopharmaceuticals in 
comparison to diagnostic radiopharmaceuticals. The 
longer half-lives of some therapeutic radionuclides 
complicates the common procedures used for quality 
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control, i.e. sterility testing and testing for pyrogens. 
Therefore, this requires additional infrastructure 
investment for “in-house” quality control. The 
emission characteristics of α-emitters and pure 
β-emitters complicates high performance liquid 
chromatography (HPLC) analysis, but it is strongly 
recommended that the quality control is not only 
performed by unvalidated instant thin-layer 
chromatography (ITLC) methods. Subtle changes in 
stability of the vectors and effects of radiolysis would 
not necessarily manifest clearly using ITLC analysis. 
Regarding therapeutic peptides, it is important to not 
only focus on radiochemical stability but also take 
into account subtle changes in peptide structure 
(causing chemical instability) that could be brought 
about by radiolysis. Importantly, certain α-particle 
emitting radionuclides may necessitate special QC 
requirements. For example, since actinium-225 does 
not emit γ-rays, a delay of 60 min is necessary after 
ITLC to obtain radiochemical equilibrium between 
actinium-225 and its daughter nuclide francium-221 
[271,272]. Once the radiosynthesis parameters and 
quality control techniques are established, automation 
of radiopharmaceutical production can be of 
considerable support achieving robust, GMP 
compliant products for clinical trials and providing 
proven validated radiation protection for operators 
[273-275]. 

6.4 In vivo validation using GB models 
Rodent GB tumour models which have been the 

main research tools of preclinical investigations for 
over 30 years may be subdivided into three categories: 
ethyl-nitrosourea (ENU) -induced gliomas, 
genetically engineered models (GEMMs) and 
patient-derived xenograft or glioma cell models (PDX 
or PDGC); as summarised in Table 3 [276–278]. In vivo 
validation of novel theranostic compounds should 
include in vivo studies on biodistribution, tumour 
uptake, therapy monitoring and toxicity [279]. 
Particularly important for GB is determination of the 
optimal administration method by comparing 
intraveneous administration (BBB passage testing) 
with CED or intra-tumoral injection. The distribution 
and the residence time of the targeting compound 
throughout the GB tumour and in healthy brain tissue 
should be analysed comparatively. In cognisance of 
this, efficient retention via CED in GB models has 
been reported [165,280,281]. The efflux effect of the 
selected radiopharmaceutical at the BBB can be 
studied in biodistribution experiments or PET 
imaging while co-injecting a P-gp blocker (eg. 
tariquidar or loperamide) [47]. In addition, PET 
biomarkers have been designed to image (and 
quantify) these undesired efflux transporters present 

on the BBB [282]. Overall survival analysis and 
therapy follow-up using PET/SPECT/MRI imaging 
should be performed to test the efficacy of single and 
fractionated doses, including an estimation of the 
delivered therapeutic dose. Multidrug approaches, 
including the currently used first-line 
chemotherapeutic agent TMZ should be included. 
Auxiliary tests to study dose-limiting and off target 
effects would require blood/urine/faeces sample 
collection and post-mortem histology. 

As highlighted by Lenting et al., valid brain 
tumour models should fulfill critical needs to yield 
relevant data for the prospective success of 
radiopharmaceuticals in Nuclear Medicine [276,283]. 
For therapy studies, the tumors should be either non- 
or weakly immunogenic in syngeneic hosts. 
Subcutaneously (heterotopic) GB tumour models are 
technically simple and enable rapid determination of 
treatment efficacy. However, these result in 
encapsulated, non-invasive tumours and caution is 
advised when therapeutic activity focuses on 
disturbing the interaction with the TME 
[276,279,284,285]. Orthotopic GB models include a 
CNS micro-environment and would be more 
appropriate to test the BBB passage of a new TRT 
compound [284]. In case of a RIT agent, preclinical 
testing with the currently available glioma tumour 
models remains outstanding. As the immune- 
compromised status of the recipient mice renders 
PDXs inadequate for this purpose, humanised mice 
are required. In addition, the use of PDX models is 
often hampered by donor availability and limited 
propagation [277]. ENU-induced gliomas recapitulate 
human gliomas most faithfully with respect to genetic 
heterogeneity and immunocompetence, but often lack 
reproducibility [276]. As expected, each of the listed 
animal models has its advantages and limitations. An 
emerging alternative is represented by the organoids 
generated from human samples and so-called 
organoid-derived GB xenografts, including the 
generated live biobank established by Jacob et al. 
[10,286-288]. Hence, the TRT efficacy should be tested 
in a combination of suitable models to compile 
sufficient information for optimal design of the 
clinical protocol. 

