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Abstract 

Immunotherapy is an effective tumor treatment strategy that has several advantages over conventional 
methods such as surgery, radiotherapy and chemotherapy. Studies show that multifunctional nanoprobes 
can achieve multi-mode image-guided multiple tumor treatment modes. The tumor cells killed by 
chemotherapies or phototherapies release antigens that trigger an immune response and augment the 
effects of tumor immunotherapy. Thus, combining immunotherapy and multifunctional nanoprobes can 
achieve early cancer diagnosis and treatment. In this review, we have summarized the current research 
on the applications of multifunctional nanoprobes in image-guided immunotherapy. In addition, image- 
guided synergistic chemotherapy/photothermal therapy/photodynamic therapy and immunotherapy have 
also been discussed. Furthermore, the application potential and clinical prospects of multifunctional 
nanoprobes in combination with immunotherapy have been assessed. 
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Introduction 
Cancer incidence and mortality are rapidly 

increasing world-wide. Most cancers are usually 
detected at the advanced stages due to lack of 
effective screening and early diagnosis. In addition, 
the current therapeutic strategies against cancer have 
poor outcomes on account of their low efficacy and 
accuracy, considerable adverse effects, and the high 
tumor recurrence and metastasis rates. Thus, there is 
an urgent need to explore new safe and effective 
techniques of cancer diagnosis and treatment in order 
to improve patient survival [1]. 

Currently, malignant tumors are detected 
through biopsies and imaging. However, a biopsy is 
invasive, lacks sensitivity and specificity, and cannot 
be performed routinely due to limited pathological 
specimens. On the other hand, imaging methods are 
expensive and cannot detect tumors smaller than 1 cm 
in diameter [2,3]. Therefore, it is crucial to develop 
advanced imaging techniques for early diagnosis and 
monitoring of tumors. Nanoprobes, as novel kinds of 

contrast agents, have been extensively used in 
medical imaging and drug delivery given their size 
and optical properties, which translate to high 
resolution, sensitivity and other advantages [4-8]. The 
nanoprobes with imaging abilities are especially 
suitable for real-time imaging, which could greatly 
improve the accuracy of early tumor diagnosis and 
therapeutic monitoring [9,10]. In fact, several 
nanoprobes have been designed in recent years for the 
early diagnosis and monitoring of tumors [11]. 

The aim of cancer treatment is to eliminate the 
primary tumors, as well as the metastasizing cells to 
prevent recurrence. However, the complex tumor 
microenvironment (TME) greatly limits the efficacy of 
conventional anti-cancer treatment and inhibits 
complete tumor eradication [12]. Cancer immuno-
therapy is a new generation treatment modality that 
stimulates the host immune system to selectively kill 
cancer cells with fewer side effects on healthy tissues, 
and also promotes systemic immune surveillance that 
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can eliminate both primary and metastatic tumors. 
Compared to chemotherapy, surgical resection and 
radiotherapy, the anti-tumor immune cells activated 
by immunotherapeutic strategies can even kill 
circulating tumor cells (CTCs) and thus inhibit the 
formation of metastatic foci. Finally, immunotherapy 
can establish long-term immune memory to prevent 
tumor recurrence. Numerous clinical studies have 
demonstrated that immunotherapeutic agents such as 
cytokines [13], checkpoint blockers [14], anti-cancer 
nano-vaccines [15,16] and chimeric antigen receptor 
T-cells (CAR-T) can effectively treat advanced or 
metastatic tumors [17]. Several tumor immuno-
therapy drugs have been approved by the Food and 
Drug Administration of the United States for clinical 
use as well. However, clinical trials show that single 
immunotherapy cannot achieve complete tumor 
remission. For example, the response rate of 
programmed death receptor-1 (PD-1)/programmed 
death ligand-1 (PD-L1) checkpoint blockade is only 
20%. This is largely attributed to the immuno-
suppressive TME and the high levels of PD-L1 
expressed by the tumor cells, which enable immune 
escape and survival of the tumor cells at every stage 
of the immune response [18]. 

Nevertheless, multifunctional nanoprobes can 
obviate the above shortcomings [19,20] given their 
excellent biocompatibility, easy surface modification, 
and ability to deliver drugs to the target site and 
protect them against endogenous enzymes [21]. 
Studies show that nanoprobe-assisted radiotherapy, 
chemotherapy, photothermal therapy (PTT) and 
photodynamic therapy (PDT) can stimulate the 
immune system by inducing immunogenic cell death 
(ICD) [22,23]. When combined with immune 
checkpoint blockade (ICB), the localized therapies can 
activate tumor-specific immune response to target 
metastatic cancer cells, and induce immune memory 
to inhibit tumor recurrence [24,25]. Therefore, various 
therapeutic modalities can significantly augment the 
effects of immunotherapy against residual tumor 
cells. 

The outcome of cancer treatment is assessed 
according to the response evaluation criteria in solid 

tumors (RECIST) by measuring the change in tumor 
volume and the generation of new tumors [26]. 
However, the infiltration of activated immune cells in 
the TME can increase tumor volume and delay the 
response to immunotherapy as per the conventional 
criteria [27,28]. In addition, routine imaging and 
histopathology cannot accurately predict the clinical 
response of tumor cells to immune agents [29-31]. 
Multifunctional nanoprobes with magnetic resonance, 
photoacoustic, fluorescence and other imaging 
elements can additionally achieve real-time and 
dynamic visualization of tumors and immune cells, 
which can not only elucidate the mechanisms of 
immunotherapy but also accurately monitor and 
predict patient response [32,33]. Furthermore, 
multi-modal imaging that combine the advantages of 
several imaging modes can increase the accuracy of 
tumor diagnosis and monitoring, and clarify the 
synergistic mechanisms of combination therapy [34]. 

Thus, multifunctional nanoprobes combining 
imaging and multimodal treatment can augment 
immunotherapy and achieve image-guided early 
diagnosis, precision treatment and real-time 
monitoring of tumors. In this review, the 
development and applications of multifunctional 
nanoprobes have been discussed in detail, with 
emphasis on image-guided and combination 
immunotherapy against cancer. 

Image-guided immunotherapy 
Multifunctional nanoprobes have unique 

physical and chemical properties that allow high 
resolution imaging [35,36]. Some inorganic 
nanoparticles are effective contrast agents for various 
imaging modes, such as Fe3O4 nanoparticles for MRI 
and Au nanoparticles for computed tomography (CT) 
and photoacoustic imaging (PAI) [37,38]. Surface 
modification of these nanoparticles can additionally 
endow them with histocompatibility, stability and 
targeting capacity [39]. These nanoparticles can not 
only be used as contrast agents but also as immune- 
drug carriers that may overcome the limitations of 
immunotherapy (Table 1). 

 

Table 1. Image-guided tumor immunotherapy using multifunctional nanoprobes 

Immunotherapeutic agents Delivery platform or modality Imaging type Model/Cell type Refs 
Anti-EpCAM/anti-CD3 encoding MC.DNA PEI-C7-SPIO nanomicelles MRI HEK293T/HUVEC/MCF-10A/C17.2 NSCs [40] 
T cells Au NPs CT/FI Mouse melanoma [41] 
Licor800 + PD-L1-mAb Licor800 + PD-L1-mAb SPECT/CT Mouse breast cancer  [42] 
Anti-PD-L1-mAb ErNPs + PbS QDs FI Mouse colorectal cancer [43] 
IRDye800CW + Gd-DOTA + anti-PD-L1  Cerasome NPs FI/MRI Mouse breast cancer; mouse colorectal cancer [44] 
Aza-BODIPY + Gd-chelating MR probe Aza-BODIPY + Gd-chelating; MR probe FI/MRI RAW 264.7 cells/BMDCs [45] 
InGaP/ZnS QDs PFD nanodroplets FI/MRI NK92MI [46] 
anti-PD-L1 snowflake-like Au nanocarriers CT Mouse Prostate Cancer [47] 
CPG Au NPs CT Mouse melanoma [48] 
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Figure 1. Schematic illustration of the preparation of polymeric-inorganic hybrid nanocomposites and the bispecific antibody-based immunotherapy. 
Adapted with permission from [50], copyright 2019 Elsevier Science Inc. BsAb: bispecific antibody; MC.DNA: minicircle DNA; PIHN: polymeric-inorganic hybrid nanocomposite; 
PEI: polyethyleneimine; SPIO: superparamagnetic Fe3O4. 

