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Abstract 

Background: Bacterial infection is associated with gastric carcinogenesis. However, the relationship between 
nonbacterial components and gastric cancer (GC) has not been fully explored. We aimed to characterize the 
fungal microbiome in GC. 
Methods: We performed ITS rDNA gene analysis in cancer lesions and adjacent noncancerous tissues of 45 
GC cases from Shenyang, China. Obtaining the OTUs and combining effective grouping, we carried out species 
identifications, alpha and beta diversity analyses, and FUNGuild functional annotation. Moreover, differences 
were compared and tested between groups to better investigate the composition and ecology of fungi 
associated with GC and find fungal indicators. 
Results: We observed significant gastric fungal imbalance in GC. Principal component analysis revealed 
separate clusters for the GC and control groups, and Venn diagram analysis indicated that the GC group 
showed a lower OTU abundance than the control. At the genus level, the abundances of 15 fungal biomarkers 
distinguished the GC group from the control, of which Candida (p = 0.000246) and Alternaria (p = 0.00341) were 
enriched in GC, while Saitozyma (p = 0.002324) and Thermomyces (p = 0.009158) were decreased. Combining 
the results of Welch’s t test and Wilcoxon rank sum test, Candida albicans (C. albicans) was significantly elevated 
in GC. The species richness Krona pie chart further revealed that C. albicans occupied 22% and classified GC 
from the control with an area under the receiver operating curve (AUC) of 0.743. Random forest analysis also 
confirmed that C. albicans could serve as a biomarker with a certain degree of accuracy. Moreover, compared 
with that of the control, the alpha diversity index was significantly reduced in the GC group. The Jaccard 
distance index and the Bray abundance index of the PCoA clarified separate clusters between the GC and 
control groups at the species level (p = 0.00051). Adonis (PERMANOVA) analysis and ANOVA showed that 
there were significant differences in fungal structure among groups (p = 0.001). Finally, FUNGuild functional 
classification predicted that saprotrophs were the most abundant taxa in the GC group. 
Conclusions: This study revealed GC-associated mycobiome imbalance characterized by an altered fungal 
composition and ecology and demonstrated that C. albicans can be a fungal biomarker for GC. With the 
significant increase of C. albicans in GC, the abundance of Fusicolla acetilerea, Arcopilus aureus, Fusicolla 
aquaeductuum were increased, while Candida glabrata, Aspergillus montevidensis, Saitozyma podzolica and 
Penicillium arenicola were obviously decreased. In addition, C. albicans may mediate GC by reducing the diversity 
and richness of fungi in the stomach, contributing to the pathogenesis of GC. 
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Introduction 
Gastric cancer (GC) is the fourth most common 

malignancy and one of the main causes of 
cancer-related deaths worldwide [1]. The majority of 
GC cases are the intestinal type of noncardia gastric 
cancer, which undergoes a predictable histological 
progression from atrophic gastritis (AG) to intestinal 
metaplasia (IM) and eventually to GC [2]. Initially, 
Helicobacter pylori (H. pylori) infection causes 
inflammation of the gastric mucosa and destruction of 
related hydrochloric acid secreting glands, leading to 
AG [3]. AG is a chronic inflamed, hypochloremic 
state, which may cause GC. Although it is known that 
H. pylori infection contributes to this cascade, only 
approximately 1-3% of infected individuals 
subsequently develop GC [4, 5]. Some host-related 
factors mentioned in the current research, including 
age, smoking status, genetic susceptibility and 
environmental factors, such as consumption of a 
high-salt diet and smoked foods containing nitrates, 
as well as microbial infections, have been shown to 
contribute to gastric carcinogenesis [6]. However, the 
relationship between gastric microbial components 
(such as fungi) other than H. pylori and GC has not 
been fully explored. 

