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Abstract 

Background: Recent studies in non-small cell lung cancer (NSCLC) patients have demonstrated that first-line 
immunotherapy is associated with better therapeutic response than second-line treatment. So far, the 
mechanisms need to be explored. It prompted us to evaluate the association between first-line chemotherapy 
and subsequent immunotherapy in NSCLC as well as its underlying mechanisms at the genomic and 
transcriptomic level. 
Methods: We launched a prospective, observational clinical study, paired tumor biopsies before and after 
chemotherapy were collected from NSCLC patients without tyrosine kinase inhibitor (TKI)-related driver 
gene mutations. The analyses included genomic and transcriptional changes performed by next-generation 
sequencing (NGS)-based whole-exome sequencing (WES) and messager ribonucleic acid (mRNA) sequencing. 
Characteristic mutational alterations in 1574 genes were investigated based on mutational status, 
clinicopathological factors, and chemotherapy responses. Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis, neoantigen prediction and intratumoral 
heterogeneity evaluation were also performed. 
Results: Samples and information from 32 NSCLC patients without TKI-related driver gene mutations were 
obtained. We found that the total number of single nucleotide variants (SNV)/insertion-deletion (INDEL) 
mutations did not change significantly after chemotherapy. The tumor mutation burden (TMB) decreased 
significantly after chemotherapy in smoking patients and the decreased TMB correlated with a better survival of 
smoking patients. The change in copy number variations (CNVs) exhibited a decreasing trend during 
chemotherapy. Subsequent analysis at mRNA level revealed a significant decrease in the expression levels of 
genes related to antigen processing and presentation as well as other factors relevant for response to 
immunotherapy. Pathway enrichment analysis confirmed that the immune-related signaling pathways or 
biological processes were decreased after first-line chemotherapy.  

 
Ivyspring  

International Publisher 



Theranostics 2021, Vol. 11, Issue 14 
 

 
http://www.thno.org 

7093 

Conclusions: Our study presents an explanation for the unsatisfactory results of immunotherapy when given 
after chemotherapy, and suggests that first-line chemotherapy is able to influence the tumor microenvironment 
and decrease the efficacy of subsequent immunotherapy. The study was registered at ClinicalTrials.gov, number 
NCT03764917, and has completed enrolment; patients are still in follow-up. 

Key words: Lung cancer; chemotherapy; immunotherapy; tumor mutational burden (TMB); programmed 
death-1 (PD-1); messager ribonucleic acid (mRNA). 

Introduction 
Lung cancer remained the top reason for cancer 

related deaths, and 85% of lung cancers are non-small 
cell lung cancer (NSCLC) [1]. Driver gene mutations 
can be found in a significant percentage of patients 
with advanced or metastatic NSCLC [2-5]. Patients 
with mutations of epidermal growth factor receptor 
(EGFR) and anaplastic lymphoma kinase (ALK) 
respond well to the corresponding tyrosine kinase 
inhibitors (TKIs) [6]. However, in a substantial 
percentage of NSCLC patient, TKI-related driver gene 
mutation(s) are absent [7-9]. For patients with 
advanced/metastatic NSCLC without a TKI-related 
driver mutation, chemotherapy remains an important 
treatment option [10, 11].  

Immune checkpoint inhibitors (ICIs) have 
significantly changed the therapeutic landscape for 
lung cancer patients [12, 13]. At present, 
platinum-based chemotherapy, rather than ICIs, is 
still used as the first-line treatment for most advanced 
NSCLC patients. Considering ICIs require 
pre-existing immune systems especially T cells to 
perform anti-neoplastic effects, a hypothesis was 
proposed that a weak systemic immunity induced by 
chemotherapy might impede the effect of ICIs. 
Furthermore, a series of clinical trials have validated 
this hypothesis [14-16]. The KEYNOTE-042 study 
clearly demonstrated that first-line pembrolizumab is 
superior to chemotherapy in advanced/metastatic 
NSCLC patients without a driver mutation [17]. 
Additional studies have confirmed this observation 
[18, 19]. Moreover, immunotherapy given as first-line 
treatment was associated with a better response rate 
than immunotherapy given as a posterior line therapy 
[20]. However, these trials did not reveal the 
molecular and cellular mechanism, which impaired 
the efficacy of posterior line ICIs.  

With the advance of next generation sequencing, 
multiple features based on gene and transcription 
level have been proved a critical function in 
immunotherapy. Tumor mutational burden (TMB) is 
defined as the number of somatic mutations per 
deoxyribonucleic acid (DNA) megabase, which is a 
promising biomarker for ICI efficacy in various 
cancers [21]. Meanwhile, the tumor copy number 
variations (CNVs) provide a superior prediction in 
immunotherapeutic response than conventional 

biomarkers in gastrointestinal cancers [22]. Thus, 
these molecular features offer a new perspective and 
an excellent practical way to detect the effects of 
first-line chemotherapy on tumor immune 
microenvironment (TIME). 

This study aims to explore the potential 
influence of chemotherapy on the response to 
subsequent immunotherapy and analyze the effects of 
the first-line chemotherapy on TMB, CNVs, and 
immune-related factors. To this end, we collected 
paired pre- and post-therapeutic needle biopsy 
samples from 32 NSCLC patients without 
EGFR/ALK/ROS/MET/RET or BRAF mutations and 
performed WES on all samples to obtain the mutation 
spectrum and TMB. Meanwhile, (full) gene expression 
profiles were obtained by mRNA sequencing of lung 
cancer tissues from 11 patients with adequate paired 
tissues. Our data indicated that both TMB and key 
immune-related gene expression were decreased after 
chemotherapy. Additionally, pathways relevant to 
PD-1 blockade were shown to be downregulated, 
creating an unfavorable microenvironment for 
subsequent immunotherapy. 

