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Abstract 

Background: Aberrant DNA methylation occurs commonly during carcinogenesis and is of clinical value in 
human cancers. However, knowledge of the impact of DNA methylation changes on lung carcinogenesis and 
progression remains limited. 
Methods: Genome-wide DNA methylation profiles were surveyed in 18 pairs of tumors and adjacent normal 
tissues from non-small cell lung cancer (NSCLC) patients using Reduced Representation Bisulfite Sequencing 
(RRBS). An integrated epigenomic-transcriptomic landscape of lung cancer was depicted using the multi-omics 
data integration method. 
Results: We discovered a large number of hypermethylation events pre-marked by poised promoter in 
embryonic stem cells, being a hallmark of lung cancer. These hypermethylation events showed a high 
conservation across cancer types. Eight novel driver genes with aberrant methylation (e.g., PCDH17 and IRX1) 
were identified by integrated analysis of DNA methylome and transcriptome data. Methylation level of the eight 
genes measured by pyrosequencing can distinguish NSCLC patients from lung tissues with high sensitivity and 
specificity in an independent cohort. Their tumor-suppressive roles were further experimentally validated in 
lung cancer cells, which depend on promoter hypermethylation. Similarly, 13 methylation-driven ncRNAs 
(including 8 lncRNAs and 5 miRNAs) were identified, some of which were co-regulated with their host genes 
by the same promoter hypermethylation. Finally, by analyzing the transcription factor (TF) binding motifs, we 
uncovered sets of TFs driving the expression of epigenetically regulated genes and highlighted the epigenetic 
regulation of gene expression of TCF21 through DNA methylation of EGR1 binding motifs. 
Conclusions: We discovered several novel methylation driver genes of diagnostic and therapeutic relevance 
in lung cancer. Our findings revealed that DNA methylation in TF binding motifs regulates target gene 
expression by affecting the binding ability of TFs. Our study also provides a valuable epigenetic resource for 
identifying DNA methylation-based diagnostic biomarkers, developing cancer drugs for epigenetic therapy and 
studying cancer pathogenesis. 

Key words: DNA methylation; driver genes; epigenomics; lncRNA; lung cancer; miRNA, reduced representation 
bisulfite sequencing; transcriptomics; transcription factor 

Introduction 
Lung cancer is the leading cause of cancer 

mortality worldwide and non-small cell lung cancers 

(NSCLCs) account for about 85% of lung cancers [1, 
2]. Although there are new agents for the treatment of 
NSCLC patients, the 5-year survival rate is still 
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estimated at 15% [1, 3, 4]. To reduce the high lethality 
of NSCLCs, many significant efforts have been made. 
Previous studies have reported causal genetic 
alterations, from somatic point mutations to large 
structure variations, involved in the carcinogenesis of 
NSCLCs [5-9]. Based on these findings, various 
therapeutic strategies have been developed for 
NSCLC treatment, such as combination cisplatin- 
based chemotherapy with the anti-angiogenic 
bevacizumab [10, 11], the use of tyrosine kinase 
inhibitors to treat EGFR-mutated, ALK or ROS1- 
rearranged NSCLC patients [12-15]. However, owing 
to the primary, adaptive and acquired resistance of 
these drugs, the target treatment is not effective for all 
NSCLC patients [16]. DNA methylation alterations 
commonly occur in cancer and are involved in tumor 
initiation and progression. Aberrant promoter CpG 
methylation provides a selective mechanism for the 
regulation of tumor suppressor genes and oncogenes 
in cancer instead of genetic mutations [17]. However, 
these methylation changes could be inherently 
reversed by agents, in contrast with genetic mutations 
[18]. Thus, identification of epigenetically modulated 
genes opens new avenues for epigenetic therapies and 
for discovery of novel drug targets. 

In NSCLC, CDKN2A was the first reported gene 
whose downregulated expression in lung 
carcinogenesis was predominantly attributed to 
promoter hypermethylation [19]. Afterwards, several 
studies described several other epigenetically 
regulated genes, such as FHIT, DAPK and RASSF1A 
[20-26]. However, these earlier studies only 
investigated a single gene or a small list of genes. The 
advent of high throughput next-generation 
sequencing (NGS) for analyzing DNA methylome and 
transcriptome has offered the unique ability to 
analyze methylation changes and detect methylation 
driver events at a genome-wide scale [27-29]. 

In this study, we analyzed genome-wide 
methylation profiles of ~ 2 million CpG sites spanning 
more than 19,600 genes and noncoding regions using 
Reduced Representation Bisulfite Sequencing (RRBS) 
technology [30]. RRBS combines restriction enzymes 
and bisulfite sequencing to enrich for DNA segments 
with a high CpG content and regulatory potentials. It 
is an efficient and cost-effective technique for 
analyzing the genome-wide methylation profiles on a 
single nucleotide level. Using this technique and the 
multi-omics data integration method, we pinpointed 
several novel methylation driver protein coding genes 
and noncoding RNAs that could be potential targets 
for epigenetic therapy. Furthermore, we detected sets 
of transcription factor (TF) binding motifs located in 
differentially methylated regions (DMRs) which 
regulated target gene expression by affecting the 

binding ability of TFs in lung cancer. 

Materials and Methods 
Reduced representation bisulfite sequencing 
(RRBS) 

The study was approved by the institutional 
review board of Sir Run Run Shaw Hospital at 
Zhejiang University (Hangzhou, China). Eighteen 
lung tumor tissues and adjacent normal tissues were 
collected from NSCLC patients (Table S1). All 
samples used in the current study were obtained at 
the time of diagnosis before any treatment was 
administered. Genomic DNA of these tissues was 
extracted and then treated according to the RRBS 
library preparation protocols as we previously 
described [30] with modifications to allow 
multiplexing [31]. Paired-end sequencing with 100bp 
was performed on the Illumina HiSeq 2000 according 
to manufacturer’s protocol. 

Bioinformatics analyses of RRBS data 
Bisulfite sequencing reads were pre-processed 

with Trim Galore (http://www.bioinformatics. 
babraham.ac.uk/projects/trim_galore/). Both 
adapters and sequences with low quality (base quality 
< 20) were removed before the analysis. The trimmed 
reads were then aligned to the human reference 
genome (hg19) and the methylation status of each 
CpG was determined using Bismark (v0.14.1) with 
default parameters [32] (Table S2). The unconverted 
cytosines at fill-in 3′ MspI sites of sequencing reads 
were used to estimate the bisulfite conversion rate. 
For each CpG site with at least 5×coverage, the 
methylation rate, C/(C+T), was calculated. We 
merged the 18 tumor-normal sample pairs based on 
CpG coordinates, yielding 2,574,098 CpG sites that 
covered at least ten paired samples. CpG sites in the 
heterosome and CpG sites overlapped with SNP 
(dbSNP build 142) were filtered, and 2,166,853 were 
retained for subsequent analysis. The remaining 
missing methylation values were imputed using 
k-nearest neighbors in the CpGs space (http:// 
bioconductor.org/packages/release/bioc/html/ 
impute.html). 