Over the past decade, due to the difficulty in 
culturing the commensal microorganisms that reside 
in the stomach, compared with intestinal microbiome, 
gastric microbiome studies are few, with only recent 
increases in studied on this topic [7]. In recent years, 
combined with advances in PCR techniques and 
metagenomics, the robust microbiome of the stomach 
has attracted extensive attention [8]. Most of the 
research efforts on the microbiome have focused on 
characterizing bacteria in healthy and diseased states, 
while the relatively low abundance of nonbacterial 
components has been neglected because of various 
technical challenges ranging from sample preparation 
to inadequate reference databases. Studies have 
provided evidence that bacteria, mainly the phyla 
Proteobacteria, Firmicutes, Actinobacteria and 
Fusobacteria [9, 10], can be regularly detected in gastric 
biopsies with gastric microbial imbalance associated 
with GC. Although H. pylori is still the main risk factor 
for histological changes, the chance of evolving GC 
after infection is not high, indicating that the presence 
of other components plays a key role in the 
development of GC. 

With the advancement of high-throughput 
sequencing technology, sequencing methods provide 
access to the gastric mycobiome. Genomic 
equivalence estimates that the fungal composition of 
the mammalian microbiota comprises less than 1% of 
all commensal microbial species, but fungi are 
significantly larger than bacteria in cell size and 

possess specialized metabolic gene clusters in 
response to specific ecological needs. Emerging 
research has revealed that fungi play a stable role in 
the development and maintenance of the host 
immune system and can be altered in various diseases 
[11, 12]. The latest Nature journal reports that fungi, 
like bacteria, can also be transferred from the intestine 
to the pancreas, and related changes in the fungal 
microbiome promote pancreatic oncogenesis [13]. 
With the discovery of the role for gut microbiota 
dysbiosis in colorectal, oral, and pancreatic 
carcinogenesis, it is necessary to conduct further 
studies regarding the role of mycobiome as a potential 
prognostic tool for early diagnosis of cancer [14]. 
Additionally, growing attention towards the 
characterization of mycobiome may contribute to 
improving the efficiency of therapeutic methods used 
to modulate the composition and activity of intestinal 
microbiota [14]. Thus, the dynamic exploration of the 
changes in the composition of gastric fungi in the 
progression from health to GC not only provides 
direction for future high-throughput fungal 
sequencing research on tumors but is also essential for 
further investigating the mechanisms of gastric 
carcinogenesis other than H. pylori. 

In this study, we characterized fungal 
compositional and ecological changes by analyzing 
metagenomic sequences in cancer lesions and 
adjacent noncancerous tissues of 45 patients with GC. 
C. albicans was also discovered as a fungal indicator 
for GC. For the first time, we used ITS sequencing to 
demonstrate the importance of fungi in the 
pathogenesis of GC, providing a theoretical scientific 
basis for the development of potential prevention and 
treatment strategies. 

Results 
Gastric fungal imbalance is associated with GC 

We evaluated 90 samples from 45 pairs of 
patients and divided them into a GC group and a 
control group (adjacent noncancerous tissue) for 
comparison. We also analyzed the clinical 
characteristics closely related to GC and found no 
significant differences. The detailed characteristics of 
the patients are shown in Table S1. We first assessed 
and compared the fungal composition in the 
specimens. The PCA showed that the GC and control 
groups aggregated separately, revealing that the 
gastric mucosal fungal community discriminated GC 
and the control into two significantly distinct groups. 
The GC group exhibited more unique fungal profiles 
than the control group (Figure 1A, Table S2). To 
clarify the OTU crossover between different groups, 
we used a Venn diagram to indicate the differences 
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among the groups according to OTU abundance. We 
found that both groups shared a total OTU abundance 
of 207. Simultaneously, the GC group showed a lower 
OTU abundance than the control group (Figure 1B). 
Meanwhile, we also obtained 10 healthy samples. We 
didn’t find significant difference between healthy 
individuals and the adjacent noncancerous tissues 
(Figure S1). Besides, when we added the 10 healthy 
samples to the 45 adjacent non-cancerous tissues, the 
results of 55 non-cancerous specimens compared to 45 
GC samples are basically the same as the comparing 
results between 45 pairs (Figure S2). Taking into 
account the rigorous comparision of the experiment 
and the statistical difference, we finally show the 
results of 45 pairs of cancer and adjacent 
noncancerous samples for the further analysis. Based 
on these OTU clustering results, it is suggested that 
alterations in stomach fungal composition may be 
associated with gastric carcinogenesis. 