 
Magnetic resonance imaging (MRI) is a 

non-invasive technique that uses a magnetic field to 
obtain nuclear magnetic resonance (NMR) of water 
protons in the tissue, resulting in three-dimensional 
images. In a strong magnetic field, hydrogen nuclei 
absorb resonant radio frequency pulses, and are 
subsequently excited by the nuclei to relax and return 
to their original low-energy state [31,49]. MRI contrast 
between tissues is produced by the different 
relaxation time of spin of the surrounding hydrogen 
nuclei, which depends on the tissue composition. The 
MR images of soft tissues are usually high-contrast 
given the high content of fat and water. Cai et al. [50] 
synthesized PEI-C7-SPIO nano-micelles for MRI by 
coating superparamagnetic Fe3O4 (SPIO) with pH- 
sensitive N-(2-hydroxy)-cycloheximine and branched- 
chain polyethyleneimine (PEI). Minicircle DNA 
(MC.DNA) was then adsorbed on the nano-micelles 
through the surface positive charge to generate the 
polymeric-inorganic hybrid nanocomposite (PIHN) 
probes (Figure 1). The Fe3O4 nanoparticles functioned 
as the contrast agents for MRI, whereas the minicircle 
DNA was transfected into T cells and induced an 
anti-tumor immune response. The nitrogen/ 
phosphate ratio (N/P) plays an important role in 
cytotoxicity and transfection efficiency [51]. The PIHN 
probes had low toxicity and resulted in >95% viable 
cells when the N/P was between 5 and 25. The 
transfection efficiency of the probes was the highest at 
the N/P of 25, resulting in maximum bispecific 
antibody expression. Thus, the PIHN probes have a 
broad application potential in cancer diagnosis and 
treatment given the excellent MRI ability of the Fe3O4 
nanoparticles and enhanced T cell activation. In 
addition to MRI, magnetic particle imaging (MPI) is a 

more novel imaging technology that has not been 
used in clinical practice despite its potential. Unlike 
MRI, MPI requires magnetic nanoparticles (MNPs) to 
create images with high spatial resolution in the 
sub-millimeter range, and can therefore detect MNPs 
with high sensitivity [52]. 

High-resolution imaging by multifunctional 
nanoprobes can also elucidate the mechanisms of 
immunotherapy [53,54] via real-time monitoring of 
immune cells in the TME and the biodistribution of 
immunomodulatory drugs at the target site [21,32]. 
Rinat et al. [55] labeled melanoma-specific T-cell 
receptor (TCR)-expressing T cells with Au 
nanoparticles (AuNNPs) for CT image-guided 
therapy. AuNNPs loading did not affect the T cells 
proliferation and cytokine secretion in vitro. 
Furthermore, the migration and accumulation of the 
AuNNPs-loaded T cells at the tumor site was clearly 
observed by high-resolution CT. The functionalized T 
cells significantly reduced the tumor volume in the 
melanoma-bearing nude mice within 7 days 
post-injection, indicating excellent tumor-inhibitory 
effect. This study was the first to use real-time CT 
imaging to track labeled immune cells, and assess 
their biodistribution, migration and eventual fate, 
which provides new insights into the interaction 
between immune cells and tumor cells [55]. 

ICB is the most widely applied anti-tumor 
immunotherapeutic strategy. PD-L1 is an immuno-
suppressive molecule that inhibits T cell activation 
upon binding to PD-1 [56], and the PD-1/PD-L1 
pathway is the major mechanism of immune 
tolerance. PD-L1 is a therapeutic target in breast 
cancer given that almost 20% of the patients express 
PD-L1 [57,58] and its high expression levels correlate 
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with poor prognosis. Monoclonal antibodies (mAb) 
targeting PD-L1 have been approved by the US Food 
and Drug Administration (FDA) for the treatment of 
various cancers [59,60]. Several groups have imaged T 
cells and lymphoid tissues in mice using 
radioisotope-labeled PD-L1 and PD-1 antibodies 
[61,62]. However, despite the high affinity, strong 
antigen specificity and easy synthesis of radio-labeled 
antibodies, the prolonged circulation, high 
background signal and poor tumor penetration 
obviate imaging within 24 hours of tracer injection. 
On the other hand, fluorescence imaging (FI) has the 
advantages of rapid detection, high sensitivity and 
non-invasiveness. Samit et al. [63] coupled the near 
infrared (NIR) fluorescent dye Licor800 to 
PD-L1-mAb to detect the expression of PD-L1 on 
different breast cancer cell lines, and recorded strong 
fluorescence intensity for the PD-L1-positive MDA- 
MB-231 cells as opposed to the weak fluorescence for 
the PD-L1-negative SUM149 cells. Thus, NIR-PD-L1- 
mAb can detect PD-L1-expressing tumor cells with 
high specificity, and is a promising tool for the optical 
imaging of these tumors. 

In recent years, the second near infrared (NIR-II, 
1000-1700 nm) window has been used more 
frequently for in vivo imaging. Compared to routine FI 
that operates within the wavelength range of 400-900 
nm, the longer wavelength of NIR-II reduces photon 
absorption and scattering, resulting in minimal tissue 
autofluorescence. In addition, NIR-II FI has deeper 
tissue penetration, and higher spatial and temporal 
resolution [64,65], which makes it ideal for deep tissue 
imaging [43,66]. Yeteng et al. [43] developed 
biocompatible cubic-phase (α-phase) erbium-based 
rare-earth nanoparticles (ErNPs) exhibiting bright 
down-conversion luminescence at ~1600 nm for 
dynamic imaging of cancer immunotherapy. The 
ErNPs functionalized with anti-PD-L1 antibodies 
imaged PD-L1 colon tumors in a mouse model with 
tumor to normal tissue signal ratio of almost 40. Since 
the outcome of ICB depends on the activation of 
tumor-specific cytotoxic T lymphocytes (CTLs) that 
infiltrate the tumor tissues and induce apoptosis of 
cancer cells [67,68], the PD-L1-targeting ErNPs were 
administered along with anti-CD8 α-mAb-labeled 
lead sulfide quantum dots (PbS QDs) to 
simultaneously locate CD8+ CTLs and tumor cells by 
luminescence at 1600 nm. The combination of the 
long-life luminescence (4.3 ms) of ErNPs and 
short-life luminescence (46 μs) of PbS QDs at the same 
emission wavelength further improved temporal 
resolution (Figure 2), and showed the presence of 
CD8+ CTLs in the TME and spleen, clearly indicating 
immune activation. At present, the proportion of 
PD-L1-expressing tumor cells and tumor infiltrating 

lymphocytes (TILs) after immunotherapy are detected 
by biopsies to predict treatment response. However, 
biopsies are invasive and often difficult to obtain from 
deeper tumor tissues, which can result in 
misdiagnosis. Bimolecular imaging by ErNPs and PbS 
QDs is a non-invasive alternative that can accurately 
track distribution of PD-L1 tumor cells and CTLs. 