Next, we used metilene (Version 0.23) [33] to 
identify DMRs between tumor and matched 
noncancerous tissues. These DMRs were further 
examined for significance using the Wilcoxon rank 
sum test for a paired dataset. The final DMRs were 
determined using the following threshold: at least ten 
CpGs in the DMRs, at least 10% differences in 
methylation, and false discovery rate (FDR) < 0.05. We 
performed an unsupervised hierarchical cluster 
analysis on the CpG sites’ methylation using ward 
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linkage and Euclidean distance. The Metascape 
software (http://metascape.org) was used to conduct 
Gene Ontology (GO) analyses according to the 
standard protocol. 

RNA-seq analysis 
mRNA sequencing libraries were prepared for 

the same set of lung tumor and adjacent normal 
tissues using TruSeq RNA Sample Preparation Kit 
from Illumina as we described previously with 
modifications [31] (Supplementary Materials and 
Methods). Transcriptome data were mapped with 
Tophat v2, using the spliced mapping algorithm [34]. 
A set of both known and novel transcripts was 
constructed and identified using Cufflinks [35]. Reads 
per kilobase of exon per million fragments mapped 
(RPKM) was used to quantify gene expression level. 
Finally, differentially expressed genes were obtained 
by using paired t-test with FDR < 0.05. 

Identification of lncRNAs 
Identification of long noncoding RNAs 

(lncRNAs) followed with the workflow described 
previously with modifications [36]. In brief, we first 
filtered transcripts with single exon or length <160 bp. 
The protein coding potential of the remaining 
transcripts was evaluated by PhyloCSF according to 
the genome alignments of chimp, rhesus, mouse, 
guinea, pig, cow, horse and dog [37]. Transcripts with 
PhyloCSF scores greater than 50 were removed for 
their high coding potential. Moreover, we discarded 
transcripts with complete branch lengths (CBL) >0 
and open reading frames (ORF) of >150 amino acids. 
Transcripts with CBL scores equal to 0 because of low 
sequence alignments were also removed if they 
contained an ORF with more than 50 amino acids. 
Finally, we employed blastx with repeats masked to 
analyze the remaining transcripts and removed those 
with a median of the E-value <1e-18. The identified 
transcripts were classified into different categories 
according to the HUGO Gene Nomenclature 
Committee. 

Small RNA sequencing analysis 
Small RNA sequencing libraries were prepared 

with the TruSeq Small RNA Sample Preparation Kit 
from Illumina as we described previously with 
modifications [38] (Supplementary Materials and 
Methods). The raw short reads were trimmed by Trim 
Galore as described above. The trimmed reads were 
aligned to the human reference genome (NCBI build 
37) using the Burrows-Wheeler Aligner [39]. Only one 
nucleotide mismatch was allowed in the mapping 
process. Read counts for miRNAs (miRBase v21) were 
extracted from alignment files using BEDtools 
(http://bedtools.readthedocs.io/en/latest). miRNA 

expression levels were quantified by Reads Per 
Million (RPM) mapped reads and then normalized 
with log2(RPM+1). 

Annotation with genomic features 
To gain a better insight into the genomic features 

of differential methylation, the identified DMR sets 
were intersected with a collection of functional 
regions, including the 15 chromatin states in 
embryonic stem cells (ESCs), lung-related tissues and 
cells established by the NIH Roadmap Epigenetics 
Mapping Consortium (http://egg2.wustl.edu/ 
roadmap/web_portal/). The genomic coordinates of 
CpG islands (CGIs) based on GRCh37 were 
downloaded from the UCSC Genome Browser. The 
protein-coding gene and lncRNA annotation were 
obtained from GENCODE (v28, GRCh37). The 
genomic annotation of primary miRNAs were 
downloaded from miRBase 21 [40]. The promoters 
were defined as ±2kb of transcription start site (TSS) 
of genes and noncoding RNAs (ncRNAs). The feature 
was annotated to the DMR if it was overlapped by at 
least 50% bases of that DMR. We further defined 
ESC-marked chromatin states of DMR, which 
represent that states were recurrently annotated to the 
DMR in at least half of our available ESCs (n=3). The 
chromatin landscape of the selected genes was 
visualized using the WashU EpiGenome Browser tool 
(http://epigenomegateway.wustl.edu/browser/). 

Enrichment analysis 
The fold enrichment of overlap for a variety of 

functional annotations (e.g., CGI and given states) 
over the set of DMRs was calculated using a 
previously described method [6]; briefly, as the odds 
ratio of the joint probability of overlapped regions 
between the DMR set and a given state and the 
product of marginal probability of the DMR set and 
the marginal probability of the state in the whole 
genome. The fold enrichment is estimated as follows: 

𝑓𝑜𝑙𝑑 𝑒𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =  
𝑛𝑜 𝑛𝑔⁄

(𝑛𝑚 𝑛𝑔⁄ ) × (𝑛𝑠 𝑛𝑔⁄ )
 

where 𝑛𝑜  indicates the number of overlapped 
bases between the DMR set and the state, 𝑛𝑚 
represents the number of bases in the DMR set, and 𝑛𝑔 
is the number of bases in the genome. 

In order to make comparisons across different 
states, we normalized the enrichments across all 15 
states and used a normalized enrichment score (E) for 
a given state (i): 

𝐸𝑖 =  
𝐹𝑖 − 𝑚𝑖𝑛𝑖=1…15(𝐹𝑖)
𝑚𝑎𝑥1….15(𝐹𝑖)

 

where 𝐹𝑖 is the fold enrichment for a given state. 
The normalized enrichment scores ranged from 0 to 1. 
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Data collection and analysis of HM450 
methylation and RNA-seq data from the 
TCGA cohorts and CCLE database 

The HM450 DNA methylation data of 21 cancer 
types in The Cancer Genome Atlas (TCGA) were 
downloaded from the ICGC Data Portal (https:// 
dcc.icgc.org) (Table S3). Beta values ranging from 0 to 
1 were used to measure DNA methylation levels. The 
values close to 0 mean a low level of methylation and 
1 represents high-level methylation. CpG sites in the 
heterosome and overlapped with SNP (dbSNP build 
142) were removed. In addition, CpG sites with more 
than 10% missing values across all samples were 
discarded. The remaining missing methylation beta 
values were estimated using k-nearest neighbors in 
the CpGs space (http://bioconductor.org/packages/ 
release/bioc/html/impute.html) and then used for 
subsequent analysis. 

The TCGA mRNA expression data of 21 cancer 
types were downloaded from the ICGC Data Portal. 
Then the expression values of protein-coding genes 
were normalized using RPKM. Low-expressed 
protein-coding genes with 90th quantile RPKM < 1 
were removed and the remaining log2-transformed 
RPKM values were used for subsequent analysis. 

HM450 DNA methylation data of 1,028 cancer 
cell lines were downloaded from the COSMIC 
database and RNA-seq data of 781 cancer cell lines 
were from the Encyclopedia of DNA Elements 
(ENCODE) and Cancer Cell Line Encyclopedia 
(CCLE) databases (E-MTAB-2770). In total, 455 cancer 
cells have both HM450 methylation and RNA-seq 
data. 

These HM450 probes were then mapped to 
functional genomic regions based on their genomic 
coordinates in GRCh37. In this way, we defined: (1) 
DMR probes, located within the DMRs; and (2) gene 
probes, located within gene promoter regions (+/- 
2kb from TSS). 