 

 
Figure 1. Classification and distribution of fungi in the stomachs of gastric 
cancer (GC) patients. (A) Through the principal component analysis (PCA) 
dynamic display, GC (n=45) and control (n=45) samples showed clustering 
distributions. PC1 and PC2 represent the first two main components, and they reflect 
the contribution to the sample difference, expressed as a percentage. (B) Based on 
the OTU abundance, Venn diagram analysis was performed. Unique OTUs between 
the GC (orange) and control (blue) groups was found as well as common OTUs 
(lightcyan) between the two groups. 

 

Taxonomic coverage and alterations of fungi in 
GC 

For the distribution of fungal taxa, in both the 
GC and control groups, the phylum Ascomycota was 

the dominant mycoflora, and Basidiomycota was 
considered to be the second most abundant phylum 
(Figure 2A). The corresponding species abundance 
heat map is shown in Figure 2B. We further analyzed 
the differences at the lower taxonomic level of class, 
finding a significant depletion of Eurotiomycetes, 
Agaricomycetes, Tremellomycetes, Microbotryomycetes 
and Mortierellomycetes and enrichment of 
Saccharomycetes and Dothideomycetes in the GC group 
compared with the control group (Figure 2C). At the 
family level, we found 17 fungi with significant 
differences (Table S3), so we only showed data with a 
P value less than 0.01. Pseudeurotiaceae, 
Trimorphomycetaceae, Chaetomiaceae and Aspergillaceae 
were significantly decreased in the GC group, while 
Saccharomycetales_fam_Incertae_sedis and Pleosporaceae 
were increased, compared to the control (Figure 2D). 
Furthermore, at the genus level, there were 15 
different fungi between the two groups (Table S4); 2 
fungal genera were enriched in the GC group, 
including Candida (p = 0.000246) and Alternaria (p = 
0.00341), while Saitozyma (p = 0.002324) and 
Thermomyces (p = 0.009158) were decreased, compared 
to the control (Figure 2E). 

Candida albicans as a fungal indicator species 
for GC 

To better identify fungal taxa with value as 
potential GC indicators, we evaluated fungal 
alterations at the species level. We initially used 
Welch’s t test and found that there were 13 species 
with significant differences in the mean abundance 
when comparing the two groups (Table S5). Then, the 
Wilcoxon rank sum test was applied to determine 
whether the median species abundance was 
statistically significant, and we confirmed that 59 
species had significant differences between the two 
groups (Table S6). The species with higher contents 
and greater than two-fold changes in abundance were 
selected for the next analysis. 

With the Welch’s t test, C. albicans (p = 0.000015) 
and Fusicolla acetilerea (p = 0.01691) were increased, 
while Aspergillus montevidensis (p = 0.001437), 
Saitozyma podzolica (p = 0.002324) and Penicillium 
arenicola (p = 0.00722) were obviously decreased in the 
GC group (Figure 3A). With the Wilcoxon rank sum 
test, the abundance of C. albicans (p = 0.000072), 
Arcopilus aureus (p = 0.040759) and Fusicolla 
aquaeductuum (p = 0.026626) was higher in the GC 
group, while Candida glabrata (p = 0.014443) and 
Aspergillus montevidensis (p = 0.000586) were less 
abundant, compared to the control (Figure 3B). These 
results demonstrated that C. albicans was significantly 
elevated in the GC group (p < 0.0001). Next, we 
dynamically displayed the composition of species at 
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different classification levels through the species 
composition pie chart and found that the abundance 
of C. albicans at the species level accounted for 22% 
(Figure 3C, Table S7). We evaluated the accuracy 
based on the ROC curve and observed an AUC value 
of 0.743 (Figure 3D). Random forest analysis was used 
to screen potential indicator species, and the values of 
the Gini index (Figure 4A) and the mean decrease in 
accuracy (Figure 4B) were the largest for C. albicans. 
Combined with the indicator analysis, we 
comprehensively considered the strong indicator 
ability of C. albicans among the groups (Figure 4C). 
These results all indicated that C. albicans had an 
obvious effect in distinguishing GC and non-GC 
tissues and can be used as a biomarker with a certain 