Methods and materials 
Ethical approval by participating hospitals 

Experimental plans and protocols for this study 
(NO K18-203) were approved by the ethics/licensing 
committee of the Shanghai Pulmonary Hospital. 
Written informed consents were obtained from all 
patients participating in the study. All experiments, 
methods, procedures, and personnel training were 
carried out in accordance with relevant guidelines 
and regulations of the participating hospitals and 
laboratories.  

Study design, patients, and samples 
The study was designed by the investigators 

(Zhou CC, He YY, and Zhu B). Tumor biopsy and 
blood samples were collected prospectively. The 
study included NSCLC patients without EGFR, ALK, 
ROS1, MET, RET, or BRAF mutations. All patients 
were diagnosed with late-stage NSCLC (IIIB-IV) for 
the first time and were expected to receive first-line 
chemotherapy due to the lack of TKI-related driver 
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gene mutations. Another thing had to be mentioned 
was that there were two patients whose clinical stages 
were defined as stage III according to the positive 
signal of mediastinal lymph nodes on positron 
emission tomography-computed tomography 
(PET-CT) received neoadjuvant chemotherapy and 
surgery but their pathological stages were corrected 
as stage I and stage II after surgery respectively 
because of the negative report of pathological 
examination of mediastinal lymph nodes. Thus, in the 
manuscript we chose pathological stage as the final 
stage of these two patients. These patients had no 
history of cancer or cancer therapy. In this way, 
samples from 32 NSCLC patients without driver 
mutations were obtained, and information on 
patients’ clinical status was collected (Figure S1, S2). 
Samples included fresh or frozen samples taken from 
needle biopsy and blood samples obtained at the 
same time during biopsy. The pre-therapeutic tissue 
and blood samples, were collected after diagnosis and 
before therapy, whereas the post-therapeutic samples 
were collected after 4-12 cycles of chemotherapy (e.g., 
before the start of the 5th or the 13th cycle). The 
evaluation of response was according to RECIST 1.1. 
Briefly, partial response (PR) was defined as the 
length of target lesion decreased 30% or more than 
baseline, and progressed disease (PD) was defined as 
the length of target lesion increased 20% or more than 
the smallest or a new lesion occurred. Stable disease 
(SD) was the status between PR and PD. Laboratory 
technicians were blinded from any of the subjects’ 
clinical information. The NSCLC diagnosis was based 
on information from imaging and subsequent 
pathological examination. None of the patients 
enrolled in this study received chemotherapy, 
radiotherapy, targeted therapy, or immunotherapy 
before tissue or blood samples were collected. The 
somatic sequencing data presented in this study were 
from lung tumor tissue DNA, and germline 
sequencing data were from the corresponding white 
blood cell genomic DNA. All patients in this study 
received the first-line chemotherapy; the regimens 
and the responses assessed are presented in Table S1. 
The study was registered at ClinicalTrials.gov, 
number NCT03764917, and has completed enrolment; 
patients are still in follow-up. 

Sample preparation, targeted next-generation 
sequencing (NGS), and data processing for 
whole-exome sequencing (WES) 

DNA was extracted from the needle biopsy 
samples using the QIAamp DNA tissue Kit (QIAGEN, 
Valencia, CA, USA) following the manufacturer’s 
instructions. The whole exome sequencing on tissue 
samples was performed as previously described [23]. 

For blood samples, 10 ml blood was collected in 
EDTA tubes and centrifuged at 1,600 × g for 10 min (4 
°C) within 2 h of collection. The peripheral blood 
lymphocyte (PBL) debris was stored at −20 °C for later 
use. The supernatants were further centrifuged at 
10,000 × g for 10 min (4 °C), and plasma was 
harvested and stored at −80 °C for later use. DNA was 
extracted from PBLs using the RelaxGene Blood DNA 
system (Tiangen Biotech Co., Ltd., Beijing, China). 
Both cancer tissue and white blood cell genomic DNA 
were quantified with the Qubit 2.0 Fluorometer and 
the Qubit dsDNA HS assay kit (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) according to 
manufacturer's instructions. In brief, fragmented 
genomic DNA underwent end-repairing, A-tailing 
and ligation were sequentially completed with 
indexed adapters, followed by size selection using 
Agencourt AMPure XP beads (Beckman Coulter Inc., 
Brea, CA, USA), and DNA fragments were used for 
library construction with the KAPA Library 
Preparation kit (Kapa Biosystems, Inc., Wilmington, 
MA, USA) according to the manufacturer's protocol. 
Hybridization-based target enrichment was carried 
out with HaploX WESPlus gene panel (an upgraded 
version of the standard WES, HaploX Biotechnology) 
for cancer tissue sequencing. Seven to eight 
polymerase chain reaction (PCR) cycles, depending 
on the amount of DNA input, were performed on 
Pre‑LM‑PCR Oligos (Kapa Biosystems, Inc.) in 50 μl 
reactions. DNA sequencing was then performed on 
the Illumina Novaseq 6000 system according to the 
manufacturer's instructions at an average depth of 
500×. 

