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Abstract 

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new oral drugs for the therapy of patients with 
type 2 diabetes mellitus (T2DM). Research in the past decade has shown that drugs of the SGLT2i class, 
such as empagliflozin, canagliflozin, and dapagliflozin, have pleiotropic effects in preventing cardiovascular 
diseases beyond their favorable impact on hyperglycemia. Of clinical relevance, recent landmark 
cardiovascular outcome trials have demonstrated that SGLT2i reduce major adverse cardiovascular 
events, hospitalization for heart failure, and cardiovascular death in T2DM patients with/without 
cardiovascular diseases (including atherosclerotic cardiovascular diseases and various types of heart 
failure). The major pharmacological action of SGLT2i is through inhibiting glucose re-absorption in the 
kidney and thus promoting glucose excretion. Studies in experimental models of atherosclerosis have 
shown that SGLT2i ameliorate the progression of atherosclerosis by mechanisms including inhibition of 
vascular inflammation, reduction in oxidative stress, reversing endothelial dysfunction, reducing foam cell 
formation and preventing platelet activation. Here, we summarize the anti-atherosclerotic actions and 
mechanisms of action of SGLT2i, with an aim to emphasize the clinical utility of this class of agents in 
preventing the insidious cardiovascular complications accompanying diabetes. 
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Introduction 
Atherosclerosis is the major potential pathology 

of most cardiovascular disease (CVD), including 
myocardial infarction (MI), heart failure (HF), stroke, 
and peripheral arterial disease [1]. CVDs are the 
leading cause of morbidity and mortality globally [1, 
2]. In patients with diabetes, CVDs are the majority 
cause of premature mortality. Atherosclerosis is a 
slow-progressing inflammatory disease with a 
complex biochemical and cellular etiology 
characterized by the deposition of modified lipids in 

the arteries, the development of lipid-laden 
atherosclerotic plaques and ultimately the rupture of 
the plaque which precipitates the lethal clinical event 
being a heart attack or stroke [3, 4]. The conventional 
risk factors for atherosclerosis and its thrombotic 
complications include hypertension, obesity, 
smoking, dyslipidemia, depression, sedentary 
lifestyles and diabetes [1]. In particular, it is difficult 
to separate the effects of diabetes from those of other 
atherogenic factors. Patients with type 2 diabetes 

 
Ivyspring  

International Publisher 



Theranostics 2021, Vol. 11, Issue 9 
 

 
http://www.thno.org 

4503 

mellitus (T2DM) have a higher risk of atherosclerosis 
and other complications compared with those without 
diabetes, and ~80 percent of mortality in individuals 
with T2DM is due to cardiovascular events [5-7]. 

Sodium-glucose cotransporter 2 inhibitors 
(SGLT2i) have been developed as hypoglycemic 
drugs that target SGLT2, the major glucose 
transporter in the kidney responsible for about 90 
percent of glucose reabsorption from primary urine 
[8]. Recent evidence has suggested the use of SGLT2i 
as an adjunct to standard treatment to improve 
clinically relevant renal and cardiovascular outcomes 
in patients with T2DM [6, 9]. SGLT2i can reduce 
glycosylated hemoglobin, body weight, blood 
pressure, plasma volume, increase in erythrocyte 
mass, and improve cardiac energy metabolism, which 
imposes a positive influence on cardiovascular risk 
factors and outcomes [5, 10-12]. In light of the 
important clinical benefits of SGLT2i in improving 
cardiovascular outcomes, we provide a 
comprehensive and insightful overview of the 
pharmacological effects and underlying mechanisms 
of action of SGLT2i in CVD prevention, with a focus 
on mechanism addressing the accelerated 
atherosclerosis associated with diabetes. 

The pharmacological basis of SGLT2i 
The SGLT2 protein, encoded by SLC5A2, is a 

member of the sodium-glucose cotransporter family 
and it undertakes the function of transporting glucose 
from the renal tubule lumen to renal tubule epithelial 
cells [13]. SGLT2 is abundantly expressed in the 
anterior part of the proximal tubule [14, 15]. Mining of 
GTEx database indicated that SGLT2 and SGLT1 are 
expressed in the kidney and intestine, respectively 
(Figure S1). 