degree of accuracy. 

Altered fungal microbiota diversity in GC 
Next, we conducted a diversity analysis to 

further understand the species richness and 
microbiome structure among the groups. Alpha 
diversity indexes (Chao1, ACE, Sobs, Shannon, 
Simpson and Good’s Coverage) were significantly 
reduced in the GC group compared with those of the 
control (Figure S3, Table S8). Briefly, we measured 
fungal alpha diversities and determined whether, 
through a t test (Figure 5A-E) or rank sum test, five 
indexes, namely, the Chao1, ACE, Sobs, Shannon and 
Simpson indexes, were significantly different between 
the GC and control groups (p < 0.05) (Table 1). 

 

 
Figure 2. Changes in the fungal composition in the stomachs of gastric cancer (GC) patients. (A) Relative abundance of dominant gastric fungal phyla in the GC and 
control groups. The dominant phyla were Ascomycota and Basidiomycota in both groups. (B) The corresponding heatmap also shows changes in the fungal phyla in the GC and 
control groups. Differences in fungal composition and abundance between GC (n=45) and the control (n=45) were detected using Welch’s t test. The variation in the relative 
abundance of species represented in different groups was demonstrated graphically. Differences in OTUs appear in the left rows, and the corresponding P values are shown in 
the right rows. (C) Differentially abundant fungal classes between the GC and control groups. OTUs and taxa differences are shown with p-values less than 0.05. Differentially 
abundant fungal families (D) or genera (E) between the GC and control groups. OTUs and taxa differences are shown with p-values less than 0.01. 
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Figure 3. Candida albicans as an indicator fungus for GC. Differences in fungal species abundance between the GC (n=45) and control (n=45) groups were detected using 
Welch's t test (A) or Wilcoxon rank sum test (B), and Candida albicans was significantly elevated in the GC group (p<0.0001). (C) Species annotation was performed based on 
the sequence information of the OTUs, a Krona pie chart was established at the species level, and the absolute abundance of C. albicans accounted for 22%. (D) The markers 
achieved an area under the receiver operating characteristic curve (AUC) of 0.743 for the classification of the GC group from the control group. 

 
We used PCoA to analyze two classic beta 

diversity indexes, the Jaccard distance index (Figure 
5F) and the Bray abundance index (Figure 5G), and 
confirmed separate clusters for the GC and control 
groups at the species level. To overcome the 
shortcomings of linear models (PCA, PCoA) and 
better reflect the nonlinear structure, we evaluated the 
accuracy of the model through NMDS stress values. 
We ensured the reliability of the model, confirming 
that the stress values of the Jaccard and Bray indexes 

were less than 0.1 (Figure 5H). The significant 
difference of the two indexes between groups was 
shown by the Wilcoxon rank sum test at the genus 
level (p = 0.00051, Figure 5I-J). We then evaluated and 
verified the fungal composition in our groups. Both 
Adonis (PERMANOVA) analysis (p = 0.001) and the 
ANOSIM test (Figure 5K) revealed that there were 
significant differences in fungal structure between the 
GC and control groups. Combining the two diversity 
index results, our analysis suggested that with gastric 
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carcinogenesis, the richness of the related fungal 
composition decreases, and the structure of the fungal 
community is quite different. 