Identification of methylation driver sets 
We used a discovery-validation strategy to 

pinpoint high-confidence methylation driver genes. 
The discovery-stage analyses were performed on our 
RRBS data and matched RNA-seq data. Specifically, 
we first identified gene and DMR pairs in which the 
DMR was overlapped with the gene’s promoter. 
Then, we filtered those gene-DMR pairs where the 
genes were not differentially expressed in tumors 
compared with normal tissues (FDR < 0.05 and fold 
change > 2). Finally, we calculated the Spearman 
correlation coefficients (rho) between methylation 
changes and gene expression for each of the 
remaining gene-DMR pairs. For multiple DMRs for 
each promoter, we chose one DMR that had the most 

negative association with matched gene expression to 
capture the most functionally relevant events 
(epigenetic silencing). In the discovery stage, we 
obtained a primary gene list, which consisted of 190 
protein coding genes with rho values < -0.3 and FDR 
< 0.05. 

Next, for the validation-stage analyses on TCGA 
Human450methylation (HM450) microarray and 
RNA-seq data from two NSCLC subtypes (lung 
adenocarcinoma, LUAD; and lung squamous cell 
carcinomas, LUSC), we found that the promoter of 
133 out of the primary gene set was covered by at least 
one HM450 CpG probe and these gene-probe pairs 
were used for subsequent analysis. Similarly, the 
Spearman correlations between CpG probe 
methylation and gene expression across all samples 
were calculated for these gene-probes pairs. If 
multiple CpGs were annotated to one gene promoter, 
the CpG probe with the most negative correlation was 
selected. Finally, we screened out a secondary gene 
set of 81 genes with rho values < -0.3 and FDR < 0.05 
in at least one cancer type (LUAD or LUSC). Among 
them, 31 genes were identified in both LUAD and 
LUSC, including 20 hypermethylated ones and 11 
hypomethylated ones. Hypermethylation in a 
promoter was a classical paradigm to induce gene 
silence, thus the list of 20 genes was chosen as our 
final high-confidence methylation drivers. 

Similarly, we also identified 13 methylation 
driver ncRNAs (eight lncRNAs and five miRNAs) in 
lung cancer using the strategy as described above. 

Analysis of regulatory transcription factors 
Genomic coordinates of binding motifs of 84 TF 

groups were obtained from (http://compbio.mit. 
edu/encode-motifs/). The 190 DMRs in promoters of 
genes inversely correlated with gene expression were 
a set of regions of interest. A hypergeometric test was 
employed to evaluate whether a particular TF binding 
motif was more enriched in the set of regions of 
interest than other TF binding motifs. All the 
identified DMRs between tumor and normal samples 
served as a background for this test. 

In order to identify regulatory TFs, the Spearman 
rank correlation test was used to calculate the 
correlation between the expression of TFs 
corresponding to enriched motifs and the expression 
of targeted genes (FDR < 0.05). 

Activity score [41] was defined as y = 
ρ×log2(fold change), where ρ was the Spearman 
correlation coefficient between DMR and the targeted 
gene. The average activity score was calculated for 
binding motifs of TFs with multiple binding sites in 
the DMR of targeted gene. 
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ROC analysis 
ROC analysis was performed using a random 

forest model in the caret R packages [42]. The samples 
in the TCGA cohorts (LUAD: Tumor 460, Normal 32; 
LUSC: Tumor 371, Normal 41) were randomly 
divided into equal-size training and testing sets. 
Based on the model parameters obtained from the 
training sets, the testing sets and an independent lung 
cancer dataset were used to evaluate the model 
performance. A ROC plot was conducted using pROC 
R packages (www.r-project.org). 

Pyrosequencing methylation analysis 
Genomic DNA from 23 pairs of lung cancer 

tissues and matched adjacent normal tissues was 
isolated using a PureLink Genomic DNA Mini Kit 
(Invitrogen) according to the manufacturer’s protocol. 
500ng of DNA underwent bisulfite treatment using 
the EZ DNA methylation-GoldTM Kit (Zymo 
Research) according to the manufacturer’s protocol to 
convert all unmethylated cytosine to uracil while 
leaving 5-methylcytosine unaltered, and was then 
eluted in 40 μl of DNase-free water. Primer sequences 
for methylation specific PCR (MSP) and sequencing 
primers were designed using the Pyromark Assay 
Design 2.0 Software (Qiagen) (Table S4). Bio-primer 
sequences and sequencing primers were 
oligo-synthesized (Invitrogen, Beijing, China). DNA 
methylation level of eight DMRs was analyzed by 
MSP and pyrosequencing. MSP products were 
observed at 2% agarose gels before pyrosequencing. 
Pyrosequencing was done following the instructions 
of the manufacturer of the pyrosequencing device, 
PyroMark Q24 (Qiagen). 

The methylation values of all the CpG sites 
within the DMRs were averaged and paired t-test was 
used to infer whether the differences between tumor 
and normal tissues were statistically significant. 

5-aza-dC treatment 
Lung cancer cell lines A549, Calu1, H1299 and 

Hop62 were grown in 1640 medium supplemented 
with 10% FBS and 1% penicillin-streptomycin (Life 
Technologies) and incubated in 5% CO2 at 37°C. The 
first day, cell lines were seeded in a 6-well plate 
(2×105/well) and the second day were treated with 
5-aza-2’-deoxycytidine (Sigma) at different final 
concentrations for 4 days; culture medium was 
changed every 2 days with new drugs added. Then, 
cell pellets were harvested for DNA and RNA 
extraction. Total RNA was extracted using Trizol 
(Invitrogen) and then the mRNA expression levels of 
target genes were evaluated using real-time PCR 
(Takara, RR420A). Genomic DNA was isolated using 
the PureLink Genomic DNA Mini Kit (Invitrogen, 

K1820-02) and then pyrosequencing methylation 
analysis was performed as described above. 

In vitro cell-based assays 
Detailed information regarding in vitro 

cell-based assays including siRNA knockdown, gene 
overexpression, cell proliferation and clone formation, 
and cell migration is provided in Supplementary 
Materials and Methods and Table S5. 

Results 
Genome-wide DNA methylation changes in 
lung cancers 

To investigate aberrations of DNA methylation 
in primary lung tumors, RRBS was conducted in 
eighteen tumors and matched adjacent normal lung 
tissues, including nine lung LUADs and LUSCs 
(Table S1). On average, approximately 22 million 
reads were uniquely mapped to the reference DNA 
genome and the bisulfite conversion rate was 0.986 
(Table S2). 2,574,098 CpG sites that covered at least 10 
paired samples were identified. CpG sites in the 
heterosome and overlapped with a database of single 
nucleotide polymorphisms (dbSNP build 142) were 
removed, and the remaining 2,166,853 CpG sites were 
used for downstream analyses. To assess the 
reproducibility of RRBS, the genome-wide CpG 
methylation values between each sample were 
compared. The average Pearson's correlation 
coefficient between normal samples was above 0.95 
(Figure S1), indicating excellent reproducibility of 
RRBS. Compared with normal samples, the 
correlation coefficient between tumor samples or 
between tumor-normal pairs was smaller (Figure S1), 
showing genome-wide DNA methylation changes 
occurred between tumor-normal pairs, as well as 
among tumors. 