Phlorizin, the first natural SGLT2i, was isolated 
from the root bark of apple trees in 1835. Due to its 
low water solubility and poor absorption in the 
gastrointestinal tract, it was not developed as an 
anti-hyperglycemic agent [16]. T-1095, a phlorizin 
derivative, overcomes some shortcomings of 
phlorizin, but could not go through clinical 
development [17]. Later, c-aryl glycosides derived 
from the basic structure of phlorizin were 
subsequently developed, such as dapagliflozin and 
canagliflozin [18, 19]. In addition to structural 
differences, they also have variable selectivity to 
SGLT1 and SGLT2 (Table 1) [20]. 

 

Table 1. Approved SGLT2 inhibitors in clinics 

SGLT2i Pubchem CID Recommended starting dose 
(once daily) 

Structure selectivity 
(SGLT2:SGLT1) 

Empagliflozin 11949646 10 mg 

 

~ 2700:1 

Dapagliflozin 9887712 5 mg 

 

~ 1200:1 

Canagliflozin 24812758 100 mg 

 

~ 414:1 

Ipragliflozin 10453870 50 mg 

  

~ 860:1 

Tofogliflozin 46908929 20 mg 

 

~ 3000:1 

Luseogliflozin 11988953 2.5 mg 

 

~ 1770:1 
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Ertugliflozin 44814423 5 mg 

 

~ 2200:1 

 

Table 2. Completed clinical trials of SGLT2i in patients with T2DM, CVD or both 

Drugs Trials Patients Median 
follow-up 

Outcomes References 
3-Point MACE CV Death HHF CV Death or HHF 

Empagliflozin EMPA-REG 7,020 T2DM patients with 
CVD. 

3.1 years 0.86 (0.74–0.99) * 0.62 (0.49–0.77) * 0.65 (0.50–0.85) * 0.66 (0.55–0.79) * [9] 

EMPEROR-Reduced 3,600 patients with 
HF and reduced ejection 
fraction (≤40%). 

16 months —— —— 0.70 (0.58–0.85) * 0.75 (0.65–0.86) * [30] 

Canagliflozin CANVAS 10,142 T2DM patients with 
CVD or CV risk factors. 

2.4 years 0.86 (0.75–0.97) * 0.87 (0.72–1.06) 0.67 (0.52–0.87) * —— [33] 

CREDENCE 4,401 T2DM patients with 
CKD. 

2.6 years 0.80 (0.67–0.95) * —— 0.61 (0.47–0.80) * —— [35] 

Dapagliflozin DECLARE-TIMI 58 17,160 T2DM patients with 
ASCVD or CV risk factors. 

4.2 years 0.93 (0.84–1.03) 0.98 (0.82–1.17) 0.73 (0.61–0.88) * 0.83 (0.73–0.95) [36] 

DAPA - HF 4,744 patients with HF and 
reduced ejection fraction. 

18.2 
months 

—— 0.82 (0.69–0.98) 0.70 (0.59–0.83) 0.75 (0.65–0.85) * [38] 

Ertugliflozin VERTIS-CV 8,246 T2DM patients with 
ASCVD. 

3.5 years 0.97 (0.85-1.11) 0.92 (0.77-1.11) 0.70 (0.54-0.90) —— [40] 

ASCVD: atherosclerotic cardiovascular diseases; CKD: chronic kidney disease; CV: cardiovascular; CVD: cardiovascular diseases; HF: heart failure; HHF: hospitalization for 
heart failure; MACE: major adverse cardiovascular events; T2DM: type 2 diabetes mellitus; "*" statistically significant difference. 

 
 
The expression of SGLT2 is up-regulated, and 

the urinary glucose excretion threshold is also higher 
in patients with hyperglycemia compared with 
healthy humans [21]. Inhibition of SGLT2 reduces 
glucose reabsorption, promotes urinary glucose 
excretion, and produces negative caloric balance, 
which leads to weight loss [22]. SGLT2i, including 
canagliflozin, dapagliflozin and empagliflozin, 
directly target SGLT2 instead of insulin secretion and 
insulin action as compared with other 
anti-hyperglycemic agents [13]. SGLT2i can thus be 
used on top of other oral glucose-lowering drugs and 
insulin to exert additive anti-hyperglycemic effects 
[14]. 