Single-mode imaging of tumors is usually 
ineffective due to one or more limitations. For 
example, MRI has high spatial resolution but limited 
sensitivity, whereas FI has excellent sensitivity but 
lacks spatial and anatomical resolution [69,70]. 
Dual-mode imaging can significantly improve the 
efficiency of tumor diagnosis by compensating for the 
limitations of each mode [71,72]. Several multi-mode 
imaging methods have been developed in recent years 
to improve the accuracy of early cancer diagnosis 
[44,73]. Du et al. [44] developed the theranostic 
PD-L1-PCI-Gd nanoprobes that combined MRI/FI 
dual-mode imaging with PD-L1 targeting. The 
fluorescence intensity of PD-L1-targeted 
nanoparticles increased steadily in 4T1 tumors, and 
the final fluorescence intensity was almost 2-fold 
higher than that of the background. Similarly, MRI of 
4T1 tumors showed higher signal intensity than that 
of the control group. The multifunctional 
dual-imaging nanoprobes can improve the accuracy 
of early tumor diagnosis with high sensitivity and 
spatial resolution. In addition, non-invasive imaging 
can also be used to monitor cell-based therapy and 
evaluate the immune microenvironment, which is 
critical to improve the efficacy of immunotherapy. 
Eun et al. [45] developed the MRI/NIR FI dual- 
imaging aza-BODIPY-based contrast agent (AB-BCA) 
nanoprobe by combining Gd-chelating MR probe and 
NIR fluorophore aza-BODIPY, which was able to 
trace macrophages and dendritic cells (DCs) in vivo 
(Figure 3). The probes were easily internalized by the 
phagocytic cells, and allowed continuous monitoring 
of the labeled cells through strong fluorescence and 
MRI signals without any obvious cytotoxicity. 

Natural killer (NK) cells are innate immune cells 
that form the early defense barrier against pathogens 
and tumor cells [74,75]. Since exogenous substances 
are not easily internalized by non-phagocytic cells, it 
is difficult to label NK cells with imaging probes. 
Yong et al. [46] combined the MRI agent 
perfluorodecalin (PFD) with fluorescent InGaP/ZnS 
QDs to form PFD/[InGaP/ZnS QDs] dual-imaging 
nano-emulsions that were successfully internalized 
into immune cells such as macrophages, DCs and NK 
cells without any transfection reagent. The 
nanoprobes had almost no effect on cell viability and 
function, indicating potential applications in image- 
guided immunotherapy. 
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Figure 2. In vivo two-plex NIR-IIb molecular imaging of immune responses using ErNPs-aPDL1 and PbS-aCD8 at the same ~1,600 nm emission range. A. 
Schematic illustration outlining the experimental setup (left) to distinguish the PbS QD emission channel (right) by using an 808 nm CW laser. B. Schematic of the experimental 
setup (left) to differentiate the long-lived ErNP luminescence (right) from short-lived PbS QD fluorescence by using a 980 nm laser pulse. The insets show corresponding 
cross-sectional intensity profiles (blue color). C. Lifetime decays of ErNPs-aPDL1 and Pbs-aCD8 in 1 × PBS solution. D. Absorption spectra of ErNPs-aPDL1 and PbS-aCD8. E. 
Emission spectra of ErNPs-aPDL1 and PbS-aCD8. The detection region is 1,500 - 1,700 nm. F. Two-plex molecular imaging (upper right) of a CT-26 tumor mouse at 24 h post 
intravenous injection of mixed ErNPs-aPDL1 (green color, upper left) and PbS-aCD8 (red color, lower left). Scale bar, 5 mm. The zoomed-in high-magnification two-plex image 
(lower right) outlines the CT-26 tumor with micrometer image resolution (scale bar, 500 μm). G. Corresponding two-plex rotation (−90º to +90º) imaging showing the in vivo 
bio-distribution of ErNPs-aPDL1 (green color) and PbS-aCD8 (red color) in the whole body. Scale bar, 5 mm. Similar results for n > 3 independent experiments. OD, optical 
density. Adapted with permission from [43], copyright 2019 Nature Publishing Group. ErNPs: cubic-phase (α-phase) erbium-based rare-earth nanoparticles; ErNPs-aPDL1: 
anti-PD-L1 mAb (atezolizumab) conjugated with ErNPS; PbS QDs: sulfide quantum dots; Pbs-aCD8: anti-CD8α mAb (clone 2.43) conjugated with Pbs QDs. 

 
Figure 3. In vivo NIR and MRI tracking of the migration of AB-BCA-treated BMDCs to LNs in mice. BMDCs treated with or without AB-BCA were 
subcutaneously injected in both hind footpads at a density of 5 × 106 cells/mouse. A. NIR fluorescence images of the whole body at 24 h after injection. B. NIR fluorescence 
images of the magnified thigh at 24 h after injection. C. NIR fluorescence images of the magnified thigh at 48 h after injection. D. MR images at 24 h after injection. Arrows 
indicated the LNs. Adapted with permission from [45], copyright 2016 Amer Chemical Soc. 
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Table 2. Multifunctional nanoprobes combined with immunotherapy guided by medical imaging 

Immunotherapeutic agents Delivery platform or modality Imaging type Model Refs 
Chemoimmunotherapy    
NLG 919 + OXA Photosensitive NPs FI Mouse breast cancer [82] 
DOX + Cy7 Melittin-RADA32 hybrid peptide hydrogel FI Mouse melanoma  [92] 
DOX + CPG CpG self-crosslinking NPs Dual-FI Mouse melanoma [93] 
SN38 + BLZ-945 Au NPs PAI Mouse breast cancer [90] 
DOX + SDF-1α Ag2Se QDs FI Mouse breast cancer [150] 
Paclitaxel + IRDye800CW + PD-L1-PCI-Gd  Nanohybrid liposomal cerasome NPs FI/MRI Mouse breast cancer; mouse colon tumor [44] 
Photothermal immunotherapy    
CpG self-crosslinked NPs IR820-conjugated hydrogel Dual-FI Mouse melanoma [108] 
CPG SPIO PAI/MRI Mouse breast cancer [112] 
Anti-PD-L1-peptide Au@Pt NPs PAI Mouse breast cancer [136] 
Resiquimod + CDs Polydopamine FI/MSOT Mouse breast cancer [151] 
Human CIK cells Au NR@SiO2 PAI Mouse gastric cancer [152] 
FNPs/rGO-PEG NPs FNPs/rGO-PEG NPs MRI Mouse breast cancer [153] 
anti-PD-L1 peptides Au@Pt PAI Mouse breast cancer [136] 
R837 MoS2-CuO heteronanocomposites CTI/IRT/MRI Mouse colon cancer [154] 
Photodynamic immunotherapy    
HPPH Graphene oxide SPECT/CT Mouse breast cancer [123] 
CPG BPQD vesicles PAI Mouse breast cancer [124] 
siRNA Positively charged hybrid micelles, FI Mouse melanoma [126] 
NLG 919 A tumor-microenvironment-sheddable 

prodrug vesicle 
FI Mouse colorectal cancer; mouse breast cancer [129] 

Anti-PD-L1 Ab + IRDye800CW + DOTA-Gd + 
porphyrin  

Cerasome NPs FI/MRI Mouse colorectal cancer [155] 

CPG + Ce6 Mesoporous silica NPs PET Mouse colorectal cancer; mouse melanoma [120] 
Cu2MoS4/Au heterostructures Cu2MoS4/Au heterostructures PAI/CT Mouse cervical cancer [156] 
Photodynamic-photothermal-immunotherapy   
Carbon–silica nanocomposite Carbon-silica nanocomposite PAI Mouse breast cancer; patient-derived 

xenograft model 
[139] 