6.5 Data required for clinical translation 
Before a new radiopharmaceutical may be 

introduced in the clinic, a range of assessments 
(Figure 9) are required [245,247,289]. An 
investigational medicinal product dossier (IMPD) is 
required for regulatory boards. Information regarding 
the IMPD requirements in the USA and Europe 
pertinent to radiopharmaceuticals is available, but it is 
important to take into account regional requirements 
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and to work with local governing bodies 
[249,290,291]. If the theranostic partnership contains 
two separate radiopharmaceuticals (e.g. [68Ga]Ga- 
DOTA-TATE and [177Lu]Lu-DOTA-TATE), two 
seperate radiopharmaceutical production validations 
must be performed. A significant amount of 
information concerning the release criteria, analytical 
procedures and their validation must be provided 
[247]. Most importantly, validation ensures a robust 
method (taking into account operator variability) and 
focuses on reproducibility of manufacture and quality 
of the environment. Following product validation, 
nonclinical (in vitro and in vivo) safety data (Figure 9) 
is imperative. It is of significance that FDA guidelines 
require that, for diagnostic procedures, risks are low 
and the associated translation requires much less in 
vivo valuation [292,293]. However, caution is advised 
as assumptions regarding radiopharmaceutical safety 
based on experience of diagnostic 
radiopharmaceuticals may be inaccurate if applied to 
therapeutic equivalents. These therapeutic radio-
pharmaceuticals may demonstrate inherent 
additional toxicity (often connected to off target 
effects). Their in vivo stability can be more critical; 
they are also often injected in repeat doses in shorter 
time frames than required for diagnostics). 
Consequently, additional tests (selectivity, 
pharmacokinetics, sensitivity and safety) beyond 
those usually required for diagnostic radio-
pharmaceuticals are included by the validation 

process. In particular for GB, the in silico calculations 
of radiation dosimetry and the toxicity profiling may 
become more complex and must be performed 
stringently. 

7. Future perspective 
Prospective strategies for a multi-targeted 

approach may include the use of heterobivalent or 
hetero-multivalent ligands which may bind 
simultaneously or monovalently to their different 
molecular targets. This is supported by the 
observation of Reubi et al. that non-endocrine tumors 
(including GB) concomitantly express several peptide 
receptors at a high density [294]. Considering that 
strategies successfully reversing GB hypoxia are likely 
to improve the response to radiation significantly, a 
prospective treatment strategy is proposed. This 
entails the administration of a tumour tissue 
penetrating hypoxia-promoting TRT agent to treat the 
centrally located tumour region in parallel with the 
administration of an anti-proliferating TRT agent to 
target the viable tumour boundaries adequately. As a 
higher LET radiation is less dependent on the oxygen 
enhancement ratio, α-particle and AE emitters might 
be more effective in targeting hypoxic regions. In 
addition, targeting with high LET irradiation initially 
may be the best option to tackle the most radio- 
refractory cells from the very beginning of treatment 
because of the characteristic rapid progression of GB. 

 

 
Figure 9. Quality data required for translation of a radiopharmaceutical. The sequential approach to an adequate validation of radiopharmaceuticals is illustrated; 
certain tests and validation steps may not depend on each other and are therefore often performed in parallel. Abbreviated and footnoted content: Absorption Distribution 
Metabolism Excretion (ADME), good manufacturing practice (GMP), molar activity (MA), specific activity (SA), glioblastoma (GB), positron emission tomography (PET), 
single-photon emission computed tomography (SPECT). ($) i.e.: target validation, (*) a requirement only for the validation of therapeutic radiopharmaceuticals, (#) not required 
for microdosing e.g. radiopharmaceuticals (<100 µg); e.g. genotoxicity, safety pharmacology, repeat dose toxicity. (+) radiolabelling may alter the pharmacological 
characterisation of the targeting molecule; pharmacological effects should be ruled out at the anticipated clinical dose [247]. 
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Table 3. Overview and characteristics of different rodent tumor models for glioblastoma imaging 

Model Methodology Pro Con Cell lines/models References 

ENU- 
induced 

• Exposure in utero to ENU (DNA 
damage induces brain tumors 
embryos); 

• Dissection and culturing of these 
tumors in vitro to create animal 
GB models. 

• Immunotherapeutic research tool. 
• Commercially available. 
• Extensively studied. 
• Provides genetic brain heterogeneity, 

micro-environment 
• Intact immune system and BBB. 

• Often ENU tumor characteristic 
differs from human GB; 

• GB tumor formation poorly 
reproducible. 

C6, 9L, T9, RG2, F98, 
BT4C, and RT-2 

[278,283, 
498-504] 

GEMM • Gene mutations result in 
spontaneous tumor formation; 

• Transgenic mouse lines are 
commonly derived by direct 
pronuclear microinjection of 
transgenes into fertilized 
oocytes, followed by 
implantation into 
pseudo-pregnant females; 

• Gene targeting of embryonic 
stem cells by electroporation;  

• Viral-mediated methods; 
• Cre recombinase transgenics 

• Close genetic resemblance to human GB 
tumors: suitable to investigate behavior 
of genetically defined gliomas. 