Genome Analysis Toolkit (GATK, Version 
4.1.7.0) best practice workflow was followed for 
somatic short variant discovery. Sequencing data 
were aligned to the hg19 genome (GRch37) using 
Burrows‑Wheeler Aligner (BWA, Version: 
0.7.17-r1198) with default settings. Duplicated reads 
were subsequently marked and removed using the 
GATK Picard tool. After the base quality score 
recalibration using BaseRecalibrator and ApplyBQSR 
functions of GATK, SNVs and INDELs were called 
from tumor and matched-normal pairs using Mutect2 
from GATK. MutSigCV (Version: 1.41) was used to 
determine significantly mutated gene with a q value 
below 0.05. Matched genomic DNA from white blood 
cells was used as control.  

The exaction of the mutational signatures in our 
tumor samples was performed with 
SignatureAnalyzer. Non-negative matrix factorization 
algorithm (NMF) was applied for mutational 
signature analysis. The mutational signatures 
detected in our samples were compared to 30 known 
COSMIC cancer signatures. ConsensusClusterPlus 
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was used for classifying patients according to their 
mutational signature. We selected 80% item 
resampling (pItem), 10 resamplings (reps), Pearson 
correlation distances (distance) as settings of the 
ConsensusClusterPlus. 

Sample preparation, targeted NGS, and data 
processing for mRNA sequencing 

RNA-sequencing library preparation 
Total RNA was extracted using Trizol (Life 

Technologies Corp.) and further treated with DNase 
to remove genomic DNA contamination. Isolation of 
mRNA was performed using the NEBNext PolyA 
mRNA Magnetic Isolation Module (New England 
Biolabs, Ipswich, MA, USA), and the mRNA was then 
used for RNA-sequencing library preparation with 
the NEB Next Ultra Directional RNA Library Prep Kit 
for Illumina (New England Biolabs, Ipswich, MA, 
USA). The library was then subjected to Illumina 
sequencing with the paired-end 2 x 150 sequencing 
mode. 

Quality control and alignment of sequencing data 
Raw reads were applied quality and adapter 

trimming using Trim Galore (v0.5.0). FastQC (v0.11.8) 
was used to ensure high read quality [24]. The clean 
reads were mapped to the human genome using the 
HISAT2 software. After mapping, read counts for 
each transcript/gene were calculate using 
featureCounts (v1.6.3). 

Identified differentially expressed genes (DEGs) and 
functional annotation 

We used “edgeR” R package to calculate the 
DEGs and FDR less than 0.05 and |log2 (FC)| higher 
than 2 were set as cutoff values. Gene ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis were conducted through DAVID 
(https://david.ncifcrf.gov/). 

Transcription factor analysis and protein-protein 
interaction (PPI) network construction 

The transcription factor was conducted on 
TRRUST (https://www.grnpedia.org/trrust/). The 
PPI network was constructed through STRING 
(https://string-db.org/). 

Prediction of Neoantigen 
WES data were reviewed for non-synonymous 

exonic mutations (NSEM), and the binding affinity 
with patient-restricted major histocompatibility 
complex Class I (MHC Class I) molecules of all 
possible 8-mer-11-mer peptides spanning NSEM was 
evaluated with the NetMHCPan4.0 (http://www.cbs. 
dtu.dk/services/NetMHCpan/) algorithm based on 

patient human leukocyte antigen-A (HLA-A), HLA-B, 
and HLA-C alleles. Candidate peptides were 
considered HLA binders when IC50<500 nM, and was 
considered with high affinity binders when IC50<50 
nM [25]. 

Statistics and data analysis and calculation of 
somatic TMB 

Statistical analysis was performed and figures 
were plotted with GraphPad Prism 5.0 software 
(GraphPad Software, Inc., La Jolla, CA, USA), SPSS 
22.0 (SPSS lnc., Chicago, IL,USA) and R software 
(https://www.r-project.org/). Student’s t-test or 
non-parametric test was performed when 2 groups 
were compared, and analysis of variance (ANOVA) 
and post hoc tests were performed when 3 or more 
groups were compared. Paired t test or Wilcoxon sign 
rank test was used to analyze the paired data. 
Chi-square test and Fisher’s test were performed 
when rate or percentage was compared for 
significance. P<0.05 was identified as statistically 
significant. TMB was calculated by dividing the total 
number of tissue non-synonymous SNV and INDEL 
variations (allele frequency > 5%) by the full length of 
the WES panel. In addition, we used MATH score as 
quantitative measure for intratumoral heterogeneity 
(ITH), which considered the width of variant allele 
frequency distribution for calculation. 

Results 
Analysis of mutation spectrum by WES 
revealed genetic variations following 
chemotherapy 

To investigate the genetic alterations occurring 
during chemotherapy in NSCLC patients, we 
obtained paired lung cancer tissues before and after 
the first-line chemotherapy and compared the genetic 
alterations at both the genomic and transcriptomic 
levels using WES and mRNA sequencing. WES was 
performed using 32 paired tissues and the 
corresponding normal white blood cells as the 
control, and mRNA sequencing was performed using 
11 paired tissues.  