Ce6 + CPG + Gd3+/Cy3 Graphene QDs MRI/FI Mouse breast cancer [140] 
Black phosphorus Black phosphorus PAI/FI Mouse breast cancer [157] 
CPG + aPD-L1 Cu9S5 IRT Mouse breast cancer [158] 
Photothermal-chemotherapy-immunotherapy   
IRDye800CW + polypyrrole CPT-conjugated HA shell PAI/FI Mouse breast cancer [134] 
DOX + anti-PD-1  Ag@PDA PAI/CT/IRT Mouse breast cancer [159] 
anti-PD-1 CuS PAI/USI Mouse breast cancer [160] 
Photodynamic-photothermal-chemotherapy-immunotherapy  
PTX + R837 + IR820  Thermosensitive liposomal FI Mouse gastric carcinoma [133] 
ICG + PTX + CAT Au nanoshells IRT  Mouse cervical cancer [130] 

 
 
Tumor heterogeneity is a hallmark of cancer, and 

a major factor limiting therapeutic efficacy. Tumor 
cells with distinct genotypes co-exist in the same 
tumor, and significantly affect patient prognosis and 
treatment response. Therefore, different cancer 
patients respond inconsistently to the same treatment 
regimen [76,77], and monotherapies such as surgery, 
chemotherapy, radiotherapy, immunotherapy, PTT 
and PDT cannot achieve complete tumor cessation. 
Therefore, combination therapies (Table 2) that can 
reduce some adverse effects of particular 
monotherapies and result in stronger anti-tumor 
effects through the complementary action of different 
treatment mechanisms are increasingly gaining 
precedence [78,79]. Studies show that chemotherapy 
with doxorubicin (DOX) or oxaliplatin (OXA) can 
trigger an immune response via ICD of tumor cells 
[22,80], which increases the surface expression of 
pro-apoptotic calreticulin (CRT), promotes the 
maturation of antigen-presenting cells (APCs) and 
increases accumulation of CTLs in the tumors [81,82]. 
In addition, PDT and PTT can also stimulate the 
immune system by inducing ICD [83,84]. The 

combination of these monotherapies with ICB can 
target the metastatic cancer cells and residual tumor 
cells, and promote expansion of memory immune 
cells to inhibit tumor recurrence. Therefore, 
chemotherapy, PDT or PTT combined with an 
immunoadjuvant can significantly augment the 
effects of immunotherapy [82]. 

 Image-guided chemo-immunotherapy 
Chemotherapy is not only limited by low tumor 

specificity and adverse effects, but also diminishes the 
anti-tumor immune response by inhibiting 
production of white blood cells in the bone marrow 
[85]. However, targeted chemotherapy can enhance 
the anti-tumor immune response by promoting the 
activation of tumor-associated DCs and the expansion 
of effector T cells, and augment the effects of 
immunotherapy [86,87]. In addition, multifunctional 
nanoparticles with chemotherapeutic drugs and 
imaging probes allows tumor-targeted drug delivery, 
real time monitoring of the nanoprobes and 
non-invasive controlled drug release at the target site 
[40,80]. Another advantage of image-guided, stimuli- 
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responsive drug release is that the time window of 
treatment can be optimized [89,90]. 

Bing et al. [82] synthesized a light-induced 
immunotherapy nano-drug (LINC) consisting of 
photosensitizer pheophorbide A (PPa), redox- 
responsive heterodimer of indoleamine 
2-dioxygenase 3-dioxygenase 1 (IDO-1) inhibitor 
NLG919 (PN), and light-activatable prodrug 
oxaliplatin (OXA) (Figure 4). LINC accumulated at 
the tumor site and emitted NIR fluorescence signals 
following intravenous injection in mice. Furthermore, 
the first FI-guided NIR laser irradiation induced the 
production of reactive oxygen species (ROS) and 
cleavage of polyethylene glycol (PEG) canopy, which 
significantly increased the retention and penetration 
of LINC into the deeper tumor layers, resulting in 
2.5-fold stronger fluorescence intensity compared to 
the non-irradiated group 24 h post-injection. After the 
second NIR laser irradiation, LINC promoted 
anti-tumor immunogenicity by promoting infiltration 
of CTLs in the tumor. In addition, NLG919 reversed 
the immunosuppressive TME by activating IDO-1. 
Taken together, LINC inhibited tumor growth and 
lung metastasis by chemo-immunotherapy and 
induced continuous immune memory to prevent 
tumor recurrence. The targeted accumulation and 
retention of LINC was monitored by in vivo FI and 
PAI. The latter also showed that LINC was mainly 
distributed in the peripheral regions of the tumor in 
the non-irradiated mice, whereas laser irradiation 
increased LINC diffusion into the deeper tumor 

region within 2 h of injection. 
Despite the aforementioned advantages of 

nanoplatforms, the pathophysiological barriers of 
solid tumors limit the accumulation of drug-loaded 
nanoparticles, which in turn lowers therapeutic 
efficacy. Multifunctional nanoprobes that can release 
the chemotherapeutic drug in a sustained manner at 
the target site can significantly improve the treatment 
efficiency and reduce damage to normal tissues [91]. 
Jin et al. [92] synthesized melittin-RADA 32 hybrid 
polypeptide hydrogel and loaded it with the 
antineoplastic drug DOX. The melittin-RADA32-DOX 
(MRD) nanogel was further functionalized with 
curcumin, paclitaxel and optical contrast agents such 
as Cy7 and indocyanine green, with a loading rate 
close to 100%. The hydrogel showed excellent 
biocompatibility and controlled release of mellitin and 
DOX, which inhibited melanoma growth in a mouse 
model by 95% after a single injection with minimal 
toxicity. The antigens released by the dying tumor 
cells were engulfed and presented by DCs in the 
draining lymph nodes, resulting in the activation of 
specific CTLs that killed the residual tumor cells. The 
distribution and breakdown of the hydrogels were 
monitored by the NIR fluorescent dye Cy7 
(Cyanine7), which has a molecular weight similar to 
that of DOX. Xia et al. [93] synthesized multifunctional 
FI nanoprobes by loading DOX into CpG self- 
crosslinked hydrogel nanoparticles. Co-stimulation 
by DOX and the immunogen CpG reversed the 
immunosuppressive TME and induced a stronger 

 

 
Figure 4. Schematic illustration of NIR light-inducible LINC for self-amplified drug delivery and combination immunotherapy. Arrows indicated the LNs. 
Adapted with permission from [82], copyright 2019 Wiley-V C H Verlag Gmbh. CTLs: cytotoxic T lymphocytes; IDO-1: indoleamine 2-dioxygenase 3-dioxygenase 1; ICD: 
immunogenic cell death; LINC: light-induced immunotherapy nano-drug; OXA: oxaliplatin; PN: indoleamine 2-dioxygenase 3-dioxygenase 1 (IDO-1) inhibitor NLG919; GHS: 
glutathione; PPa: photosensitizer pheophorbide A. 
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immune response, thus achieving efficient chemo- 
immunotherapy. In addition, compared to the direct 
hydrogel-mediated delivery of DOX, the CpG self- 
crosslinked hydrogel nanoparticles achieved more 
sustained immunostimulatory effect. FI confirmed the 
targeted delivery of the nanohydrogel, which 
significantly reduced any adverse effects of the loaded 
drugs. 