The top 1% of CpG sites that varied most across 
all samples were selected to perform unsupervised 
hierarchical clustering. As expected, the NSCLCs and 
matched normal samples were clearly segregated, 
with the exception of one normal sample (Figure 1A). 
Principal component analysis (PCA) using all CpG 
sites also showed similar segregation between the two 
groups (Figure 1B). These results indicated 
substantial methylation differences between NSCLCs 
and normal tissues. We observed that the variation 
within NSCLCs is much larger than that within 
normal samples (Figure 1B), suggesting intra-tumor 
DNA methylation heterogeneity in NSCLCs. 
Moreover, the NSCLCs revealed a lower proportion 
of highly methylated CpG sites (>80%), and a similar 
fraction of intermediate methylation (10%–80%) and 
low methylation (<10%) compared to matched normal 
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ones (Figure S2A), showing hypomethylation on a 
genome-wide scale in NSCLCs. However, enormous 
methylation gains were observed in NSCLCs at CpG 
sites within CGIs that had low methylation levels in 
normal samples (< 10%; Figure S2B). Then, we 
compared DNA methylation differences between 
lung tumors and normal lung tissues for 15 chromatin 
states which were defined in ESCs [6]. We found that 
heterochromatin states (Het) had the greatest 
hypomethylation in NSCLCs compared to their 
normal counterparts. In contrast, methylation levels 
of bivalent regulatory states (TssBiv, BivFlnk and 
EnhBiv) and repressed polycomb states (ReprPC) 
showed a small increase in NSCLC tumors (Figure 
S2C). 

Cancer-specific hypermethylated regions 
occurred primarily at genes with poised- 
promoter in embryonic stem cells  

To identify DMRs in NSCLCs, the whole RRBS 
dataset was analyzed by an unbiased circular binary 
segmentation method [43]. In total, 4,410 
hypermethylated DMRs (hyperMe-DMRs) and 4,824 
hypomethylated DMRs (hypoMe-DMRs) were 
detected in tumors compared to matched normal 
tissues (Figure 2A and Table S6). In our study, similar 
amounts of hypo- and hypermethylation were 
uncovered in lung cancer, which was in line with 
previous reports in colon cancer [44]. The 
hyperMe-DMRs were of smaller size (mean values = 
215 bp versus 263 bp, P = 2.2×10-16) and contained 
more CpG sites (mean values = 22 versus 13, P = 
2.2×10-16) than hypoMe-DMRs (Figure S3A-B). 

Although both hypermethylation and 
hypomethylation changes occurred in lung cancer, 
there were significant differences in the genomic 

regions and the activity states that were modified. The 
majority (75.5%) of hyperMe-DMRs were located 
within CGI, while only 16.1% of hypoMe-DMRs 
overlapped with CGI (Figure 2A and Table S6). 
Moreover, by integrating analysis with 15-chromatin 
states across ESC epigenomes generated from five 
histone modification marks, we discovered that 
hyperMe-DMRs were strongly enriched in poised 
promoters (TssBiv and BivFlnk) of ESCs, whereas 
hypoMe-DMRs did not show significant enrichment 
across the activity states (Figure 2 and Table S6). In 
lung cancer, 46.1% (2,033) of hyperMe-DMRs were 
marked by poised promoters in ESCs, which covered 
promoters of 995 genes including well-known 
aberrantly methylated homeobox gene cluster [45] 
(Figure S4). Enrichment analysis of Gene Ontology 
and molecular signature found that these genes were 
significantly enriched in developmental processes, 
stem cell differentiation, tri-methylated H3K4 and 
H3K27, and hypermethylated genes in other cancer 
types (Figure S5A-B, and Table S7).These findings 
demonstrate that genes targeted by a bivalent 
promoter chromatin pattern (repressive mark 
H3K27me3 and active mark H3K4me3) in ESCs tend 
to be de novo methylated in lung cancer. 

HyperMe-DMRs in lung cancer are recurrently 
hypermethylated in various primary cancers 
and cancer cell lines 

Then we determined if these hyperMe-DMRs in 
lung cancer were also hypermethylated in other 
tumor types. By investigating the methylation levels 
of CpG sites within hyperMe-DMRs from methylation 
array data of 21 cancer types in TCGA, we observed 
that the hyperMe-DMRs in our lung cancer data 
remained hypermethylated in the TCGA lung cancer 

 

 
Figure 1. Comparison of DNA methylation alterations in lung tumor and matched normal tissues. (A) Unsupervised hierarchical clustering based on methylation 
levels of the top 1% CpG sites (n = 21,668) that varied most across 18 normal/tumor pairs. Columns are samples and rows are CpG sites. (B) Principal component analysis of 
18 normal/tumor pairs based on methylation levels of all CpG sites (n = 2,166,853). 
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dataset as well as other primary cancers (Figure 3A). 
Strikingly, we also found that methylation levels of 
these hyperMe-DMRs in cancer cell lines from the 
ENCODE project and CCLE database [6, 46], were 
significantly increased compared to that in ESCs, 
primary cells from peripheral blood, primary culture 
cell lines, and primary tissues from the NIH Roadmap 
Epigenomics Consortium (Figure 3B). These results 
highlight that the hyperMe-DMRs we identified are 
highly relevant to tumor development and 
progression. In addition, hyperMe-DMRs targeted by 
bivalent or active promoters in ESCs also showed 
hypermethylation in TCGA primary cancers and 
cancer cell lines (Figure 3B and Figure S6A-B). 
Overall, the above data indicate that a group of 
development-associated genes, mainly marked by 
ESC poised promoters, show highly conserved 
hypermethylation across cancer types and cancer cell 
lines. 

DNA methylation of ESC-poised promoter 
marked genes correlates more strongly with 
gene expression than ESC-active promoter 
marked genes 

It was a classical regulatory paradigm that DNA 
hypermethylation at promoters were generally 
correlated with gene silencing [47], thus 
hyperMe-DMRs at promoter regions were our focal 
point. There were 2,519 (57.1%) hyperMe-DMRs 
located within promoters, including two types; one 
where its promoter was marked by poised chromatin 
states in ESCs (2,033, 46.1%) and another by active 
chromatin states in ESCs (486, 11%) (Figure 2B). 
Examples included hyperMe-DMRs within IRX1 and 
MAPK7 promoters (Figure 4A), targeted by bivalent 
and active states, respectively, showing differential 
chromatin modification in ESCs. Furthermore, we 
annotated the two types of hyperMe-DMRs by 19,901 
protein coding genes (GENCODE V28), and obtained 

 

 
Figure 2. Characteristics of differentially methylated regions. (A) Circular plot of 4,410 hypermethylated (hyperMe) and 4,824 hypomethylated (hypoMe) differentially 
methylated regions (DMRs). ESCs, embryonic stem cells. (B) Distribution of hyperMe-DMRs and hypoMe-DMRs within the region of 15 chromatin states defined in ESCs. 
Definitions of 15 chromatin states are shown in Figure 2C. (C) Definitions of 15 chromatin states and histone mark probabilities. (D) Enrichments of DMRs in ESCs, IMR90, 
NHLF, lung tissues, and A549 cells across 15 chromatin states. 