At present, there are four SGLT2i (empagliflozin, 
canagliflozin, dapagliflozin, ertugliflozin) approved 
by the US Food and Drug Administration (FDA) and 
the European Union [23, 24]. Some other drugs in the 
class like ipragliflozin, tofogliflozin and luseogliflozin 
are approved in Japan [25-27]. 

Effects of SGLT2 inhibitors in CVD: 
clinical evidence 

Many clinical studies have consistently shown 
that SGLT2i have multiple cardioprotective functions 
which manifest as reduced CVD (Table 2). The 
landmark EMPA-REG OUTCOME study was the first 
to offer convincing evidence that anti-diabetic drugs 
can reduce the occurrence of cardiovascular events. 
The trial randomly selected 7,020 diabetic patients 
with CVD. 3-point MACE (major adverse 
cardiovascular events, including death from 
cardiovascular causes, nonfatal MI, and nonfatal 

stroke), the primary outcome, was reduced by 14%. 
Hospitalization for heart failure (HHF) was reduced 
by 35% [9]. However, the incidence of MI or stroke 
was not significant. The primary outcome is largely 
due to the reduction in death from cardiovascular 
causes [9]. Subsequent experiments on renal effects of 
empagliflozin treatment also demonstrated that, 
compared with placebo, empagliflozin treatment 
group showed a slower progression of renal disease 
[28]. Moreover, at 2020 at the European Society of 
Cardiology (ESC) annual meeting, the results of the 
EMPEROR-Reduced study, which extended the 
benefits of SGLT2i to patients with more advanced 
and severe chronic HF. The combined risk of HHF or 
cardiovascular death in patients receiving 
empagliflozin was 25% lower than placebo. In 
addition, empagliflozin-treated patients had a lower 
risk of serious renal outcomes [29, 30]. In secondary 
analysis of the EMPEROR-Reduced trial indicated 
that patients treated with empagliflozin had 
improvement in health status [31]. The efficacy and 
safety of empagliflozin in patients was not influenced 
by basal therapy with a neprilysin inhibitor [32]. 
Combined treatment with both drugs may produce 
additional benefits [32]. 

Similar to EMPA-REG OUTCOME study, the 
CANVAS program showed a statistically significant 
reduction in 3-point MACE and HHF in the 
canagliflozin-treated patients [33]. However, no 
benefit for non-fatal MI and stroke was observed. The 
composite renal endpoints were reduced by 27% for 
patients with canagliflozin therapy [33]. Similarly, the 
CREDENCE trial analyzed cardiovascular, renal, and 
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safety outcomes and showed that canagliflozin 
treatment reduced 3-point MACE and the stand-alone 
endpoint of HHF, as well as the risk of the primary 
outcome (end-stage kidney disease, doubling of 
serum creatinine, renal or cardiovascular death). This 
study also supported the concept that drugs of the 
SGLT2i class have clinical efficacy regardless of 
patients’ HbA1c levels [34, 35]. 

The DECLARE-TIMI 58 trial indicated that 
treatment with dapagliflozin did not impact the 
3-point MACE but significantly reduced the risk of 
HHF. Dapagliflozin also reduced the composite renal 
endpoint by 24 % [36, 37]. Another trial, DAPA-HF, 
has shown that among patients with HF and reduced 
ejection fraction, patients receiving dapagliflozin had 
a lower risk of exacerbating HF or cardiovascular 
death than patients receiving placebo, regardless of 
whether they have diabetes or not [38]. A post hoc 
analysis indicated that SGLT2i acted on background 
therapies of HF and reduced ejection fraction in a 
mechanistically-independent and complementary 
manner [39]. 

The VERTIS-CV study included 8,246 T2DM 
patients with confirmed disorder in coronary artery, 
cerebral and/or peripheral arterial system. The 
incidences of 3-point MACE in the ertugliflozin and 
placebo groups were similar, showing no significant 
difference, but ertugliflozin significantly reduced the 
risk of HHF [40]. Patients who used SGLT2i had a 
lower risk of ischemic heart disease than those who 
did not use SGLT2i. The decrease in systolic blood 
pressure caused by SGLT2i was partially responsible 
for the results observed [41]. 