Blocking monocyte recruitment and the 
subsequent activation of tumor-associated 
macrophages (TAMs) via inhibition of CSF-1/CSF-1R 
is a novel immunotherapeutic strategy [94,95]. The 
small molecule BLZ-945 specifically inhibits CSF-1R 
phosphorylation and blocks CSF-1-mediated signal 
transduction in TAMs, leading to apoptosis and 
improving CTC infiltration in the tumor [96,97]. 
However, free BLZ-945 has a poor tumor inhibition 
effect, which necessitates dual-responsive nano- 
delivery systems to drug delivery [98-100]. Rong et al. 
[90] loaded BLZ-945 into self-assembled 
AuNNP@PEG/PSN38VP probes synthesized by 
grafting AuNNPs with polyethylene glycol (PEG) and 
pH/GSH (glutathione)-responsive 7-ethyl-10- 
hydroxycamptothecin (SN38). The AuNNP@SN38/ 
BLZ-945Ve particles dissociated into the hydrophilic 
AuNNP@PEG/PSN38VP in the acidic TME and 
released BLZ-945. The smaller AuNNP@PE-G/ 
PSN38VP penetrated into the deeper tumor regions 
and released the SN38 prodrug in the reductive 
environment, leading to tumor cell apoptosis. The 
strong plasmonic coupling between AuNNP 
significantly enhanced the localized surface plasmon 
resonance (LSPR) absorbance in the NIR-II window, 
and the resulting PA signals enabled high contrast 
PAI for monitoring drug release and treatment 
(Figure 5). The multifunctional nanoprobes achieved 
PAI-guided simultaneous chemo-immunotherapy to 
inhibit the growth of primary and metastatic tumors, 
and prolonged the survival of tumor-bearing mice. 
Thus, AuNNP@SN38/BLZ-945Ve is an excellent 
dual-responsive nanoplatform with broad application 
prospects in drug delivery and bioimaging. 

Image-guided PTT and immunotherapy 
Compared to conventional anti-cancer 

treatments, PTT has certain advantages like high 
specificity, minimal invasiveness and precise 
spatiotemporal selectivity [101]. Several nanoparticles 
have been developed in recent years that integrate 
contrast agents and photoabsorbers into a single 
platform for simultaneous diagnosis and PTT 
[102,103]. Image-guided PTT can effectively ablate 
primary tumors with little damage to surrounding 
tissues, but has a poor therapeutic effect on metastatic 
tumors. Nevertheless, the antigens released from 

photothermally ablated tumor cells can trigger 
systemic anti-tumor immunity. The combination of 
PTT and immunotherapy can synergize their 
therapeutic effects on distant primary tumors and 
metastatic cancer cells, and enhance anti-cancer 
immunity with less invasiveness and shorter course 
[101]. Local hyperthermia also trigger the release of 
immunomodulatory molecules [29,104], upregulate 
MHC-I, MHC-II, CD80 and CD86 on DCs, and 
increase their migration to draining lymph nodes, 
thereby enhancing the ability of DCs to present 
antigens to T cells. In addition, local hyperthermia 
increases blood flow and vascular permeability to 
promote infiltration of T cells into the tumor, which 
further augments the anti-tumor immune response 
and delays tumor growth [105]. However, 
lymphocyte infiltration into the deeper layers of solid 
tumors is inadequate due to several immune escape 
mechanisms, which can only be obviated by reversing 
immunosuppression and inducing stronger ICD. 

Yinchu et al. [106] achieved more uniform and 
deeper ICD in solid tumors with PTT using NIR-II, 
resulting in stronger innate and adaptive immune 
responses to control tumor growth and prevent 
metastasis. Photothermal conversion was mediated 
by Au nanoparticles self-assembled on fluid 
liposomes, and exhibited similar composition, 
structure and conversion efficiency, but differed in 
terms of absorption in the red light, NIR-I and NIR-II 
window. One study showed that PTT using 
wavelengths of all regions induced ICD and released 
damage associated molecular patterns (DAMPs) in 
vitro [107], although only NIR-II PTT released DAMPs 
from the deeper tumor regions in vivo and completely 
inhibited tumor growth in most mice by triggering 
both innate and adaptive immune responses. 

Adjuvants are drugs or bioactive substances that 
enhance immune response to antigens, and have also 
been tested in tumor immunotherapy [108,109]. 
Hydrogels are highly suitable drug carriers given 
their excellent good biocompatibility and slow drug 
release [110]. Cytosine-phosphate-guanine (CpG) 
oligodeoxynucleotides are potent immunostimulants 
that have proved to be effective as adjuvants in tumor 
immunotherapy [111]. Dong et al. [108] synthesized 
CpG nanoparticles (CpG NPs) by crosslinking CpG 
and PEI in the presence of genipin and conjugated 
them with indocyanine green (IR820)-loaded 
hydrogels for combined PTT and immunotherapy 
against melanoma. IR820 induced tumor antigen 
release via the photothermal effect, and CpG 
augmented the ensuing anti-tumor immune response. 
In addition, the distinct fluorescence signals of 
genipin and IR820 hydrogels could be individually 
monitored in vivo for 12 days, which revealed that the 
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photothermal action of IR820 hydrogel not only 
accelerated the degradation of CpG NPS but also 
enhanced their persistence to achieve an effective 
immune response. Yuan et al. [112] designed magneto- 
responsive multifunctional nanoprobes (MINPs) 
loaded with CpG and SPIO for PA/MR dual-mode 
imaging-guided PTT and immunotherapy (Figure 6). 
MINPs functioned as MRI contrast agents and 
enabled targeted accumulation of SPIO and CpG in 

the tumors under an external magnetic field, thus 
achieving accurate dual-mode imaging. The 
photothermal effect of MINPs effectively destroyed 
the primary tumor and released tumor-associated 
antigens, thereby acting as an “autologous tumor 
vaccine”. The adjuvant action of CpG further 
enhanced the effect of immunotherapy to achieve a 
more effective systemic treatment effect than PTT or 
immunotherapy alone. 

 

 
Figure 5. In vivo PAI-guided monitoring of BLZ-945 and drug release. A. PA images of MCF-7 tumor-bearing Balb/c nude mice treated with AuNNP@SN38/BLZ-945 
Ve at different time points post-injection. B. PA images of MCF-7 tumor-bearing Balb/c nude mice treated with AuNNP Ve at different time points post-injection. C. The PA 
spectra of the tumors treated with AuNNP@SN38/BLZ-945 Ve at different time points in the photograph of tumor bearing mice. D. The PA spectra of the tumors treated with 
AuNNP Ve at different time points in the photograph of tumor bearing mice. Adapted with permission from [90], copyright 2020 Amer Chemical Soc. 
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Figure 6. Schematic illustration of image-guided photothermally triggered immunotherapy using magnetic-responsive immunostimulatory nanoagents 
(MINPs) for both primary treated and distant untreated tumors. Adapted with permission from [112], copyright 2019 Elsevier Sci Ltd. CpG ODNs: 
cytosine-phosphate-guanine oligodeoxynucleotides; IFN-γ: interferon gamma; MINPs: magneto-responsive multifunctional nanoprobes; PTT: photothermal therapy; TNF-α: 
tumor necrosis factor-α. 

 
Figure 7. An immune-favorable TME established via fever-like immune-response induced by the photothermal effect of PCN. Adapted with permission from 
[113], copyright 2018 Wiley. APC: antigen presenting cells; Csf3: colony stimulating factor 3; CCL8: c-c motif chemokine ligand 8; Clec4e: c-type lectin domain family 4 member 
e; DC: dendritic cell; IDO2: indoleamine 2,3-dioxygenase 2; LYVE-1: lymphatic vessel endothelial hyaluronan receptor 1; Mφ: macrophages; PCN: photothermal CpG 
nanotherapy; SNCG: γ-synuclein. 