Theranostics 2021, Vol. 11, Issue 11 
 

 
http://www.thno.org 

5353 

995 ESC-poised marked genes and 307 ESC-active 
marked genes, respectively. By integrating analysis 
with corresponding RNA-seq data, we found that 
ESC-poised marked genes were significantly enriched 
in genes with no or low transcript levels in both lung 
normal and tumor tissues (P = 2.2×10-16), whereas 
ESC-active marked genes showed no significant 
enrichment in those genes (Figure 4B). This finding 
suggests that most ESC-poised marked genes were 
inactive in normal tissues and generally remain 
inactive in tumor tissues. This is probably due to 
switching of the epigenetic silence mechanism where 
the silenced genes in normal tissues were inactive by 
de novo methylation in cancer [48-51]. For the 393 
ESC-poised marked genes and 187 ESC-active marked 
genes that were expressed in both lung normal and 
cancer tissues, there were more significantly 
downregulated genes among the ESC-poised marked 
genes than the ESC-active marked genes (42% versus 
28%, P = 0.0018) (Figure 4C). Taken together, the 
results indicated that methylation levels of 
ESC-poised marked genes are more predictive of their 
transcript levels over ESC-active marked genes. 

Integrative analysis identified eight novel 
methylation-silenced genes in lung cancer 

The above data and previous reports suggested 
that the majority of methylated events were passenger 
methylation events which are probably a consequence 
of tumorigenesis [52, 53]. Hence, we developed a 
heuristic strategy to pinpoint driver gene methylation 
events from passenger events in lung cancer. By 
integrative analysis of methylation levels of promoter 
DMRs (pDMRs; within the 2kb upstream and 
downstream of TSS and corresponding RNA-seq, this 
strategy identified putative methylation driver genes 
where not only both their transcript expression and 
methylation level were dysregulated in tumors, but 
also there were strong negative correlations between 
expression and methylation changes. As a result, we 
obtained a primary gene list in the discovery set, 
which consisted of 190 protein coding genes (FDR < 
0.05, Spearman’s rho < -0.3). To further reduce false 
positive discovery rates, we filtered the primary 
candidate gene list using the methylation and 
expression dataset of the lung cancer samples in 
TCGA cohorts including LUAD and LUSC. Finally, 

 

 
Figure 3. HyperMe-DMRs are recurrently hypermethylated. (A) Methylation levels of total hyperMe-DMRs between tumor and normal samples across 21 cancer types. 
Data are shown as mean ± SD. The top digits signified number of tumor (red) and normal (green) samples analyzed. (B) Methylation levels of total hyperMe-DMRs and the other 
set of hyperMe-DMRs (i.e., ESC-poised and ESC-active promoter marked hyperMe-DMRs) across tissues, cell types and cancer cell lines. Data are shown as mean ± SD. The top 
digits signified number of tissues/cells. 
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we obtained a high-confidence list with 31 unique 
genes including 20 hypermethylation drivers and 11 
hypomethylation drivers that were recovered in both 
the LUAD and LUSC samples from TCGA cohorts, 
and a moderate-confidence list with 81 unique genes 
that were recovered in only one of the above cancer 
types (Figure 5A and Table S8). Here, we focused on 
the 20 hypermethylation driver genes in the 
high-confidence list for subsequent analysis. 

Methylation status of the 20 hypermethylation 
driver genes showed a significant and highly negative 
correlation (FDR < 0.01, Spearman’s rho < -0.3) with 
their expression (Figure 5A). We further analyzed the 
transcript expression and HM450 methylation data of 
638 cancer cell lines from the CCLE database, and 
found that 15 of 20 hypermethylation driver genes 
exhibited a significant and highly negative correlation 
(FDR < 0.01, Spearman’s rho < -0.3) between their 
expression and methylation in the promoter (Figure 
5A), demonstrating reproducibility of the methylation 
driver list. We also examined such negative 
correlations for the 20 genes across 19 other cancer 
types in TCGA. We observed that 18 genes revealed a 
significant negative correlation (FDR < 0.01, 
Spearman’s rho < -0.3) in at least five cancer types, 
except for ADCY8 and TBX5, which showed a 
cancer-type specific methylation driver. Moreover, 

the majority of methylation driver genes (16 of 20) 
belonged to ESC-poised marked genes (Figure 5A), 
further supporting our conclusion that preferential 
hypermethylation events in ESC-poised marked 
genes played a key role in tumorigenesis. 

Twelve of 20 genes (60%) in the list were 
methylation driver genes described previously in 
lung cancer (Figure 5A), such as CDO1, SLIT2, SOX17 
and TCF21. The remaining eight genes are newly 
identified methylation drivers in lung cancer, 
including 5 known cancer methylation driver genes in 
other cancer types (HSPB6, IRX1, ITGA5, PCDH17, 
TBX5) and 3 novel genes that had not been previously 
reported (ADCY8, GALNT13 and TCTEX1D1) (Figure 
S7). Furthermore, we verified the reproducibility of 
the methylation changes of eight novel methylation 
drivers in an independent set of 23 lung tumor and 
matched normal tissues using pyrosequencing 
(Figure 5B). All of them exhibited highly significant 
differences in methylation levels between tumor and 
normal tissues. Interestingly, the eight novel 
methylation drivers could distinguish lung tumors 
from normal samples with an area under the curve 
(AUC) of 0.965 (95%CI: 091-1) in an independent lung 
cancer cohort (Figure 5C), suggesting this eight-gene 
panel could be a potential diagnostic biomarker of 
lung cancer. 

 

 
Figure 4. Functional characterization of hyperMe-DMRs subtypes. (A) Examples of two hyperMe-DMRs subtypes, one is pre-marked by poised promoter (IRX1, 
poised-hyperMe DMRs) and the other by active promoter (MAPK7, active-hyperMe DMRs) in ESCs. Annotations of chromatin state across 127 reference epigenomes including 
ESCs and lung-related tissues/cells are shown. (B) Fraction of no/bottom-expression genes for all annotated genes and genes harboring poised-hyperMe DMRs and 
active-hyperMe DMRs in their promoters. (C) Distribution of no differential expression, upregulation and downregulation for genes harboring poised-hyperMe DMRs and 
active-hyperMe DMRs in their promoters. 
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Figure 5. Methylation-silenced driver genes in lung cancer. (A) 20 methylation driver genes identified in lung cancer. Grey bars indicate the Spearman correlation 
calculated from our NSCLC data, TCGA LUAD and LUSC, and CCLE database. The dark yellow triangle indicates known methylation drivers in lung cancer, spring green circle 
indicates known methylation drivers in non-lung cancer, and the Indian red rhombus indicates first report in cancer. Light and dark red circles indicate genes pre-marked by 
poised and active promoter in ESCs, respectively. Number of cancer types from TCGA cohorts (blue bar) that detected the same methylation drivers is plotted in the right panel. 
(B) Validation of methylation changes of eight novel methylation driver genes in an independent cohort (23 paired tumor and normal tissues) by bisulfite pyrosequencing. The box 
indicates the median±1 quartile with each point representing one sample (yellow for tumors and blue for normal tissues). (C) ROC curve for random forest analysis using 
pyrosequencing value inputs of eight novel methylation biomarkers from an independent cohort. ROC analysis yielded an AUC of 0.965, showing high accuracy of distinguishing 
tumors from normal tissues. 