Despite the above-mentioned clinical trials 
showing the reduction in cardiovascular events in the 
SGLT2i treated groups (compared to placebo), only 
empagliflozin and canagliflozin had protective effects 
on 3-point MACEs [42]. The favorable clinical 
outcomes are hypothesized to be mainly driven by 
reduction of the rate of HHF. However, some large 
multi-national observational studies in patients with 
T2DM and cardiovascular risk suggested beneficial 
effects of SGLT2i also directed to MI and stroke which 
are events most closely associated with 
atherosclerosis and its clinical sequalae [43, 44]. 

In contrast, another analysis found that glucose- 
lowering drugs including SGLT2i significantly 
reduced the risk of atherosclerotic events but had no 
significant effect on the risk of HF, indicating the need 
for further clinical and basic studies in this exciting 
new area of the therapeutics of diabetes and its CVD 
consequences [45]. 

A meta-analysis of three SGLT2i related clinical 
trials found that the reduction in 3-point MACE was 
not large, and this effect was limited to patients with 

established ASCVD [46]. Also, the UTOPIA trial 
investigated the effects of tofogliflozin in T2DM 
patients without apparent CVD and indicated that 
tofogliflozin treatment did not delay the progression 
of atherosclerosis by monitoring carotid intima-media 
thickness but lowered arterial stiffness by evaluating 
the changes in brachial-ankle pulse wave velocity 
[47-49]. This might be due to limited sample size and 
study duration [47]. Therefore, increasing the sample 
size and research duration may provide some clues 
for whether or not these drugs have an influence on 
the progression of atherosclerosis. 

Effects of SGLT2 inhibitors on 
atherosclerosis: experimental evidence 

Based on the notable cardiovascular benefits 
conferred by SGLT2i, research interest has been 
focused on the study of the anti-atherosclerotic effects 
of SGLT2i in suitable experimental models and 
several SGLT2i have been shown to ameliorate 
atherosclerosis in ApoE-/- mice, Ldlr-/- mice and rabbits 
(Table 3). 

In the ApoE-/- mouse model, canagliflozin 
alleviated atherosclerosis by reducing the expression 
of monocyte chemoattractant protein-1 (MCP-1) and 
vascular cell adhesion molecule-1 (VCAM-1), 
accompanied by decreased levels of total cholesterol, 
triglyceride and glucose, and it also decreased heart 
rate, plaque size, and increased plaque stability [50]. 
Canagliflozin also suppressed lipid synthesis and 
interleukin (IL)-1β levels in ApoE-/- mice [51]. 
Similarly, luseogliflozin treatment inhibited the 
expression of intercellular cell adhesion molecule-1 
(ICAM-1), IL-1β, IL-6, and tumor necrosis factor-α 
(TNF-α) [52]. Luseogliflozin treatment reduced 
macrophage accumulation in perivascular adipose 
tissue and reduced neointimal hyperplasia [53]. 
Ipragliflozin exerted similar actions (suppressed 
macrophage accumulation, reduced fibrosis and 
adipocyte death) [54]. Empagliflozin reduced the 
levels of CD68, MCP-1, ICAM-1, TNF-α and 
nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase subunits and thereby ameliorated 
diabetes-induced endothelial dysfunction [55]. 
Moreover, several studies have indicated that 
empagliflozin increased tissue inhibitor of 
metalloproteinase (TIMP)/matrix metalloproteinase-2 
(MMP-2) ratio and increased collagen content of 
developing plaques, rendering the plaques more 
stable [50, 56]. After empagliflozin treatment, the 
atherosclerotic plaque area was smaller, and the 
inflammatory cell infiltration in adipose tissue was 
reduced [57]. A further study indicated that 
empagliflozin reduced angiotensin II–induced 
neovessel formation and macrophage infiltration in 
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the abdominal aortic aneurysm lesions in ApoE-/- mice 
[58]. In addition, empagliflozin treatment also exerted 
atheroprotection by inhibiting the renin- 
angiotensin-aldosterone system and sympathetic 
activity [59]. In hyperglycemic STZ-diabetic mice, 
empagliflozin also reduced atherosclerotic plaques 
[60]. Another study used ApoE-/- mice as a model of 
non-proteinuric diabetic kidney disease and found 
that empagliflozin treatment inhibited the 
development of aortic atherosclerosis and increased 
ketone body levels [61]. Moreover, dapagliflozin 
treatment attenuated atherosclerosis, reduced 
macrophage infiltration, and enhanced plaque 
stability [62, 63]. Similar results were obtained after 
ipragliflozin treatment [62]. However, a study in 
ApoE-/-Irs2+/- mice indicated that dapagliflozin did not 
protect against the development of atherosclerosis in 
insulin-resistant mice under hypercholesterolemic 