The number of mutations in pre- and 
post-chemotherapy samples showed a weak linear 
correlation, although it was not statistically significant 
(Spearman’s correlation = 0.274, P=0.129) (Figure 1A). 
The number of non-synonymous somatic mutations 
(SNVs + INDELs) was similar before and after 
chemotherapy, as a median of 215.5 in the primary 
tumor before chemotherapy and 207.5 after 
chemotherapy (Wilcoxon signed rank test P=0.926) 
(Figure 1B). 
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Figure 1. The first-line chemotherapy led to genomic changes in lung cancer tissues. (A) a linear relationship between the number of mutations before and after chemotherapy 
in paired cancer tissues. (B) scatter plot of the number of mutations before and after chemotherapy; data are presented in log value for pre-therapeutic, post-therapeutic, and 
common mutations; (C) significant non-synonymous mutations before chemotherapy; (D) significant non-synonymous mutations after chemotherapy; (E) differential mutated 
genes in paired tissues; (F) lollipop chart for the mutated amino acids of TP53 before and after chemotherapy (the upper one is post-therapeutic, the lower one is 
pre-therapeutic). 
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We use MutsigCV v1.41 to identify the 
significant mutations in the samples before and after 
the chemotherapy respectively (Figure 1C, D). And 
after comparing significantly mutated genes between 
per-therapeutic and post-therapeutic, we found the 
frequency of TP53 was significantly lower in 
post-therapeutic samples (Figure 1E). Except for 
mutation rate, changes of amino acids of the TP53 
were also different between pre- and post-therapeutic 
(Figure 1F). It indicated that tumor cells with different 
TP53 mutations might have different sensitivity to 
chemotherapy. We also found that the mutational 
signatures of treatment naïve sample were similar to 
COSMIC signature 4, 13 and 15. While the mutational 
signatures of post-chemotherapy samples were 
similar to COSMIC signature 4 and 6 (Figure 2A, B). 
We divided patients into three groups according to 
the pre-therapeutic mutational signature and found 
patients having signature 15 tended to have a better 
survival although it was not statistically significant 
which might be due to the small sample size (Figure 
2C). By comparing the mutational profile before and 
after chemotherapy, we found some unique 
pre-therapeutic and post-therapeutic mutations, and 
there were also some common mutations that 
presented before therapy remained after therapy. The 
ratio of unique mutations before and after therapy 
and the ratio of common mutations for each patient, 
were also calculated and the ratio of mutations varied 
greatly across patients (Figure 2D). The ratio of 
pre-therapeutic unique mutation and the ratio of 
post-therapeutic unique mutation was similar (Figure 
2E), suggesting that the ratio of post-therapeutic 
acquired mutations was similar to that of mutations 
lost due to chemotherapy. The tendency of the ratio of 
unique mutations after chemotherapy was different in 
squamous cell carcinoma (LUSC) and adenocarci-
noma (LADC), suggesting that chemotherapy might 
exert distinct effects on LUSC and LADC (Figure S3). 
We further explored whether the pre-therapeutic 
tissue TMB is able to predict response to 
chemotherapy. No significant differences in TMB 
counts were found between patients who were stable 
or responded to chemotherapy and those who 
progressed (Figure 2F), or between the PR and the 
SD/PD group (Figure 2G), suggesting that TMB was 
unable to predict response to chemotherapy. Pathway 
enrichment analysis suggested that the unique 
mutations present before therapy reflected a variety of 
functions or pathways (Figure S4A), while the unique 
mutations after therapy frequently exhibited signal 
transduction, and negative regulation of canonical 
Wnt signaling pathways (Figure S4B).  

We also investigated the mutational changes that 
must have occurred during chemotherapy in patients 

attaining PR, and those who showed SD or PD. It can 
be seen from Figure 3A and 3B that a slightly decrease 
in the total number of mutations is present in the PR 
group (the left panels), while the number of common 
mutations before and after therapy was similar to that 
in the SD groups (the left and middle panels). The 
decreasing total number of mutations was not found 
in the SD and PD group (Figure 3A and 3B, middle 
and right panels). Since some pre-therapeutic 
mutations had disappeared after chemotherapy and 
other mutations appeared, we attempted to unravel 
the potential relationship between pre- and 
post-therapeutic unique and common mutations 
(Figure 3C, 3D). Figure 3C and 3D showed that the 
number of post-therapeutic unique mutations had 
decreased in the PR group (left panels). This was not 
the case in the SD and PD groups. And the number of 
common mutations of the PR group was similar to 
that in the SD group (Figure 3C and 3D, left and 
middle panels).  

We further explored the TMB of the samples and 
its changes induced by chemotherapy. Not 
surprisingly, we found patients having smoking 
history would have higher TMB level than those who 
had never smoked, but we also found this difference 
no longer existed after chemotherapy (Figure 4A). As 
shown in Figure 4B, changes of patients TMB were 
variable among different patients and TMB was not 
significantly different between pre-chemotherapy and 
post-chemotherapy samples. Moreover, neither 
increased TMB nor decreased TMB after 
chemotherapy showed benefit for overall survival 
(OS) or progression free survival (PFS) (Figure 4C, D). 
As smoking had a great impact on the TMB, changes 
of the TMB were compared separately in smokers and 
never-smokers. Chemotherapy induced TMB 
decreasing was at a higher frequency in smokers than 
that in never-smokers (77.8% vs. 35.7%, P=0.03) 
(Figure 4E). And the TMB level was significantly 
reduced in smokers after chemotherapy, which was 
not found in never-smokers (Figure 4F, G). 
Meanwhile, patients having smoking history who had 
decreased TMB would have a better survival in both 
OS and PFS, although it was not statistically 
significant in PFS (Figure 4H, I). However, this 
tendency did not occurred in patients who had never 
smoked (Figure S5). And we also compared mutation 
frequencies of genes before and after the 
chemotherapy in smokers and never-smokers. It was 
found that in smokers, mutational frequencies of 7 
genes were significantly decreased, while mutational 
frequency of IRX4 was increased (Table 1). It 
suggested that cells with mutated ASXL3, TP53, 
FSIP2, PCDHGA2, PTGER1, RP1 and SALL1 might be 
sensitive to chemotherapy. In never-smokers, we did 
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not find any genes with significantly decreased 
mutational frequency after chemotherapy, while we 
found mutational frequencies of 6 genes were 
increased (Table 2).  