Ecological guilds of sampled taxa 
Based on the OTU abundance, we used 

FUNGuild to perform functional classification 
prediction. The fungal taxa were grouped into 83 
ecological guilds (Table S9), and top ten categories are 
displayed here. The most diverse guild was undefined 
saprotrophs (Figure S4A). In addition, trophic mode 
divided fungal taxa into 9 types (Table S10), of which 
the most diverse type was saprotrophs (Figure S4B). 
In particular, heatmaps were drawn to describe the 
functional predictions under the two analytical 
methods, as shown in Figure 6A and Figure 6B, 
respectively. Thus, our analyses showed a symbiotic 
ecological relationship in the stomach, which is 

important for the homeostasis of gastric fungi, while 
fungal imbalance ultimately indicates the negative 
effects of gastric carcinogenesis. 

Discussion 
Gastric cancer causes one of the major types of 

digestive tract tumor worldwide [1]. After the 
continuous development of high-throughput 
sequencing technology, research on the correlation 
between gastric microbiome (other than H. pylori) and 
GC has gradually emerged. In this study, we 
described the fungal spectrum associated with GC, 
which has not been explained to date; the focus was 
on gastric fungal imbalance associated with GC. 
Compared with fecal samples, the colonization 
performance of tissue samples can better demonstrate 
the dynamic changes in the surrounding environment 
for gastric carcinogenesis. Therefore, we analyzed the 

 

 
Figure 4. Candida albicans has a strong indication ability. Using the random forest algorithm to calculate the contribution of C. albicans to the grouping difference at the 
species level, it is found that the Gini index (A) and average accuracy (B) values were both largest for C. albicans. (C) The indicator analysis considers the frequency and abundance 
of C. albicans between groups. 
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ITS metagenome sequences of cancer lesions and 
adjacent noncancerous tissues to investigate the 
composition and ecological alterations of fungi 
associated with GC and identify fungal indicators. To 
ensure that the most effective data were clustered into 
OTUs, we filtered low-quality reads, and assembled 
and refiltered the data. After obtaining the OTUs, 
under the condition that the GC and control groups 
were effectively grouped, we carried out species 
identifications and alpha and beta diversity analysis, 
and compared differences between groups. C. albicans 

was identified for the first time as a key fungus that 
can be used to distinguish between GC and control 
groups. We also combined FUNGuild functional 
annotation to study fungal functions from other 
ecological perspectives. For the first time, we showed 
the characteristics of the fungal microbiome in the 
stomach tissues of GC patients, demonstrating 
imbalance of the fungi in the GC ecosystem and 
proving that C. albicans can be used as a biomarker 
with a certain degree of accuracy. 

 

 
Figure 5. Changes in fungal microbiome diversity in GC. Hypothesis tests of the alpha diversity index through Welch's t test, Chao1 (A), ACE (B), Sobs (C), Shannon (D) 
and Simpson (E) diversity indexes between the GC (n=45) and control (n=45) groups confirmed that there were significant differences in species diversity between groups. 
Principal coordinate analysis (PCoA) of Jaccard distances (F) or Bray-Curtis distances (G) showed the stratification of GC (n=45) from control (n=45) samples by their fungal 
compositional profiles. (H) Nonmetric multidimensional scaling (NMDS) analysis of the fungal compositional profiles stratified GC (n=45) from control (n=45) samples. A stress 
value less than 0.1 indicates that the model grouping is reliable. At the genus level, the Wilcoxon rank sum test was used to judge the significant difference between the 
Bray-Curtis distance (I) and Jaccard distance (J), and the degree of difference in fungal microbiome structure within the groups was compared. (K) Based on the distance index 
ranking, ANOSIM (analysis of similarities) confirmed that the distance between groups was significantly greater than the distance within groups, indicating that the microbiome 
structure of different groups was significantly different. **P<0.01, ***P<0.001, ****P<0.0001. 
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Figure 6. Saprotrophs are the most common functional category associated with GC. Based on the OTU abundance, fungal functional annotation was carried out 
using FUNGuild. Using functional groups (guilds), fungi were divided into categories based on their absorption and utilization of environmental resources. The three major 
categories and twelve subcategories of fungi distinguished the GC (n=45) and control groups (n=45) at the guild (A) and trophic (B) levels. 