 
The efficacy of ICB-based cancer 

immunotherapy depends primarily on the expression 
of PD-L1 in tumor tissues and the recruitment of TILs. 
The immunologically “cold” tumors with poor 
lymphocyte infiltration do not respond to immune 
checkpoint inhibitors [113]. Although mild PTT 
(about 45 °C) can function as an adjuvant in immuno-
therapy, it can also up-regulate heat shock proteins 
(HSPs), indoleamine 2,3-dioxygenase (IDO) and PD- 

L1 on the tumor cells, which aid in immune escape. 
Liping et al. [114] proposed a combination of mild PTT 
and anti-PD-L1 antibody to reprogram the “cold” 
TME and sensitize the tumors to ICB, thereby 
achieving photothermal immunotherapy. Yan et al. 
[113] developed photothermal CpG nanotherapy 
(PCN) to modulate the TME using mild heat (Figure 
7). Ovalbumin (OVA) was assembled with Au 
nanorods through free mercaptan and disulfide 



Theranostics 2021, Vol. 11, Issue 15 
 

 
http://www.thno.org 

7370 

bonds, and CpG was selectively integrated through 
interaction with OVA and coordination effect of 
terminal thiol group with Au nanorod. The 
multifunctional nanoprobes exhibited good 
biocompatibility and biodispersion, and significantly 
increased apoptosis and necrosis of tumor cells under 
light stimulation. The latter released tumor antigens, 
which promoted anti-tumor immunotherapy in 
coordination with CpG. Local mild hyperthermia 
further augmented the immune response, thereby 
promoting the activation/maturation of innate 
immune cells. Numerous CD8+ T lymphocytes and 
high IL-6 levels were detected in the light-treated 
PCN group. In addition, mild hyperthermia 
down-regulated the expression of several 
immunosuppressive genes (SNCG, IDO2 and Csf3) in 
the CD8+ T cells, which significantly improved the 
infiltration, proliferation and activation of CTLs. 
These results suggest that local PTT-induced immune 
responses are usually weak and limited by the 
immunosuppressive TME, which can be overcome by 
including an immune adjuvant. Thus, a combination 
of mild PTT and immunotherapy can synergistically 
eliminate primary tumors, suppress metastasis and 
prevent tumor recurrence [25,115]. 

However, most lasers can only target the 
superficial tumors, which limits the hyperthermic 
effect in the deeper tumor tissues. Magnetic 
hyperthermia (MHT) of solid tumors can be achieved 
through a remote-controlled alternating magnetic 
field (AMF), which can penetrate deeper tissues more 
safely and efficiently compared to light and other 
sources of heat. Magnetic iron oxide nanoparticles 
(MIONs) repeatedly rearrange the magnetic moments 
of the ions under AMF, likely due to the internal spin 
shifting from one direction to another (Néel 
relaxation) or the physical rotation of the particles 
(Brownian relaxation). In both cases, this reorientation 
leads to the conversion of electromagnetic energy into 
thermal energy, making MIONs controllable heat 
sources [101]. The heat generated by the interaction of 
MIONs with magnetic fields induces apoptosis or 
necrosis in the tumors, which in turn stimulate an 
immune response [116]. Maintaining T cell activity 
after activating the immune response is also the key to 
obtaining antitumor immunity. Combining 
checkpoint inhibitors with hyperthermia to avoid 
immune escape has been confirmed to provide 
significantly improved antitumor immunity [117]. 
MHT can overcome poor penetration of PTT into 
deeper tumor tissues, and should be explored as an 
alternative for combined PTT and immunotherapy. 

Image-guided photodynamic and 
immunotherapy 

PDT is a non-invasive tumor ablation method 
that relies on cytotoxic ROS production by 
photosensitizers (PSs), eventually leading to the 
apoptosis and necrosis of tumor cells [118]. However, 
traditional PSs have poor targeting ability and water 
solubility, and are easily destabilized in vivo. In 
addition, PDT is also ineffective against the 
deep-seated and metastatic tumors due to limited 
tissue penetration of the laser sources and the hypoxic 
microenvironment, thus precluding its widespread 
application. Nano-PDT platforms that deliver PSs 
using targeted nanoprobes can not only improve the 
stability, biocompatibility and accessibility of PSs, but 
also increase therapeutic efficacy and reduce side 
effects [119]. On the other hand, PDT-induced tumor 
cell death releases DAMPs that include multiple 
tumor-specific antigens, which are then presented by 
the DCs and other APCs to the CD4+ and CD8+ T cells 
[120,121], thereby eliciting an anti-tumor immune 
response. Image-guided PDT can improve its 
therapeutic efficacy by elucidating the tumor size and 
location, and the optimal treatment time [122]. 

Yu et al. [123] synthesized graphene oxide 
nanoprobes loaded with the PS photochlor (HPPH) 
and conjugated to integrin αvβ6-trageting peptides 
for tumor-specific PDT. The probe was also labeled 
with radionuclide and optical dyes, which enabled 
non-invasive monitoring of in-situ and distal tumor 
infiltration by CD8+ T cells after PDT by single photon 
emission computed tomography (SPECT) and NIR FI 
(Figure 8), thus confirming the key role of CD8+ T cells 
in PDT-mediated immunotherapy. In addition, the 
nanoprobes effectively inhibited tumor metastasis by 
direct killing of tumor cells in situ and turning them 
into “autologous vaccines” that can activate the anti- 
tumor immune response and generate long-term 
immune memory. 

However, PDT alone can achieve very limited 
activation of innate and adaptive immune responses, 
which is inadequate for distant tumors. Immuno-
adjuvants such as CpG can enhance photodynamic 
immunotherapy by inducing DC activation and 
promoting the secretion of pro-inflammatory IL12p70 
and TNF-α [123]. Zhi et al. [124] synthesized 
NIR/ROS-responsive black phosphorus quantum 
dots (BPQD) vesicles (BPNVs) by self-assembly of 
polyethylene glycol and ROS-sensitive poly 
(propylene sulfide) (PPS), and encapsulated CpG in 
those vesicles (Bpnvs CpG). Following accumulation 
of BPNVs at the tumor site, they were irradiated by 
NIR laser to produce high levels of ROS that triggered 
transformation of hydrophobic PPS to hydrophilic 



Theranostics 2021, Vol. 11, Issue 15 
 

 
http://www.thno.org 

7371 

polymer. This in turn dissociated CpG from BPNVs, 
which then penetrated into the deeper tumor tissues 
and was captured by the APCs along with tumor 
antigens, resulting in cytokine secretion and 
anti-tumor immune response. In addition, the 
dissociation and release of CpG was controlled by 
PAI. Thus, BPNVs-CPG achieved effective 
photodynamic immunotherapy in vivo, which 
inhibited the proliferation of tumor cells and blocked 
distant tumor growth and metastasis. 

Tumor cells suppress T cell activity through 
PD-L1 and PD-1 immune checkpoints, which can 
neutralize PDT-mediated tumor immunotherapy. ICB 
can reverse the negative regulatory signals between 
immune cells and tumor cells, and increase the 
anti-tumor immune response of PDT [125]. Dang et al. 
[126] designed multifunctional nanoprobes for 
photodynamic immunotherapy by integrating 
pH-responsive PDPA micelles, pheophyllin A (PPa) 
PS and small interference RNA (siRNA) to block 
PD-1/PD-L1 interaction (Figure 9). The homo 
fluorescence resonance energy transfer (homo-FRET) 
between PPa molecules quenched the fluorescence of 
the micelles. The acidic TME protonated the tertiary 
amine of PDPA and released PPa, which emitted 
fluorescence signals for tumor imaging. In addition, 
laser irradiation of the PS induced ROS formation, 
and photodynamic tumor ablation released antigens 
that were presented by the APCs to stimulate 
adaptive anti-tumor immune response. At the same 
time, the PD-L1-specific siRNA reversed immuno-

suppression by silencing the expression of PD-L1 on 
tumor cells. Compared to PDT alone, the combination 
of PDT and PD-L1 blockade significantly inhibited 
tumor growth and distant metastasis in a B16-F10 
melanoma model. 