 

Table 1. Differentially mutated genes before and after 
chemotherapy in smokers. 

Symbol disappeare
d 

acquire
d 

retaine
d 

P 
value 

comparing to 
per-therapy 

ASXL3 5 0 3 0.025 decreased 
TP53 5 0 9 0.025 decreased 
FSIP2 4 0 0 0.046 decreased 
IRX4 0 4 0 0.046 increased 
PCDHGA
2 

4 0 0 0.046 decreased 

PTGER1 4 0 0 0.046 decreased 
RP1 4 0 2 0.046 decreased 
SALL1 4 0 0 0.046 decreased 

 

Table 2. Differentially mutated genes before and after 
chemotherapy in never-smokers. 

Symbol disappeare
d 

acquire
d 

retaine
d 

P 
value 

comparing to 
per-therapy 

RYR1 0 7 0 0.008 increased 
ABCA2 0 4 0 0.046 increased 
COL22A
1 

0 4 0 0.046 increased 

TTN 0 4 3 0.046 increased 
VPS13B 0 4 1 0.046 increased 
ZSWIM6 0 4 0 0.046 increased 

 
We further examined how chemotherapy 

affected the copy number variations (CNVs) in 
NSCLC patients. We found that both the pre- and 
post-therapeutic CNVs were distributed across the 
majority of chromosomes, and the CNVs were varied 
from patient to patient (Figure S6). At arm-level, we 
identified 5 significant arm-level amplification and 10 
arm-level depletion in pre-therapeutic samples and 5 
significant arm-level amplification and 7 arm-level 
depletion in post-therapeutic samples (Figure S7A). 
At focal level, the number of significant amplification 
peaks and deletion peaks was similar in per- and 
post-therapeutic samples (Figure S7B, C). At segment 
level, we found that the number of segments with 
CNV loss and the number of segments with CNV gain 
were both decreased after chemotherapy (Ploss=0.011, 
Pgain<0.001, Figure 5A). To further study the details of 
the CNV changes following chemotherapy, patients 
were divided into 4 groups: pre-therapeutic CNV 
negative and post-therapeutic CNV negative 
(pre-post-), pre-therapeutic CNV positive and 
post-therapeutic CNV positive (pre+post+), 
pre-therapeutic CNV positive and post-therapeutic 
CNV negative (pre+post-), and pre-therapeutic CNV 
negative and post-therapeutic CNV positive 
(pre-post+). Figure 5B showed that the number of 

patients with pre-post-, pre+post+, pre+post-, and 
pre-post+ CNVs was 0, 12, 15, and 5 respectively and 
that the majority of patients either had CNV before 
chemotherapy (pre+post-) or had CNV that was 
present all the time (pre+post+) (Figure 5B). Further 
grouping by therapeutic response showed that in only 
1 out of 5 PR patients had increased total CNV 
number after chemotherapy (Figure 5C). A decreasing 
trend of CNV number was found in the PR group, but 
because of the small sample size the statistical 
difference was not reached (Wilcoxon signed rank 
test, P=0.125). In patients with SD, a significant 
decreased total CNV number was detected (Wilcoxon 
signed rank test, P<0.001). A similar trend was also 
observed in patients with PD, but statistical 
significance was at borderline (Wilcoxon signed rank 
test, P=0.063) (Figure 5C).  

Furthermore, we analyzed the tumor 
heterogeneity by calculating MATH scores of samples 
before and after chemotherapy. Although total 
non-synonymous somatic mutations did not change 
after chemotherapy, we found the MATH score was 
significantly decreased after chemotherapy which 
indicated that chemotherapy abated the tumor 
heterogeneity (Figure 6A). Meanwhile, higher 
pre-therapeutic MATH score had a correlation with 
shorter OS (P=0.027), while this was not detected in 
PFS (Figure 6B, C).  

Characteristic mutational alterations in 
NSCLC without TKI-related driver gene 
mutations  

We also investigated the potential effect of pre- 
therapeutic DNA damage response (DDR)-relevant 
mutations on TMB. We compared the TMB between 
subjects with or without mutations in mismatch repair 
(MMR)-related genes (MLH1, MSH2, MSH3, MSH6, 
MLH3, PMS1, PMS2, MSH4 and MSH5) and other 
DDR-relevant genes (BRCA1/2, TP53, ATR, CDK12, 
MRE11A, ATM, PTEN, RAD51, BARD1, BRIP1, 
CHEK1/2, POLE and POLD1). Comparing to DDR 
wild-type patients, patients having other 
DDR-relevant gene mutations would have higher 
TMB level (Figure 7). Only 2 patient had a MLH3 
mutation (pre-therapeutic TMB=5.2, 7.95) while no 
mutations were identified in other MMR-related 
genes. No mutations were found in ATM, RAD51, 
BARD1, BRIP1, CHEK1/2, and POLD1. While patients 
with PTEN or PLOE mutation would have a higher 
TMB level (PPTEN= 0.03, PPLOE= 0.02). No significant 
difference (P>0.05) was found between subjects with 
or without mutations in BRCA1/2, TP53, ATR, CDK12, 
or PMS1. These results suggested that the some 
mutated genes of DDR pathway might affect TMB. 
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Figure 2. Changes of mutational signature and other mutation characteristics during the chemotherapy. (A) the mutational signature and the clusters of patients before 
chemotherapy; (B) the mutational signature and clusters of patients after chemotherapy; (C) OS of different clusters before chemotherapy (because only 1 patient was in cluster 
3, the cluster 3 was not included in survival analysis); (D) the percentage of unique SNV and INDEL mutations before and after therapy and common mutations of each patients; 
(E) box and whisker plot for the percentage of unique SNV and INDEL mutations before and after therapy and common mutations for all patients; (F) TMB values for patients 
with PR/SD and PD (bars represent mean with 95%CI); (G) TMB values for patients with PR and SD/PD (bars represent mean with 95%CI). 
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Figure 3. Total and unique mutational changes following first-line chemotherapy in patients with PR, SD, or PD. (A) The slope charts for all mutations before and after 
chemotherapy, and common mutations in the 3 patient groups; (B) mean values with 95% CI for all mutations before and after chemotherapy, and common mutations in the 3 
patient groups; (C) the slope charts for unique mutations before and after chemotherapy, and common mutations in the 3 patient groups; (D) mean values with 95% CI for unique 
mutations before and after chemotherapy, and common mutations in the 3 patient groups. 