• Identify the molecular events 
responsible for tumor initiation and 
progression. 

• Analyze the role of the 
microenvironment 

• Studies on drug distribution to glioma 
cells in the brain. 

• Does not completely reflect the 
intratumoral genomic and 
phenotypic heterogeneity; 

• Tumor initiation cannot be 
controlled. 

EGFR amplification/ 
Ras-gene activation 
(classical GB); NF1 
depletion (mesenchymal 
GB); PDGF amplification 
(proneural GB) 

[276,278,279, 
284,504-506] 

PDX • Surgically obtained human 
glioma specimens. After 
preparing cell/tissue cultures 
these can also be implanted 
heterotopically or orthotopically 
in immunocompromised 
rodents;  

• Immediate implantation of 
surgically obtained material into 
the brain of the animal 

• Recapitulate genetic and phenotypic 
features of the original tumor 

• Relatively low engraftment and 
variable growth rate hamper 
standardization and experimental 
planning. 

• Requires immunodeficient animals. 

IDH1R132H-E478 [276,285,504] 

PDGC • High engraftment and growth rates; 
• Good reproducibility; 
• Reliable disease growth and progression 

• Does not recapitulate genetic and 
phenotypical features of original 
tumor. 

• Requires immunodeficient animals 

U87, and U251 

Footnotes and abbreviated content: Ethyl-nitrosourea (ENU)-induced gliomas, genetically engineered models (GEMM) and patient-derived xenograft or glioma cell models (PDX or 
PDGC), platelet-derived growth factor (PDGF), blood brain barrier (BBB), glioblastoma (GB), neurofibromatosis type 1 gene (NF1), epidermal growth factor receptor (EGFR), 
deoxyribonucleic acid (DNA). 

 
 
Strategic combined administration of an 211At- 

labelled compound in tandem with an 131I-labeled 
compound to maximise dose deposition in residual 
tumour margins, is expected to be successful [125]. A 
131I-labeled chimeric mAb ([131I]iodo-chTNT-1/B; 
Cotara®) is a valid first TRT option for patients 
presenting with largelly hypoxic GB, as its target 
(histone H1 complexed to DNA) is abundantly 
present within the necrotic core of GB tumours 
[111,237,238]. Possibly more relevant in future, a 
different radionuclide cocktail for GB treatment is 
RGD-based integrin antagonists radiolabeled with 
either lutetium-177 or yttrium-90. Hypoxia may 
trigger the recruitment of αvβ3 integrins to the 
cellular membrane of such conditioned GB cells. 
Blocking αvβ3 integrins with RGD reduces the 
intracellular levels of the hypoxia-inducible factor 1α 
[300]. Besides targeting hypoxia, TRT compounds that 
directly bind to targets expressed in necrotic or 
apoptotic cells as part of the GB core may be 
recommended. However, the available data is limited 
despite the development of imaging biomarkers, such 
as [18F]F-pyrophosphate, [18F]F-glucaric acid, 
[99mTc]Tc-Annexin-V and [18F]F-2-(5-fluoropentyl)-2- 
methyl malonic acid [301–303]. Radiation- and chemo- 
resistance are major obstacles in GB treatment and 
add another concept to be explored: radiosensitizer 
radiopharmaceuticals (RR). Low-LET radiation may be 
potentiated by inhibitors of DNA damage repair or 

disruptors of cell cycle control. Radionuclides with 
high-LET might be optimally combined with 
radiosensitizers that do not depend on the generation 
of reactive oxygen species [170]. Hence, RR targeting 
DNA repair pathways, cell cycle progression or 
growth factors could be administered first to enhance 
the cytotoxicity of subsequently administered 
ionizing radiation. Different types of radiosensitizers, 
including small molecules, macromolecules and 
nanomaterials, were recently reviewed [299]. An 
elegant example is the administration of a 131I-labelled 
PARP inhibitor, which was recently tested in a GB 
animal model in vivo, but its therapeutic efficacy still 
needs to be confirmed [280,299]. Figure 10 suggests a 
few recommendations for possible future TRT 
(combined) treatment strategies for GB. 

Alongside the promising future perspectives of 
TRT, other radiation-based treatment options are 
likely to bring additional new developments for 
future GB therapy. Radiosurgery, brachytherapy (BT), 
a new method of BT, termed diffusing α-emitters RT 
(DaRT), and boron neutron capture therapy (BNCT) 
have been explored for GB management with varying 
outcomes [301–305]. A new avenue that diminishes 
normal tissue toxicity whilst maintaining an 
equivalent tumour response is the development of 
ultra-high dose rate (FLASH) RT. In FLASH RT, the 
dose is delivered at ≥ 40 Gy/sec compared to dose 
rates of approximately 1-4 Gy/min in conventional 
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EBRT [306]. This technique provided encouraging 
results in an in vivo study using a murine GB model 
but is currently still limited to superficial tumors 
using electron beams [307]. 