conditions [64]. 
As dyslipidemia is an independent risk factor for 

atherosclerosis [65], it is also important to study how 
glycemic control affects the development of 
atherosclerosis in the presence of hyperlipidemia. 
Effective glycemic control with dapagliflozin not only 
reduced atherosclerosis, but also ameliorated plasma 
lipoprotein profiles in Ldlr-/- mice [66]. The benefits of 
dapagliflozin on atherosclerosis have also been 
demonstrated in experimental animals other than 
mice. For example, in a rabbit model of 
atherosclerosis, dapagliflozin was found to exhibit 
anti-atherosclerotic effects by modulating 
inflammatory responses (decreased expression of 
TNF-α, IL-1β, and IL-6) and macrophage polarization 
(toward M2 macrophages) under non-diabetic 
conditions [67]. 

 

Table 3. Atheroprotective effects and mechanisms of SGLT2i in rodents 

Drugs Animal model Treatment dose and 
duration 

Observations and mechanisms References 

Empagliflozin ApoE−/− mice with HFD containing 0.2% 
cholesterol 

10 mg/kg/day for 10 weeks 
via oral gavage 

atherosclerosis↓, total cholesterol, fasting glucose↓, heart rate 
diastolic, blood pressure↓ , VCAM-1, MCP-1↓ 

[56] 

Empagliflozin ApoE−/− mice with STZ-induced diabetes 
and western type diet 

20 mg/kg/day for 12 or 8 
weeks via oral gavage 

atherosclerosis↓, endothelial dysfunction↓, plasma triglyceride↓, 
CD68, MCP-1, TNF-α, ICAM-1↓, NADPH oxidase subunits ↓, 
vasoconstrictive eicosanoids ↓, prostaglandin E2, thromboxane B2 ↓ 

[55] 

Empagliflozin ApoE−/− mice with western diet containing 
cholesterol 

1 mg/kg or 3 mg/kg for 10 
weeks via oral 

atherosclerosis↓, TNF-α, IL-6, MCP-1, CD68↓, serum amyloid A, 
urinary microalbumin↓ 

[57] 

Empagliflozin Ang II–infused ApoE−/− mice 1 mg/kg/day or 3 
mg/kg/day for 4 weeks via 
oral gavage 

abdominal aortic aneurysm ↓, elastin degradation, neovessel 
formation, macrophage infiltration↓, CCL-2, CCL-5, VEGF↓, MMP-2, 
MMP-9↓, p38 MAPK, NF-κB↓ 

[58] 

Empagliflozin ApoE−/− mice with HFD 30 mg/kg/day for 8 weeks 
via oral gavage 

atherosclerosis↓, endogenous ketone body↑, mTORC1↓ [61] 

Empagliflozin STZ-diabetic mice with injections of 
LDLR and SRB1 antisense 
oligonucleotides and high -cholesterol 
diet (HCD) for 16 weeks 

35 mg/kg/day for 3 weeks 
via drinking water 

atherosclerosis↓, lipid↓, CD68↓ [60] 

Empagliflozin ApoE−/− mice with western diet containing 
0.2 % cholesterol 

10 mg/kg/day for 5 weeks 
via drinking water 

atherosclerosis↓, triglyceride, total cholesterol, LDL↓, the 
renin-angiotensin-aldosterone system and sympathetic activity↓, 
body weight↓ 

[59] 

Dapagliflozin ApoE−/− mice with HFD and STZ-induced 
diabetes 

1.0 mg/kg/day for 12 
weeks via gavage 

atherosclerosis↓, macrophage infiltration↓, smooth muscle cell 
proliferation↓, fasting glucose ↓, cholesterol crystals ↓, IL-1β, IL-18, 
NLRP3, ROS↓, ROS-NLRP3-caspase-1 pathway. 