 
We also compared the ratio of mutations from 

1574 genes in LADC and LUSC (Table S2), and 
statistically significant differences (P<0.05) were 
found in 4 genes: PCDH11X, MYO16, HERC2 and 
USH2A. When P<0.10 was regarded as the threshold 
of statistical significance, another 16 genes showed 
statistical differences: NFE2L2, POUSF3, NYAP2, ATR, 
FAT1, CSMD1, SPATA6L, LRP2, NDST4, ADGRV1, 

ANKRD30A, OTOF, ROS1, ADGRL1, DLGAP2, and 
DYNC2H1. Due to the limited number of patients in 
this study, our data should be interpreted with 
caution. In that context, it is important to note that 
certain genes showed a different mutational status in 
LADC and LUSC. It is not excluded that these 
differences that might become a clue to new 
therapeutic approaches in the future. 
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Figure 4. The TMB level in smokers and never-smokers. (A) box plot for TMB values in smokers and never-smokers before and after chemotherapy; (B) the slope chart for the 
TMB values before and after chemotherapy of each patients; (C, D) the correlation between survival and trend of TMB change; (E) the percentage of TMB-up and TMB-down in 
smokers and never-smokers respectively; (F, G) the slope chart for TMB values before and after chemotherapy of smokers and never-smokers respectively; (H, I) the correlation 
between survival and trend of TMB change in smokers. 

 
The correlation between mutational status, 

clinicopathological factors, and chemotherapy 
responses was also assessed. It can be seen from data 
given in Table S3. And from all genes with 
computable mutation frequency, 32 genes showed a 
statistically significant difference between disease- 
controlled and disease-progressed, suggesting that 
mutations of these 32 genes might predict therapeutic 
response.  

Signaling pathways and neoantigens (NeoAgs) 
related to immunotherapeutic responses were 
altered by first-line chemotherapy 

A considerable number of NSCLC patients will 
develop resistance after chemotherapy and be 
considered candidates for (second-line) 
immunotherapy. It is known that antigen processing 
and presentation are critical for anti-PD-1/ 
programmed death ligand 1 (PD-L1) therapies. To 
determine whether chemotherapy is able to affect 
these biological processes, the antigen processing and 
presentation scores were calculated for both 
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pre-therapeutic and post-therapeutic tumor samples. 
They were based on the average mRNA levels of 
HLA-DMB, HLA-DQA1, HLA-DQA2, HSPA6, 
KIR2DL3, KIR3DL1, and KLRC1. Results from 11 
patients showed that the score decreased after 
chemotherapy although it did not reach the statistical 
significance (P=0.110) (Figure 8A and 8B, left panels). 
The mRNA level of all genes except KIR3DL1 
exhibited a decreasing trend, including 1 
representative gene, HSPA6 (Figure 8A and 8B, 
middle panels). The expression of HSPA6 (presented 
as transcripts per million reads or TPM) decreased 
from a mean value of 90.3 before chemotherapy to 
30.3 after chemotherapy. Interestingly, a typical 
IFN-γ-related gene called IRF1 tended to be 
down-regulated following chemotherapy, but the 
significance was at borderline (Figure 8A and 8B, 
right panels).  

We further investigated the corresponding 
pathways of the down-regulated genes by GO and 
KEGG pathway enrichment analysis (Figure 9A-C). It 
was found that the down-regulated genes were 
strongly enriched in immune-related biological 

processes or molecule function, including 
inflammatory response (GO_BP), immune response 
(GO_BP), positive regulation of tyrosine 
phosphorylation of Stat3 protein (GO_BP), cytokine 
activity (GO_MF), and interleukine-1 receptor 
binding (GO_MF). These alterations indicated that the 
chemotherapy might negatively regulate the immune 
status and might impair the efficacy of ICIs. 

We further tried to analyze the potential 
correlation between genomic changes and 
transcriptomic changes after chemotherapy. 
Transcription factor analysis showed that the 
down-regulated gene, CRYAB, could be regulated by 
differentially mutated gene, TP53. Protein-protein 
interaction (PPI) also suggested a complex 
interactions among proteins coded by differentially 
mutated and expression genes. And interactions 
between TP53 and 4 differentially expressed genes 
were detected (Figure 9D). It indicated that the 
genomic changes caused by chemotherapy might 
have a profound impact on gene expression profile 
after chemotherapy. 

 

 
Figure 5. Distribution and change of CNV in patients with PR, SD, and PD. (A) changes of CNVs before and after chemotherapy of each patients; (B) the number of cases with 
pre-post-, pre+post+, pre+post-, and pre-post+CNV mutations in the PR, SD, and PD groups (because no patients was classified into pre-post- group, the group was not shown 
in bar plot); (C) the slope chart and, box and whisker plot for the PR, SD, and PD groups before and after chemotherapy. 