 

Table 1. Difference of alpha diversity index between the GC and 
control groups 

Group Testing method Index P value 
GC-VS-Control T-test Sobs 0.001267 

Shannon 0.000003 
Simpson 0.000156 
Chao1 0.001763 
Ace 0.006286 

Wilcoxon Sobs 0.011800 
Shannon 0.000001 
Simpson 0.000001 
Chao1 0.025431 
Ace 0.044121 

 
We clarified specific fungal composition changes 

in GC. Overall, the GC group showed a lower OTU 

abundance. At the phylum level, Ascomycota was the 
most enriched in the GC group compared with the 
control group, while Basidiomycota was less enriched. 
We further analyzed the differences at lower 
taxonomic levels and finally, at the species level, 
confirmed that C. albicans, Fusicolla acetilerea, Arcopilus 
aureus and Fusicolla aquaeductuum were excessively 
colonized in the GC tissue. At present, C. albicans is 
the most researched of these organisms with regard to 
its role in various diseases. This species normally 
exists in the body and does not cause damage. 
However, when the host’s defense capacity is 
weakened, C. albicans could cause disease. Therefore, 
C. albicans is recognized as an opportunistic pathogen. 
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Since immunosuppression caused by cancer 
chemotherapy promotes C. albicans infection, the 
relationship between C. albicans and cancer 
development or progression has been widely 
reported. For example, for hematological 
malignancies or solid tumors, up to 35% of patients 
with underlying disease have candidiasis, and the 
most common underlying disease among patients 
with candidiasis is also solid tumor [15]. C. albicans 
can produce carcinogenic nitrosamines, which can 
cause abnormal proliferative changes in oral epithelial 
cancer [16]. The risk of malignant transformation of 
oral leukoplakia is higher than that of oral lichenoid 
lesions, and C. albicans strains isolated from patients 
can produce more carcinogenic acetaldehyde in 
ethanol [17]. The role of C. albicans in tumor adhesion 
and metastasis has been associated with TNF-α and 
IL-18 [18-20]. Recently, Bertolini et al. confirmed that 
C. albicans induced mucosal bacterial dysbiosis and 
promoted invasive infection [21]. Kazmierczak- 
Siedlecka et al. found that C. albicans is the major gut 
microbe causing inflammation and consequently 
contributing to oral cancer development [14]. 

Notably, we first confirmed the indicative role of 
C. albicans in GC. In our study, compared with the 
control, the species richness of C. albicans occupied 
22% in the GC group. Both the Welch's t test and 
Wilcoxon rank sum test confirmed that C. albicans was 
significantly more abundant in the GC group than the 
control group. In addition, the ROC curve showed 
that the AUC value of C. albicans was 0.743. Combined 
with the results of the Gini index and the mean 
decrease in accuracy, all results indicated that C. 
albicans could be used as a biomarker with a certain 
degree of accuracy. Routine detection methods for C. 
albicans include blood culture, microscopic 
examination, and biochemical identification [22, 23], 
but clinically these tests delay antifungal treatment. 
To make up for the shortcomings of time-consuming 
and low sensitivity of conventional examinations, the 
current molecular biology techniques for detecting 
fungi have seen a leap in quality and are gradually 
being applied in clinical practice, including 
polimerase chain reaction (PCR) [24], real-time PCR 
[25], mass spectrometry [26], immunoassay [27], 
Polymerase spiral reaction (PSR) [28] and 18S rDNA 
high-throughput screening [29], with the advantages 
of higher sensitivity, faster processing ( < 1 working 
day) and prospect for a high degree of laboratory 
automation, these technologies provide an attractive 
alternative for the identification and quantitation of C. 
albicans rDNA in pure cultures and blood samples. 
Aykut et al. stated that identifying the species most 
associated with cancer may guide future attempts to 
use targeted antifungal drugs to slow tumor growth 