 

Functional validation of novel 
methylation-silenced driver genes in lung 
cancer 

Considering that PCDH17 is a known tumor 
suppressor but not previously associated with lung 
carcinogenesis, we performed experimental 
investigation of its functional role in this tumor type. 
Its expression is higher in normal spleen, brain and 
lung, probably due to the active histone mark of their 
promoter in these tissues. However, for other tissue 
and cell types (e.g., ESCs and A549), their promoter 
regions are often targeted by a combination of active 
and repressive histone marks (poised chromatin 
state), resulting in lower expression in them (Figure 
6A and Figure S8). The TSS of this gene is within CGI. 
Our analysis identified a 1,123 bp DMR (from 
58,206,777 to 58,207,899 on chromosome 13) within 
this CGI, located at 124bp downstream of the gene’s 

TSS. Two probes in HM450 from TCGA cohorts are 
also mapped to the DMR (Figure 6A). Increased 
methylation levels of both the probes and the DMR 
are significantly correlated with decreased gene 
expression in lung tumor compared to normal 
samples (Figure 6B). We further examined the 
consequence of demethylation on PCDH17 expression 
using the demethylating agent 5-aza-dC in four lung 
cancer cell lines (A549, Calu1, H1299, and HOP62). 
The expression of PCDH17 was found to be strongly 
upregulated in Calu1, H1299, and HOP62 cells 
(Figure 6C), suggesting that PCDH17 expression is 
regulated by promoter methylation. PCDH17 
expression in A549 cells was the highest among the 
four cell lines, which probably explained why we did 
not observe significant expression change after 
5-aza-dC treatment (Figure 6D). HOP62 also had the 
higher PCDH17 expression, thus the two cell lines 
were selected for inhibition of PCDH17 expression. 
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The expression level of PCDH17 was substantially 
reduced (>85% and 90%, respectively) after small 
interfering RNA (siRNA) was transfected into cells 
(Figure 6E). Then clone formation assays and CCK-8 
cell viability assays were performed to assess the 
effect of PCDH17 knockdown on A549 and HOP62 
cell proliferation. The depletion of PCDH17 

significantly promoted cell growth of A549 and 
HOP62 cells compared to cell lines with scrambled 
control (P < 0.001, Figure 6F). Downregulation of 
PCDH17 also strongly enhanced clone formation in 
both cell lines (Figure 6G). These findings indicate 
that PCDH17 suppresses lung cancer cell 
proliferation. 

 

 
Figure 6. Functional validation of PCDH17. (A) The epigenomic chromatin profile of DMR in the PCDH17 promoter. Color-coded definitions of chromatin states are 
shown in Figure 2C. The position of DMR is highlighted by the red box. The CpG islands overlapped with the DMR are shown in a green box. The HM450 probes within the DMR 
are indicated by yellow lines. (B) Scatterplots and box plots of methylation of DMRs/CpGs within the PCDH17 promoter and expression of PCDH17 in RRBS NSCLC (top), 
TCGA LUAD (middle) and TCGA LUSC (bottom) cohorts. (C) Relative expression of PCDH17 after treatment with increasing concentration of 5-aza-dC in lung cancer cell lines 
A549, Calu1, H1299, and HOP62. (D) Relative expression of PCDH17 in lung cancer cell lines A549, Calu1, H1299, and HOP62. (E) Relative expression change of PCDH17 in 
A549 and HOP62 cells transfected with PCDH17 siRNA or control siRNA. (F) Growth curves of A549 and HOP62 cells transfected with PCDH17 siRNA or control siRNA. (G) 
Colony formation assays in A549 and HOP62 cells transfected with PCDH17 siRNA or control siRNA. The error bars indicate SD of three independent experiments. *P <0.05, 
**P <0.01, ***P <0.001 using a two-sided Student’s t-test. 
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Figure 7. DNA methylation alterations control expression of ncRNAs and their host genes. (A) DNA methylation patterns of protein-coding genes and ncRNAs 
(lncRNAs and miRNAs) across the gene body and ±5kb flanking regions of the gene body. DNA methylation level is calculated according to 1kb windows with 100bp steps in lung 
normal samples. (B) DNA methylation patterns of three different subcategories of lncRNAs (intergenic, intragenic and antisense) across the gene body and ±5kb flanking the 
gene body. (C) The epigenomic chromatin profile of DMR in miR-218 and its host gene SLIT2 promoter. Color-coded definitions of chromatin states are shown in Figure 2C. The 
position of DMR is highlighted by the red box. The CpG islands overlapped with the DMR are shown in the green box. (D) Scatterplots and box plots of methylation of DMR 
within the SLIT2 promoter and its expression in the RRBS cohort. (E) Scatterplots and box plots of methylation of DMR within the promoter of SLIT2 and expression of miR-218 
in the RRBS cohort. (F) The computational prediction, biological process that miR-218 is involved in. 

 
We also performed in vitro experiments to 

explore the functional role of other methylation 
drivers (IRX1, TBX5 and HSPB6) in lung cancer cell 
lines. We observed significant expression change of 
IRX1 and HSPB6 after 5-aza-dC treatment (Figure 
S9A-B). In addition, overexpression cell lines of IRX1, 
TBX5 and HSPB6 were successfully established 
(Figure S9C-D). Re-expression of IRX1 significantly 
inhibited lung cancer cells growth compared to 
control cells (Figure S9E-F). Cell migration was 
significantly reduced in lung cell lines with 
overexpression of IRX1, TBX5 and HSPB6 (Figure 
S9G). Overall, our results suggest that these newly 
identified methylation drivers play a tumor- 
suppressor role in lung tumor pathogenesis. 

Shared epigenetic control of ncRNAs and their 
host genes 

Epigenetic alterations of ncRNAs have been 
reported to be involved in tumorigenesis in several 
cancer types [54, 55]. Here, we focused on two 
common types of ncRNAs, lncRNAs and miRNAs. 
First, we evaluated the aberrant methylation pattern 
surrounding the TSSs and the transcript end sites 
(TESs) of protein coding genes, lncRNAs, and 
miRNAs in lung tumors and adjacent normal tissues. 
The depletion of DNA methylation in TSS and TES 
regions and the enrichment of DNA methylation in 
transcribed regions were observed in both protein 
coding genes and lncRNAs, but low levels of DNA 
methylation were distributed in miRNAs (Figure 7A 
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and Figure S10A). We further investigated if three 
subtypes of lncRNAs (i.e., intergenic, intragenic and 
antisense), which were classified based on their 
relative position to nearby coding genes, had 
differential methylation profiles. More enrichment of 
DNA methylation toward the transcribed regions was 
exclusively observed in intergenic lncRNAs compared 
to the other types of lncRNAs (Figure 7B and Figure 
S10B). These results suggest that lncRNAs display 
similar methylation patterns with protein coding 
genes, but the three types of lncRNAs have distinct 
methylation profiles, which probably affect their 
regulatory role. 

Moreover, we identified eight lncRNAs and five 
miRNAs showing significantly negative correlation 
between their methylation and expression (Table S9). 
Interestingly, three of them were co-regulated with 
their host genes by promoter hypermethylation, 
including miR-218 and its host gene SLIT2, miR-490 
and its host gene CHRM2, and CDO1-LNC and its 
host gene CDO1 (Figure 7C, and Figure S11A and 
12A). miR-218 was recently reported to play a tumor 
suppressive role in lung cancer through regulation of 
the IL6/STAT3 pathway. 