Theranostics 2021, Vol. 11, Issue 14 
 

 
http://www.thno.org 

7103 

 
Figure 6. The heterogeneity of tumor before and after chemotherapy. (A) changes of MATH score before and after chemotherapy of each patient; (B, C) survival analysis of 
pre-therapeutic MATH score. 

 
Figure 7. TMB level and mutational status of DNA damage repair related genes. 

 
NeoAgs were predicted through the mutational 

data obtained from WES, and the pre-therapeutic and 
post-therapeutic status of NeoAgs were determined 
and compared. It can be observed from Figure 10A 
that the number of NeoAgs did not change 
significantly after chemotherapy no matter total 
NeoAgs, or strong NeoAgs or weak NeoAgs was 
examined. The changes in NeoAgs were investigated 
in detail, as shown in Figure 10B. The total number of 
pre- and post-therapeutic NeoAgs and the common 
NeoAgs in patients with PR, SD or PD were compared 
in slope chart and bar plot. It appeared that the 
number of post-therapeutic NeoAgs show a trend of 
increase in SD and PD group, while it exhibited a 

trend of decrease in the PR group although it was not 
statistically different (P=0.438). We further studied the 
change of pre- and post-therapeutic unique NeoAgs. 
Figure 10C shows that the number of unique 
post-therapeutic NeoAgs also exhibited a trend of 
decrease in the PR group (P=0.438), while no such 
change was observed with the SD and PD group. We 
finally compared the percentage of common NeoAgs 
in PR, SD, and PD groups. Figure 10D shows that 
patients with SD exhibited much higher percentage of 
common NeoAgs than the PD group, suggesting that 
the status of NeoAgs changed substantially when 
cancer lesions were progressed, while remained 
relatively stable when the lesions were stable. 
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Figure 8. Antigen processing and presentation changes following the first-line chemotherapy. (A) the slope chart for antigen processing and presentation score (APPS), HSPA6 
gene transcripts per million reads (TPM) and IRF1 gene TPM; (B) the box and whisper plot for APPS, HSPA6 gene TPM and IRF1 gene TPM. 

 

Discussion 
The influence of the first-line chemotherapy 
on mutation spectrum in NSCLC patients 
without TKI-related driver gene mutations 

In order to optimally detect mutations before 
and after chemotherapy, we collected both pre- and 
post-therapeutic tissues and used WES to determine 
the mutation spectrum and TMB (WES is the gold 
standard test for TMB). We used transcriptome 
sequencing to obtain complete gene expression 
information related to chemotherapy response. In the 
whole cohort, the total non-synonymous mutation 
was similar before and after chemotherapy. In PR 
group, all mutations, including unique mutations, 
decreased after chemotherapy. This suggests that the 
ratio of unique mutations to all mutations may be 
constant. Furthermore, it was interesting that 
common mutation was low in the PD group, while it 
was relatively high in the PR and SD group. This 
suggested that when lesions progressed, the mutation 
spectrum would have changed significantly, with 
common mutations reduced. The mutation spectrum 

turned out to be more unstable in patients with 
progressed disease including common mutations. We 
also found that the mutational signatures altered after 
chemotherapy, which suggested that chemotherapy 
did change the genomic characteristics of tumors. 
Moreover, pre-therapeutic mutational signature 
showed an association with survival of the patients. In 
the whole cohort, we did not find significant changes 
of TMB after chemotherapy and the change of TMB 
was not associated with neither OS nor PFS. However, 
we found a significantly decreased TMB after 
chemotherapy in smokers. Furthermore, only in 
patients who had smoking history, decreased TMB 
would indicated a better survival of chemotherapy. 
We also found that high intratumoral heterogeneity 
was associated with poor survival, which was 
consistent with pervious studies [26, 27]. Moreover, 
analysis showed a decreased the MATH score after 
chemotherapy which indicated that the chemotherapy 
could reduce the clone diversity of the tumor. Further 
analysis of post-therapeutic tumor tissues might give 
us more information about tumor evolution under 
chemotherapy stress. 
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Figure 9. Functional enrichment of differentially expressed genes after chemotherapy and interactions between changes of genome and transcriptome induced by 
chemotherapy. (A-C) GO analysis of down regulated genes following the first-line chemotherapy; (D) protein-protein interactions among differentially expressed genes and 
differentially mutated genes following the first-line chemotherapy. 

 
Pathway enrichment analyses showed that 

pre-therapeutic mutations did not exhibit specific 
signaling pathways beyond those previously reported 
in NSCLC, while pathways affected by chemotherapy 
mainly included signal transduction, intracellular 
signal transduction, and negative regulation of 
canonical Wnt signaling pathway. These suggested 
that cancer cells might aberrantly activate some 
signaling pathways through genomic changes 
induced by chemotherapy to survive under the 
pressure of chemotherapy. Mutations in suppressive 
factors of Wnt signaling pathway might cause the 
activation of the Wnt pathway, an oncogenic 
pathway, of cancer cells [28]. Moreover, studies had 
demonstrated that Wnt pathway had strong 
correlation with the modulation of tumor immune 
microenvironment [29]. It suggested that aberrant 
activated Wnt pathway would promote an exclude 
immune phenotype which was unfavorable for the 
efficacy of ICIs [30, 31]. Meanwhile, Wnt inhibitor had 
shown its role in enhancing the efficacy of ICIs [32]. 
These observations suggested that both tumor 
intrinsic characteristics and tumor microenvironment 

changed profoundly after chemotherapy. And the 
change of microenvironment might be unfavorable 
for latter ICIs. 