Indoleamine 2,3-dioxygenase (IDO) is the rate 
limiting enzyme of the tryptophan metabolic 
pathway, and beaks down tryptophan to kynurenine. 
Increased tryptophan consumption and kynurenine 
accumulation promotes immune escape of tumor cells 
[127]. Therefore, IDO is a key target of tumor 
immunotherapy [128]. Ang et al. [129] showed that 
inactivating IDO-1 overcame PDT-induced adaptive 
immune resistance. They combined PEG-PS with 
NLG919, a prodrug of IDO-1 inhibitors, to synthesize 
a prodrug vesicle that specifically accumulated at the 
tumor site. Following cleavage of the PEG corona by 
matrix metalloproteinase-2 (MMP-2), the PS 
penetrated into the deep layers of the tumor for FI and 
PDT. Compared to PDT alone, photodynamic 
immunotherapy mediated by prodrug vesicles 
enhanced the immune response against CT26 and 4T1 
tumor models and significantly inhibit tumor 
recurrence, especially for the IDO-overexpressing 
CT26 tumors. This differential tumor-specific 
therapeutic potential highlights the importance of 
IDO-1 expression for efficient photodynamic 
immunotherapy, and provides novel insights into the 
development of new multifunctional nanoprobes to 
overcome adaptive immune resistance. 

 

 
Figure 8. A. Representative optical images of 4T1 tumor-bearing BALB/c mice at 1, 4, and 24 h after injection of HPPH, GO(HPPH)-PEG, or GO(HPPH)-PEG-HK. Tumors are 
indicated by arrows. B. Quantitative analysis of HPPH, GO(HPPH)-PEG, and GO(HPPH)-PEG-HK uptake by 4T1 tumors at 1, 4, and 24 h post-injection. C. In vivo optical imaging 
and BLI of 4T1-fLuc tumor-bearing BALB/c mice 24 h after injection of GO(HPPH)-PEG-HK. D, E. Representative optical images of (D) and quantitative analysis of lung uptake 
(E) of GO(HPPH)-PEG-HK by 4T1-fLuc tumor-bearing and normal BALB/c mice at 24 h post-injection. *, P <0.05; **, P <0.01. Adapted with permission from [123], copyright 
2017 Amer Chemical Soc. GO: graphene oxide; HPPH: 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-alpha; HK: tumor integrin αvβ6-targeting peptide; PEG: polyethylene 
glycol. 
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Figure 9. Schematic illustration of the acid-responsive micelleplexes for PD-L1 blockade-enhanced photodynamic cancer immunotherapy. Adapted with 
permission from [126], copyright 2016 Amer Chemical Soc. HSP70: heat shock protein 70; KD: knockdown; NK cell: natural killer cell; NF-κB: nuclear factor kappa B; PD-L1: 
programmed cell death 1 ligand; PD-1: programmed cell death receptor 1; siRNA: small interference RNA. 

 

Image-guided multi-mode therapy 
combined with immunotherapy 

As discussed in previous sections, chemo- 
immunotherapy, photothermal immunotherapy and 
photodynamic immunotherapy can achieve 
synergistic (1+1>2) therapeutic effects compared to 
any monotherapy. In addition, the combination of 
three or more modalities can further improve the 
therapeutic effect on tumors [130] by compensating 
for the disadvantages of each monotherapy [131,132]. 
Integrating three or more different therapeutic 
methods into a single nanoprobe could have a better 
therapeutic effect than the single or dual-mode 
treatment [133,134] at lower doses, thereby avoiding 
the side effects of high drug dosage. Multiple 
therapeutic and imaging compounds can be 
assembled into a nanostructure through physical 
adsorption and chemical forces for multi-mode 
image-guided multi-mode therapy. 

PTT and PDT are noninvasive and highly 
selective [135], and rely on photoactivation to convert 
light to local hyperthermia [136] or ROS [120] 
respectively and trigger tumor cell apoptosis. Several 
nanoprobes have been developed for combination 
PDT/PTT in recent years [137], especially the 
carbon-based nanoprobes that have the advantages of 
simple manufacture, strong NIR absorption and high 
photothermal conversion efficiency [138]. Hong et al. 
[139] designed biodegradable carbon-silica multi-
functional nanoprobes (CSN) with immunoadjuvant 
and PAI abilities for image-guided PDT/PTT. The 
nanoprobes effectively inhibited the growth of 4T1 
and patient-derived xenograft (PDX) tumor models 

by 93.2% and 92.5% respectively. In addition, CSN 
was degraded into particles smaller than 5.5 nm upon 
NIR irradiation, and were excreted via the urine given 
the kidney filtration threshold (KFT) of ~5.5 nm, thus 
avoiding the long-term toxicity of carbon-based 
nanoprobes. 

Chun et al. [140] conjugated graphene quantum 
dots (GQDs) with Ce6 and coated them with 
polydopamine to form a functional photosensitive 
GQD complex (GCpD), which was then integrated 
with CpG and Gd3+/Cy3 MRI/FI contrast agent 
(PC@GCpD(Gd)) for cancer photoimmunotherapy 
and dual-mode imaging. The probes effectively killed 
tumor cells through GCpD-mediated PTT and PDT. In 
addition, CpG activated the innate immunity-related 
Toll-like receptor 9 (TLR9), resulting in continuous 
secretion of pro-inflammatory cytokines, DC 
maturation, and T lymphocyte activation and 
infiltration. PC@GCPD(Gd) had a strong inhibitory 
effect on the EMT6 mouse breast tumors under laser 
irradiation, indicating synergistic photothermal, 
photodynamic and immunotherapy. Furthermore, 
dual-mode MRI/FI can track the in vivo 
biodistribution of PC@GCPD(Gd). The MRI signals in 
the tumor were strongest at 6 h after administration 
and persisted after 48 h, indicating that 
PC@GCPD(Gd) can rapidly accumulate in the tumor 
tissues and remain in situ for a longer time, thereby 
maximizing the therapeutic effects. The MRI findings 
were also confirmed by FI of the tumors and other 
organs (Figure 10). PC@GCPD(Gd) also migrated to 
the draining lymph nodes, which is the primary site of 
DC maturation and activation of antigen-specific T 
cells for immunotherapy. 



Theranostics 2021, Vol. 11, Issue 15 
 

 
http://www.thno.org 

7373 

 
Figure 10. In vivo T1-weighted MRI and BioFI of PC@GCpD(Gd). A. T1-weighted MRI signal of PC@GCpD(Gd) and DTPA-Gd measured at different gadolinium 
concentrations. B. Intensity comparison of PC@GCpD(Gd) and DTPA-Gd measured at different gadolinium concentrations. C. Relaxation rate of PC@GCpD(Gd) and 
DTPA-Gd measured at different gadolinium concentrations. D. T1-weighted MRI of EMT6 tumor-bearing mice at different time points after PC@GCpD(Gd) administration; 
white circles highlight the tumor site. E. The FI images of tumors and main tissues from mice treated with PC@GCpD(Gd) and free CpG-Cy3 for 2 h and 24 h. F. Quantitative 
comparison of tumors and main tissues from mice treated with PC@GCpD(Gd) and free CpG-Cy3 for 2 h and 24 h. Adapted with permission from [140], copyright 2019 Elsevier 
Sci Ltd. DTPA: diethylenetriaminepentaacetic acid; CpG: cytosine-phosphate-guanine. 