Additionally, based on the bioinformatics 
analysis of our corresponding miRNA-seq and 
RNA-seq data, miR-218 was downregulated in 
tumors and predicted to be involved in many 
important cancer-related biological processes, such as 
the cell cycle, DNA replication and DNA repair, 
further supporting the tumor suppressive role of 
miR-218 in lung cancer. However, how to regulate the 
expression of miR-218 remains elusive. Here, our 
findings suggest that promoter methylation is a 
probably selective mechanism of regulation of 
miR-218 and its host gene (Figure 7D-F). Epigenetic 
silencing of miR-490 and its host gene CHRM2 has 
been observed in gastric and colorectal cancer [56, 57]. 
For the first time, we reported the potential epigenetic 
regulation of miR-490-3p and its host gene CHRM2 in 
NSCLC (Figure S11B-D). 

CDO1-LNC, a lncRNA annotated in the 
GENCODE (v28), was also detected in our lung 
cancer data. It covered a stretch of 557bp within 
CDO1 (Figure S12A). In an effort to determine the 
potential functional role of CDO1-LNC, a 
Guilt-By-Association (GBA) analysis was performed, 
an analysis that has been widely used for studying 
lncRNAs [58]. This analysis yielded a total of 1,975 
protein coding genes that were significantly 
co-expressed with CDO1-LNC (FDR <0.01, 
Spearman’s rho < -0.5 or >0.5). These genes were 
mainly enriched in the cell cycle, DNA replication and 
the development process, suggesting that it may be 
involved in tumorigenesis in NSCLC. In addition, 

hypermethylation of the same DMR is significantly 
correlated with expression of both CDO1-LNC and its 
host gene CDO1 (Figure S12B-D), indicating they are 
probably co-regulated by promoter methylation. 

Differential DNA methylation of transcription 
factor binding motifs in NSCLC 

TF binding can be blocked by the methylation of 
TF binding sites in ESCs [59]. Consequently, we 
sought to search for sets of TFs that modulate 
expression of our identified methylation driver genes 
in lung cancer. To ensure the power of identifying 
TFs, we focused on the primary gene list in the 
discovery set, which consisted of 190 methylation 
driver genes (Table S8). Then, 190 pDMRs in these 
genes were intersected with binding motifs of 84 TF 
groups obtained from the literature and de novo motif 
discovery in 427 human ChIP-seq datasets [60]. 
Significant enrichment of motifs was observed in the 
hyperMe regions of lung tumor (46 in hyperMe 
regions versus 10 hypoMe regions; Fisher’s test p 
value= 0.0002; Table S10). Finally, TFs that 
correspond to these enriched motifs were identified; 
the correlation between expression of the TFs and 
their targeted genes was calculated. As a result, 27 
significantly correlated motifs in hyper-methylated 
and down-regulated genes, and eight in 
hypo-methylated and up-regulated genes were 
identified (FDR < 0.05; Table S11), including known 
methylation sensitive TFs such as SP1, YY1 and CTCF 
[61]. For these TFs, the DNA methylation in their 
binding motifs regulated cancer-specific gene 
expression by affecting the binding ability of TFs in 
NSCLCs. The top ten highly significantly correlated 
motifs in hyper-methylated regions and the top five in 
hypo-methylated regions were selected for 
downstream analysis. At least one CpG site was 
observed in most of these selected motifs, further 
supporting that they were indeed involved in 
transcriptional regulation through CpG methylation 
states (Figure S13). 

 To determine which genes were strongly 
influenced by the binding vicinity of the 
corresponding TFs in NSCLC, we calculated activity 
scores by integrating the correlation of targeted gene 
expression with methylation level of pDMRs and 
expression level of TFs (Figure 8A-B). The strongly 
inactivated genes in lung tumors compared to normal 
samples, whose corresponding TF binding motifs 
were affected by DNA methylation, included 
well-known epigenetically dysregulated genes such 
as TCF21, CYYR1 and GATA2, as well as some novel 
epigenetically dysregulated genes such as HSPB6, 
ITGA5 and TBX5. The strongly activated genes in 
lung tumors were also found, including PKP3, a 



Theranostics 2021, Vol. 11, Issue 11 
 

 
http://www.thno.org 

5359 

member of the armadillo protein family whose 
overexpression was a key feature in lung 
carcinogenesis [62]. Of interest was the motif EGR1_ 
known3 of EGR1, including two CpG sites (Figure 
S13). The genome-wide methylation level of this motif 
was lower than its neighbor regions, supporting that 
TF binding sites tend to lose methylation (Figure S14). 
The high variance of methylation in the motif and 
neighbor regions in lung tumors indicated that some 
CpG sites have been selectively methylated (Figure 
S14). EGR1, a zinc-finger tumor suppressor 
transcription factor, has been shown to regulate 
multiple tumor suppressors including TGFβ1, TP53 
and PTEN [63]. Here, we found the strongest 
inactivation of EGR1 binding motif within the TCF21, 
an epigenetically regulated tumor suppressor gene in 
lung cancer (Figure 8A). We found a significant 

association between the methylation level of the two 
CpG sites in the EGR1 binding motif and TCF21 
expression (Figure 8C). The EGR1 expression was also 
highly correlated with expression level of TCF21 
(Figure 8D and Figure S15). Moreover, it has been 
shown that TCF21 can be activated by WT1, 
recognizing and binding to EGR1-like motifs [64, 65]. 
Taken together, EGR1 is potentially involved in 
transcriptional regulation of TCF21 and the 
methylation states of EGR1 binding motif may 
influence the ability of EGR1 or WT1 to bind to TCF21 
in lung cancer. 

Discussion 
Previous studies have explored the impact of 

DNA methylation events on lung tumor initiation and 
progression [19-22, 27-29, 66-68]. However, those 

 

 
Figure 8. Expression of epigenetically dysregulated genes is affected by methylation changes of transcription factor binding motifs in lung cancer. (A, B) 
Activity plot integrating the correlation between methylation of transcription factor binding motifs and expressional fold changes of targeted methylation-driven genes. The 
strength of inactivation (red; A) and activation (blue; B) in tumors compared to normal samples is represented by color and intensity. (C) Correlation between methylation level 
of two CpG sites within the EGR1 binding motif of TCF21 and expression level of TCF21. Genomic coordinates of the EGR1 binding motif relative to TCF21 are shown in the 
top panel. (D) Correlation between EGR1 and TCF21 expression. 
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studies mainly investigated a single gene or a small 
number of genes and a NGS-based methylation 
investigation in lung cancer has not yet been reported. 
Here, we analyzed the genome-wide methylation 
profile in lung cancer using an enriched sequencing 
approach called RRBS. This NGS-based technique is 
greatly superior to traditional microarray-based 
methods with regard to its high CpG coverage, 
single-base resolution and low input requirement 
[30]. In the present study, on average we could 
interrogate more than two million CpG sites in each 
sample for methylation analysis. Another major 
advantage of this method is the ability to search for 
DMRs spanning multiple consecutive CpG sites, 
which are robust and functionally relevant 
methylation events [47]. Due to strong correlation 
among CpG sites within a genomic region of about 
500bp, calling DMR could reduce the dimensionality 
of methylation data and thus increase the power and 
robustness of identifying differential methylation 
events, especially for low-coverage regions. From our 
RRBS data, we uncovered 4,410 hypermethylated and 
4,824 hypomethylated DMRs using the circular binary 
segmentation algorithm, which could help us better 
dissect the casual role of DNA methylation in lung 
cancer. 