and avoid side effects and reported Malassezia as a 
pathogenic fungus associated with pancreatic cancer 
that promotes pancreatic oncogenesis via activation of 
MBL [13].Our discovery that C. albicans may have 
contributed to the pathogenesis of GC not only lays a 
scientific foundation for the exploration of innovative 
therapies for GC but also provides a new idea for 
treating specific patients by adjusting their intestinal 
microbial microbiome as an adjuvant therapy or 
developing immunotherapies for targeted control of 
fungal infections, which is worthy of further study. 
Similar with the gut bacteria, we believe that the 
composition of gastric mycobiome is associated with 
the ethnicity or region in a certain degree. Thus, more 
studies from different countries or regions are 
required to better describe the fungal microbiome of 
stomach. 

By diversity analysis, compared with the control 
group, the GC group showed a decrease in species 
richness, diversity and uniformity. The structure of 
the species microbiome between the groups also 
showed a significant change. Due to the current lack 
of fungal genomic data, we integrated published 
article data and used FUNGuild to predict fungal 
functions from other ecological perspectives based on 
OTU abundance. The guild classification revealed that 
the most diverse guilds were undefined saprotrophs. 
Simultaneously, the trophic mode implied that the 
most diverse fungal type was the saprotrophs. Our 
analysis clarified the importance of fungal 
homeostasis in the stomach and suggests that fungal 
imbalance is associated with the occurrence and 
development of GC. 

Conclusions 
In conclusion, compared with most studies 

focusing on the bacterial spectrum associated with 
GC, our study described the gastric fungal imbalance 
in gastric carcinogenesis for the first time and showed 
that C. albicans can be used as a fungal marker for GC. 
In addition, C. albicans may possibly mediate GC by 
reducing the diversity and richness of fungi in the 
stomach, contributing to the pathogenesis of GC. We 
also revealed the importance of homeostasis for 
gastric fungi. Additional analysis investigating the 
potential role of C. albicans in gastric carcinogenesis is 
warranted to delineate its use as a noninvasive 
biomarker for GC diagnosis. 

Materials and Methods 
Sample collection and PCR amplification 

A total of 100 samples were obtained from 45 
pairs of patients diagnosed with GC as well as 10 
healthy individuals (include 7 men and 3 women, 



Theranostics 2021, Vol. 11, Issue 10 
 

 
http://www.thno.org 

4954 

with an average age of 64 years) at the First Affiliated 
Hospital of China Medical University, Shenyang, 
China. Surgical biopsies were obtained from sites of 
cancer lesions and adjacent noncancerous tissues in 
each patient. 

All specimens were stored at -80 °C until DNA 
extraction. In addition, subjects provided informed 
consent for obtaining study specimens, and the study 
was approved by the Clinical Research Ethics 
Committees of the First Affiliated Hospital of China 
Medical University. 

Microbial DNA was extracted using HiPure 
DNA Kits (Magen, Guangzhou, China) according to 
the manufacturer’s protocols. The internal transcribed 
spacer (ITS) of the ITS2 region between the 5.8S and 
28S genes of the ribosomal DNA gene was amplified 
by PCR (94 °C for 2 min, 30 cycles at 98 °C for 10 s, 62 
°C for 30 s, and 68 °C for 30 s, and a final extension at 
68 °C for 5 min) using the fungal-specific primers 
ITS3_KYO2: GATGAAGAACGYAGYRAA and ITS4: 
TCCTCCGCTTATTGATATGC [30]. PCRs were 
performed in triplicate in a 50-μL mixture containing 
5 μL of 10× KOD buffer, 5 μL of 2 mM dNTPs, 3 μL of 
25 mM MgSO4, 1.5 μL of each primer (10 μM), 1 μL of 
KOD polymerase, and 100 ng of template DNA. The 
related PCR reagents used in the experiment were 
from TOYOBO, Japan. 