 
Although chemotherapy is the mainstay of 

cancer treatment, it is fraught with disadvantages 
such as non-specific action, low bioavailability, 
inability to overcome tumor heterogeneity and 
development of multidrug resistance (MDR), 
resulting in serious systemic side effects and tumor 
recurrence [141]. The integration of non-invasive 
photodynamic [142], photothermal [143] and photo-
dynamic photothermal [144] with chemotherapy in a 
single nanosystem can greatly improve the latter’s 
efficacy while minimizing adverse side effects. In 
addition, chemotherapy, PTT and PDT can induce 
ICD to stimulate the immune system, which when 
combined with ICB can target the metastatic cancer 
cells and generate immune memory. 

Camptothecin can effectively kill tumor cells in 
the S phase and G2 phase, but its high toxicity limits 
clinical applications. Sun et al. [144] synthesized 
multifunctional nanoprobes by coupling 
CD44-targeted hyaluronic acid and camptothecin to 
encapsulate polypyrrole, and attached the NIR 

fluorescent dye IRDye800CW on the surface. The 
multifunctional nanoprobes (Figure 11) combined the 
chemotherapy function of camptothecin, the 
photoacoustic and photothermal functions of 
polypyrrole, and NIR FI capacity of IRDye800CW. 
Breast tumor-bearing mice were injected with P@CH 
and laser irradiated, followed by five doses of anti- 
PD-L1 antibodies every three days. The nanoparticles 
not only mitigated the toxicity of camptothecin in 
normal tissues but also produced anti-tumor immune 
response via PTT or chemotherapy-mediated cell 
death [145], eventually clearing the primary tumor 
cells and preventing tumor recurrence and metastasis 
in combination with immunotherapy [146,147]. 

Paclitaxel (PTX) is a commonly used 
chemotherapeutic drug [148,149] with good 
anticancer activity but low water solubility, which 
limits its applications. Therefore, a PTX loading 
system that can reduce its side effects and the risk of 
drug resistance would be of clinical significance. Xian 
et al. [133] encapsulated PTX, PS (IR820) and the TLR7 
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agonist imiquimod (R837) in a thermosensitive 
liposome (TSL) (Figure 12). NIR irradiation of 
PTX-R837-IR820@TSL at 808 nm led to the conversion 
of light energy into thermal energy and singlet oxygen 
by IR820, thus triggering PTT and PDT. Hyperthermia 
not only killed the tumor cells directly but also 
ruptured the TSLs to release the encapsulated PTX for 
a chemotherapeutic effect. Furthermore, R837 also 
acted as an immune adjuvant that augmented the 

immune response to the antigens released from the 
ablated tumors by triggering DC maturation and 
secretion of cytokines [59]. Thus, PTX-R837-IR820@ 
TSL can deliver chemotherapy drugs to target sites 
and enhance their accumulation to maximize the 
therapeutic effect. Taken together, the combination of 
PTT/PDT with chemotherapy and immunotherapy 
can synergistically inhibit tumor growth and 
metastasis, and achieve a stronger therapeutic effect. 

 

 
Figure 11. Schematic illustration of the formation and functions of multifunctional nanoprobes. Adapted with permission from [144], copyright 2019 Elsevier Sci 
Ltd. CPT: camptothecin; HA: hyaluronic acid; Hyal: hyaluronidase; NIR: the near infrared; FI: fluorescence imaging; PTT: photothermal therapy; PAI: photoacoustic imaging; 
a-PD-L1: atezolizumab. 

 
Figure 12. Schematic illustration of the synthesis of PTX-R837-IR820@TSLcomplexes and the mechanism of combining NIR-mediated PDT /PTT with 
chemotherapy for cancer therapy. Adapted with permission from [133], copyright 2019 Wiley-V C H Verlag Gmbh. DPPG: 1,2-dipaimitoylsn-glycerol-3-phospho-(1′-rac- 
glcerol); DSPE-PEG 2000: 1,2distearoyl-an-glycero-3-phosphoethanolamine-N [methoxy (polyethylene glycol)-2000]; DPPC: 1,2-dihexadecanoyl-snglycero-3-phosphocholine; 
IR820: a photosensitizer; PTX: paclitaxel; R837: imiquimod; TSL: thermosensitive liposomal. 
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Conclusion and outlook 
Cancer immunotherapy has the advantages of 

strong specificity, excellent durability and high safety, 
and is often called the “green therapy” for cancer. 
However, the current immunotherapeutic strategies 
are still limited by tumor heterogeneity, complexity of 
the TME, off-target effects and low immunogenicity. 
It is clinically challenging to “awaken” the immune 
response in such a complex system. Multifunctional 
nanoprobes have heralded a new era of cancer 
immunotherapy that can overcome existing 
limitations. 

Multifunctional nanoprobes can effectively and 
continuously deliver tumor antigens and immune 
adjuvants to DCs and other APCs, thereby increasing 
antigen presentation and resulting in a sustained 
immune response. Furthermore, incorporation of 
contrast agents in multifunctional nanoprobes can 
achieve image-guided precise cancer immunotherapy. 
Multi-mode imaging combines the advantages of two 
or more imaging methods, for example high spatial 
resolution and high sensitivity, which can 
significantly improve cancer diagnosis. In addition, 
molecular imaging can visualize the interactions 
between immune cells and tumor cells in the TME, 
such as tumor T cell infiltration, cancer cell killing and 
migration of myeloid cells, and shed light on the 
mechanisms underlying immunotherapy. 

The efficacy of cancer immunotherapy can be 
enhanced when combined with other therapies that 
further strengthen host immunity and overcome the 
immunosuppressive TME. For example, 
chemotherapy, PDT and PTT trigger the release of 
tumor antigens from the dying cells, which elicits a 
systemic anti-tumor immune response. When 
combined with ICB, the immune cells can be activated 
to attack metastatic cancer cells and generate 
long-term immune memory to inhibit tumor 
recurrence. Multifunctional nanoprobes that combine 
different monotherapies with immunotherapy, as 
well as multiple imaging modalities, can significantly 
improve the therapeutic effect against residual tumor 
cells. 

Despite the encouraging results with pre-clinical 
models, there are several hurdles in the clinical 
applications of multifunctional nanoprobes. It is 
crucial to optimize the dose of drugs loaded into 
nanoprobes in order to minimize toxicity and 
maximize the synergistic effects. Although 
nanoprobes can accumulate in tumor tissues through 
enhanced permeability and retention effect (EPR), 
they are easily intercepted by the mononuclear 
phagocytic system (MPS) before reaching the tumor 
site, which not only decreases the effective dosage but 

also leads to off-target effects. While prolonging blood 
nanoprobes circulation can increase their 
accumulation at the tumor site, it can also increase 
their exposure to the immune system, generating a 
more complex immune response. The TME is 
physiologically complex, and differs from normal 
tissues in terms of uneven blood flow, hypoxia and 
acidic pH value among others. Therefore, nanoprobes 
responsive to hypoxia, acidity, redox, and 
tumor-specific enzymes, nucleic acids etc. can release 
their cargo in the TME in a controlled manner, with 
minimal effects on healthy tissues. Nevertheless, it is 
challenging to cross the immune defense barrier and 
achieve accurate and efficient drug delivery. One 
major concern is that animal models and cell lines 
cannot simulate the complexity and heterogeneity of 
human tumors and the TME, which is responsible for 
high disparity between patients in their response to 
immunotherapies. In addition, subcutaneous 
xenografts cannot replicate the immune status of 
tumors in situ. Finally, some immunotherapies may 
have significant side effects in humans that animal 
models cannot predict. 

While multifunctional nanoprobes are a step 
towards safe and effective immunotherapy, and may 
even replace the current therapeutic strategies, a 
deeper understanding of the complex interactions 
between cancer cells and the immune system is 
needed to increase therapeutic efficacy. 
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