As expected, we observed widespread 
aberrations of DNA methylation in our lung cancer 
data including global DNA hypomethylation and 
CGI-specific hypermethylation, which is largely in 
line with previous reports in several malignancies [44, 
69], suggesting their important roles in tumorigenesis. 
Based on the top two principal components of the 
PCA results, we found that methylation profiles in 
tumor specimens were largely different from each 
other, which could partially explain intra-tumor 
heterogeneity, whereas their corresponding normal 
counterparts presented similar methylation 
landscapes. Interestingly, the methylation level of our 
identified hyperMe-DMRs remained significantly 
higher in tumor tissues from 21 cancer types of TCGA 
and the 1,028 CCLE cell lines compared to that in 
corresponding normal tissues and cells, indicating 
that hypermethylation of these regions is cancer 
specific. Additionally, 46.1% of the identified 
hyperMe-DMRs in lung cancer were overlapped with 
poised promoters in ESCs. This further confirmed that 
the frequent methylation of polycomb targets is a 
hallmark of lung cancer and many other human 
cancer types [48, 49]. However, our observations also 
suggest that methylation silencing of these genes is a 
highly selective pressure during tumor formation and 
potentially affects tumor pathogenesis, rather than a 
residual stem-cell memory. Strikingly, 80% of our 
identified hypermethylation driver genes were 

pre-marked with a poised promoter in ESCs. 
It is challenging to pinpoint cancer driver events 

from a large number of DNA methylation changes in 
genome-wide methylation studies. In the present 
study, we integrated DNA methylation with matched 
gene expression from our own lung cancer data and 
data provided by TCGA cohorts. Using this strategy, 
we identified 20 hypermethylation driver genes, of 
which 12 were recovered from previous studies and 
known epigenetic-regulated genes (e.g., SLIT2, CDO1 
and TCF21), suggesting that the integration of DNA 
methylation with other types of omics data, such as 
RNA-seq, is an effective method to study methylation 
regulation of genes. Moreover, all of the eight novel 
hypermethylation driver genes (PCDH17, IRX1, 
ITGA5, HSPB6, TBX5, ADCY8, GALNT13 and 
TCTEX1D1) were successfully validated in an 
independent cohort via a pyrosequencing approach, 
with an AUC of 0.965 for prediction of lung cancer 
patients. This indicates that these novel drivers could 
be used as promising diagnostic biomarkers in the 
clinic. Notably, they have not been included in the 14 
currently commercially used DNA methylation-based 
biomarkers [70]. 

Considering the recapitulation of previously 
published cancer driver genes, we experimentally 
tested the tumor-suppressive role of four new 
methylation driver genes in lung cancer cells, 
including PCDH17, IRX1, HSPB6 and TBX5, which 
are known driver genes but not linked with lung 
tumorigenesis [71-78]. Expression of these genes was 
upregulated upon treatment with 5-Aza-dC 
demethylation, suggesting that their expression is 
regulated by DNA methylation. Notably, the putative 
methylation driver PCDH17 was previously 
described as a tumor suppressor that induces tumor 
cell apoptosis and autophagy, and was functionally 
hypermethylated in gastric, colorectal, urological and 
esophageal cancers [76-78]. We also found that 
inhibition of PCDH17 promotes cell proliferation, 
suggesting its tumor-suppressive role in lung cancer. 
In addition, we validated the tumor-suppressive role 
of IRX1, TBX5 and HSPB6 in lung cancer. Of note, our 
identified methylation drivers are not within the gene 
list of 299 cancer driver genes that were identified by 
PanSoftware using somatic mutations and insertions/ 
deletions in pan-cancer data and represented the 
largest discovery of cancer genes thus far [79]. This 
suggests that analysis of methylation events could 
help to identify additional drivers and provide 
important research candidates. 

Epigenetic regulation of ncRNAs in cancer have 
been recently characterized [80]. Using the same data 
mining strategy described above, we also discovered 
13 methylation driver ncRNAs (i.e., eight lncRNAs 
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and five miRNAs) in lung cancer. This suggests that 
epigenetic alteration is a selective mechanism for 
regulation of ncRNA expression in cancer. Strikingly, 
our observations showed that several ncRNAs and 
their host genes were co-regulated by the same DMRs 
within the promoter, such as miR-218 and its host 
gene SLIT2, miR-490 and its host gene CHRM2, and 
CDO1-LNC and its host gene CDO1. This offers the 
possibility of developing more effective epigenetic 
therapeutic drugs to target the common DMRs that 
impact ncRNAs and the host genes, both of which 
play a critical role in tumor initiation and progression. 

It has been demonstrated that the binding 
affinity of some TFs to DNA motifs is affected by CpG 
methylation status in vivo [81]. A recent study 
suggested that loss of NRF1 binding was caused by 
local hypermethylation [82]. Based on this regulatory 
paradigm, we correlated DNA methylation and 
expression level of targets with expression level of 
enriched TFs to identify cancer-specific TFs in lung 
cancer at a large scale. Using this method, we 
discovered several TFs and their target genes. 
Notably, we uncovered a potential regulatory 
relationship between EGR1 and TCF21. The strong 
correlation between methylation level of two CpG 
sites within EGR1 binding motif and TCF21 
expression suggests that EGR1 transcriptionally 
regulates TCF21 expression through an epigenetic 
mechanism. Our observations also showed that the 
underlying connection between TFs and DNA 
methylation may be complex. For example, several 
DNA binding motifs of TFs did not span CpG sites, 
such as NR3C1_disc6, NR3C1_disc2 and SMARC_ 
disc1 (Figure S13). However, the methylation level of 
neighborhood regions flanking these DNA motifs 
showed a strong correlation with expression of these 
TFs as well as target genes. Similar findings were 
reported in previous studies in which the binding 
ability of OCT4 was sharply reduced providing that 
DNA methylation occurred within 100 bp on each 
side of the targeted motif of OCT4, but no CpG sites 
were located within its recognized motifs [83, 84]. 
Therefore, the neighborhood regions of TF binding 
sites may also play a role in gene regulation and 
should not be overlooked in future studies. Further 
characterization and experiment-based validation of 
the identified regulators may lead to the discovery of 
novel epigenetically dysregulated pathways in lung 
cancer and give new insights into the function of 
DNA methylation alterations in cancer. 

Conclusions 
Our findings demonstrated that RRBS is an 

effective and robust approach to explore the cancer 
methylome. In our study, we discovered a large 

number of hypermethylation events pre-marked by 
poised promoter in ESCs, being a hallmark of lung 
cancer. These hypermethylation events showed a high 
conservation across cancer types and cancer cell lines. 
Among them, we identified and experimentally 
confirmed a group of methylation driver genes (e.g., 
PCDH17, IRX1, TBX5 and HSPB6) that play a critical 
role in neoplasia initiation, promotion, and 
progression. We also revealed shared epigenetic 
control of ncRNAs and their host genes that are 
controlled by the same promoter hypermethylation. 
Furthermore, we detected sets of TF regulators 
driving the expression of epigenetically dysregulated 
genes, guiding us to investigate the potential novel 
pathways and mechanisms by which DNA 
methylation regulates gene expression in lung cancer. 
Our study also provides a valuable resource for future 
efforts to identify DNA methylation-based diagnostic 
biomarkers, develop cancer epigenetic therapy and 
study cancer pathogenesis. 
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