Metagenomics sequencing 
Amplicons were extracted from 2% agarose gels, 

purified using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) according 
to the manufacturer’s instructions and quantified 
using the ABI StepOnePlus Real-Time PCR System 
(Life Technologies, Foster City, USA). The purified 
amplicons were pooled in equimolar amounts and 
paired-end sequenced (PE250) on an Illumina 
platform according to standard protocols. The raw 
reads were deposited into the NCBI Sequence Read 
Archive (SRA) database. 

Quality control and read assembly 
Raw data containing adapters or low-quality 

reads affect subsequent assembly and analyses. Thus, 
to obtain high-quality clean reads, the raw reads were 
further filtered according to the following rules using 
FASTP [31] (version 0.18.0): reads containing more 
than 10% of unknown nucleotides-(N) and reads with 
less than 50% of bases with a quality value (Q-value) > 
20 were removed. Paired-end clean reads were 
merged as raw tags using FLASH [32] (version 1.2.11) 
with a minimum overlap of 10 bp and a mismatch 
error rate of 2%. 

The noisy sequences of raw tags were filtered 
using the QIIME [33] (version 1.9.1) pipeline based on 

specific filtering conditions [34] to obtain high-quality 
clean tags. The filtering conditions were as follows: 
briefly, raw tags from the first low-quality base site 
where the number of bases in the continuous 
low-quality value (the default quality threshold is <= 
3) reached the set length (the default length is 3) were 
broken. Then, tags whose continuous high-quality 
base length was less than 75% of the tag length were 
filtered. 

OTU and community composition analyses 
The effective tags were clustered into operational 

taxonomic units (OTUs) with at least 97% similarity 
using the UPARSE [35] (version 9.2.64) pipeline. The 
tag sequence with the highest abundance was selected 
as the representative sequence within each cluster. For 
the analyses between groups, Venn diagram-based 
analyses were performed in the R project 
VennDiagram package [36] (version 1.6.16), and an 
upset plot was developed in the R project UpSetR 
package [37] (version 1.3.3) to identify unique and 
common OTUs. 

The representative sequences were classified into 
organisms by a naive Bayesian model using the RDP 
classifier [38] (version 2.2) based on the ITS2 [39] 
database (version update_2015), with a confidence 
threshold value of 0.8. The abundance statistics of 
each taxa were visualized using Krona [40] (version 
2.6). The stacked bar plot of the community 
composition was visualized in the R project ggplot2 
package [41] (version 2.2.1). Circular layout 
representations of species abundance were graphed 
using Circos [42] (version 0.69-3). A heatmap of 
species abundance was plotted using the pheatmap 
package (version 1.0.12) [43] in the R project. 

Statistical analysis 
The random forest package [44] (version 4.6.12), 

pROC package [45] (version 1.10.0) and labdsv 
package [46] (version 2.0-1) were used in the R project. 
A ternary plot of species abundance was plotted using 
the R ggtern package [47] (version 3.1.0). Chao1, 
Simpson and all other alpha diversity indexes were 
calculated in QIIME [33] (version 1.9.1). Comparisons 
of the alpha indexes between groups were performed 
with Welch’s t-test and Wilcoxon rank test using the R 
project [48] (version 2.5.3). 

The R project [48] (version 2.5.3) was also used to 
analyze the data based on multivariate statistical 
techniques, including Jaccard and Bray-Curtis 
distance matrixes, principal component analysis 
(PCA), principal coordinate analysis (PCoA) and 
nonmetric multidimensional scaling (NMDS) of 
weighted UniFrac distances, and the results were 
plotted in the R project ggplot2 package [41] (version 
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2.2.1). Welch’s t-test, Wilcoxon rank test, Adonis (also 
called PERMANOVA) and ANOSIM test were 
performed using the R project, and the functional 
groups (guilds) of the fungi were inferred using 
FUNGuild [49] (version 1.0). 
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