8. Summary and Outlook 
TRT can be considered as an adjuvant treatment 

to the standard treatment for primary or recurrent GB 
or as a secondary treatment when the tumor tissue is 
radio- and/or chemo-refractory. For recurrent GB all 
current treatment interventions are only given with a 
palliative intent. In these cases, TRT and 
biomarkers/imaging (MRI/PET/SPECT) might offer 
new possibilities for individualised treatment based 
on a combination of clinical findings, the genetic and 
molecular profile of the patient in relation to his/ her 
GB pathology. Such advanced molecular imaging 
enables, for example, the calculation of optimal 
dosage to achieve maximal treatment response with 
minimal toxicity and to prevent over-treatment [308]. 

Given the fact that recurrence of GB is probably 
inevitable, TRT could be more effective if given 
immediately after standard therapy or immediately 
after diagnosis of recurrence, depending on the 
clinical state of the patient [105]. Clinical reports 

supporting the outcome of the latter principles are 
expected to emerge shortly. The major types of TRT 
that are being explored for GB therapy include PRRT, 
ligand based radionuclide therapy and RIT. Main 
considerations for the development of new 
radiopharmaceuticals for brain tumours are 
summarised in Figure 11, utilizing the three most 
radiolabelled vectors. 

Isotope availability, the parameters of 
radiosynthesis and off-target toxicity are significant 
limitations to achieving improved process 
standardization. Two major requisites for successful 
TRT of GB are evident: i) a well differentiated tumour 
that expresses the desired target in ample quantities 
without normal physiological target functions and ii) 
highly specific ligands with high molar activity that 
are able to overcome biological barriers. BBB crossing 
(often disrupted by GB), tumour diffusion, 
internalisation and intracellular accumulation are 
significantly affected by the vector design irrespective 
of the selected optimal radionucleotide. Additionally, 
strategies to enhance BBB crossing or CED 
administrations need to be considered to increase TRT 
effects. 

 
 

 
Figure 10. Future scenario: combined targeted radionuclide therapy of glioblastoma tumours. The prospective glioblastoma  management will include practicing of 
various combinations of therapeutic tools. Abbreviated content: glioblastoma (GB), targeted radionuclide therapy (TRT), temozolomide (TMZ), external beam radiotherapy 
(EBRT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT). 
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Figure 11. Summary of targeted radionuclide therapy of glioblastoma. Main consideration for the development of new radiopharmaceuticals for brain tumours, 
comparing three different radiolabelled vectors (small molecules, peptides and monoclonal antibodies (mAbs). Abbreviations and footnoted contents: Auger electron (AE), 
blood-brain barrier (BBB), convection-enhanced delivery (CED), cell-penetrating peptides (CPP), intravenous (IV), organs at risk (OAR), reticulo-endothelial system (RES), 
receptor-mediated transport (RMT), specific activity (SA), targeted radionuclide therapy (TRT), carrier-mediated transport (CMT), half-life (T1/2). 

 

It is imperative that proper consideration may be 
given to large-scale production of radionuclides for 
TRT, with its organisation in an economic and 
GMP-compliant manner. Scarcely available 
radionuclides or those with an expensive production 
infrastructure, despite having attractive 
characteristics, are unlikely to be used routinely [154]. 

A limited number of clinical studies using AE 
emitters as cancer therapy tools have been performed 
[155]. In GB patients, anti-EGFR [125I]-Iodo-mAb 425 
did show promising results [227]. Available α-particle 
emitters, with their short range and high LET and RBE 
seem appropriate for GB therapy as they may 
minimize harm to surrounding healthy brain tissue 
thereby triggering high cell kill-rates, with minimal 

dependency on cell cycle and oxygenation status 
[168]. In contrast, the longer range and cross-fire effect 
of β-emitters engender them to a more heterogeneous 
target distribution [10]. Further research on inverse 
dose rate effects that may affect the absorbed 
dose-effect relationship in TRT should be the focus of 
future preclinical studies in radiobiology. Besides 
performing accurate dosimetry, the most relevant 
biological endpoints must also be identified. Current 
clinical results show that brain tumor patients who 
have been treated with all three types of therapeutic 
radionuclides generally show limited adverse effects. 
A combined treatment strategy may produce more 
effective outcomes by targeting multiple pathways 
critical for cancer progression. Optimally 
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(randomised, multi-centered) controlled trials are 
urgently needed to establish the ideal management 
strategy for GB, in particular concerning AE emitters, 
combining radiopharmaceuticals and demonstrating 
its alliance with other systemic therapies, such as 
immunotherapy [178]. 
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