CNV analysis found that, in all response groups, 
a trend of decreased CNV was detected. However, 
only in SD group the decreasing was statistical 
significant. It might be due to the small sample size of 
our study. Further analyses of genes involved in 
CNVs showed that the deletion of CD274, CDKN2A 
and PTEN in some patients after chemotherapy. 
CD274 encoded PD-L1 which was one of the target for 
ICI and studies had suggested that patients with 
CD274 amplification would have better 
immunotherapy outcomes [33, 34]. Current research 
also found that deletion of CDKN2A and alteration of 
PTEN increase the resistance to ICIs [35, 36]. NOTCH2 
was amplified in some patients before and after 
chemotherapy. Study showed that deleterious 
mutation of NOTCH indicated a better outcome of 
ICIs [37]. Further studies on these CNV markers are 
needed to clarify their roles in predicting therapeutic 
response and prognosis. 
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Figure 10. Comparison of the number of pre-, post-therapeutic and common NeoAgs. (A) The number of total, strong and weak NeoAgs before and after therapy; (B) the 
number of total pre- and post-therapeutic and common NeoAgs in patients with PR, SD and PD; (C) the number of unique pre- and post-therapeutic and common NeoAgs in 
patients with PR, SD and PD; (D) comparison of the percentage of common NeoAgs in patients with PR, SD and PD. 

 

Potential impact of first-line chemotherapy on 
the therapeutic response to subsequent 
immunotherapy 

Therapy with PD-1 inhibitors such as 
pembrolizumab and nivolumab have achieved great 
success in treating advanced NSCLC as both first- and 
second-line therapy [19, 38-41]. However, only a 

minority of patients responds to therapy. One of the 
strategies to address the problem of patient selection 
for immunotherapy is research into biomarkers [12] 
that are able to accurately identify sensitive patients. 
KEYNOTE-024 demonstrated that pembrolizumab 
was associated with significantly longer PFS and OS 
in advanced NSCLC patients with a PD-L1 (tumor) 
score ≥ 50% [19, 42], while the Checkmate-026 study 
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reported that nivolumab failed to show any benefit 
compared with standard chemotherapy based on 
PD-L1 expression ≥ 5%. Previous studies have 
suggested that TMB has the capacity to become a 
better predictor of response to immunotherapy than 
PD-L1 expression [43]. Other predictive biomarkers, 
such as IFN-γ-related gene expression, antigen 
presentation, and chemokine expression, have also 
shown to correlate with clinical responses to 
immunotherapy [44]. 

Although a substantial number of studies have 
focused on biomarkers potentially predicting 
response to immunotherapy, few have also explored 
the impact of chemotherapy on subsequent 
immunotherapy. A meta-analysis including 20,013 
patients suggested that no difference was found in the 
OS between first-line and multiple-line targeted 
therapy, but a difference was found between first and 
multiple-line immunotherapy [18]. Other studies have 
confirmed that the response rate to immunotherapy is 
less favorable if used after chemotherapy [20, 45]. PFS 
following first-line pembrolizumab was 12.9 months, 
while the PFS of the immunotherapy, which was 
applied after chemotherapy, was only 4.2 months [19].  

Antigen processing and presentation play an 
important role in immunotherapy and are regarded as 
key factors for the efficient killing of tumor cells by 
immune cells. We observed the decrease in antigen 
processing/presentation following chemotherapy. 
Although the total number of neoantigens showed a 
slightly increasing trend after chemotherapy, 
down-regulated antigen processing and presentation 
made them could not be recognized by immune 
system and facilitated the immune escape. It has been 
shown that the INF-γ signaling pathway regulates the 
expression of PD-L1 [46, 47], and is closely correlated 
with the efficacy of immunotherapy [19]. Some 
studies have reported that the high expression of 
IFN-γ-related genes is correlated with the improved 
efficacy of immunotherapy [44]. Patients with a high 
expression of IRF1 exhibited favorable PFS in 
metastatic melanoma [48]. Moreover, it has been 
reported that patients with a high expression of 
MHC-II complex exhibited better OS and PFS when 
receiving anti-PD-1/PD-L1 treatment [49]. Since the 
expression of IRF1 and MHC protein complex and 
IFN-γ-related genes is involved in the presentation of 
tumor antigens [49], down-regulation of their 
expression might be one of the mechanisms for tumor 
immune escape. More interestingly, our study 
suggests that chemotherapy is able to inhibit the 
expression of these genes (leading to significant 
down-regulation of lymphocyte activation, IFN-γ, 
and chemokine-related signaling pathways) and the 
presentation of NeoAgs, and also indicates that 

chemotherapy may have multiple inhibitory effects 
on subsequent immunotherapy which in practice may 
translate into resistance.  

Conclusions 
We systematically explored the genomic and 

transcriptomic consequences of chemotherapy in 
paired biopsy samples of 32 driver mutation–negative 
NSCLC patients and assessed the potential influence 
of genomic and transcriptomic changes on 
immunotherapy response. Reduction of mutation 
burden and transcriptional levels of key antigen 
processing and presentation-related genes were 
noticed after chemotherapy, likely reflecting 
mutational and transcriptional inhibitory effects of 
chemotherapy. These alterations might promote a 
tumor microenvironment resistant to subsequent 
immunotherapy. Our observations support the use of 
immunotherapy in advanced/metastatic NSCLC in a 
first-line as an opposed to a second-line setting.  
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