[62] 

Dapagliflozin ApoE-/-Irs2+/- mice with a high-fat, 
high-cholesterol diet 

3 mg/kg/day for 6 weeks  No effect on circulating inflammatory cells or cytokine level, no 
protection against atherosclerosis. 

[64] 

Dapagliflozin Ldlr−/− mice with STZ- induced diabetes 
and 0.15% cholesterol diet 

25 mg/kg for 4 weeks via 
drinking water 

atherosclerosis↓, plasma glucose, total cholesterol, triglycerides↓, 
lipoprotein clearance↑, HSPG and bile acid pathways. 

[66] 

Dapagliflozin Rabbit with 1% high-cholesterol diet and 
balloon injury in aorta 

1 mg/kg/day for 8 weeks atherosclerosis↓, macrophage infiltration↓, TNF-α, IL-1β, IL-6↓, M2 
macrophages↑ 

[67] 

Canagliflozin ApoE−/− mice with HFD containing 0.2% 
cholesterol 

10 mg/kg/day for 5 weeks 
via oral 

atherosclerosis↓, total cholesterol, triglycerides↓, VCAM‑1, MCP‑1↓, 
TIMP‑1/MMP‑2↑ 

[50] 

Canagliflozin ApoE−/− mice with HFD containing 0.2% 
cholesterol 

30 mg/kg/day for 4 weeks 
via oral gavage  

energy expenditure↑, adiposity↓, liver lipid synthesis↓, IL-1β↓ [51] 

Ipragliflozin wild-type mice with Western-type diet 10 mg/kg/day for 10 weeks 
via drinking water 

macrophages accumulation, fibrosis, and adipocyte death↓ 
monocytes and VSMCs migration↓ 

[54] 

Dapagliflozin or 
Ipragliflozin  

ApoE−/− mice with STZ-induced diabetes 
and atherogenic diet 

1.0 mg/kg/day for 4 weeks 
via drinking water 

atherosclerosis ↓, macrophage infiltration↓, foam cell formation↓, 
HbA1c↓, ABCA1↑ACAT1↓ 

[63] 

Luseogliflozin ApoE−/− mice with NA- and STZ- induced 
diabetes 

dose with maximal 
glucose-lowering efficacy 
for 1 week via diet 

atherosclerosis↓, F4/80, TNFα, IL-1β, IL-6↓, ICAM-1, PECAM-1, 
MMP2, MMP9↓ 

[52] 

Luseogliflozin Wild‑type mice fed with low‑fat diet or 
HFD 

18 mg/kg/day for 25 days 
via diet 

adipocyte sizes↓, accumulation of macrophages expressing 
PDGF-B↓, adiponectin gene expression↑ 

[53] 

ABCA1: ATP-binding cassette transporter A1; ACAT1: acetyl-coenzyme A acetyltransferase 1; CCL: chemokine (C-C motif) ligand; HbA1c: glycosylated hemoglobin; HFD: 
high‑fat diet, HSPG: heparan sulfate proteoglycans; ICAM-1: intercellular cell adhesion molecule-1; LDLR: low-density lipoprotein receptor; IL-1β: interleukin-1β; IL-6: 
interleukin-6; IL-18: interleukin-18; MAPK: mitogen-activated protein kinase; MCP-1: monocyte chemoattractant protein-1; MMP: matrix metalloproteinase; NADPH: 
nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear factor-κB; NLRP3: nucleotide-binding domain-like receptor protein 3; PDGF-B: platelet‑derived growth 
factor‑B; PECAM-1: platelet endothelial cell adhesion molecule-1; ROS: reactive oxygen species; SRB1: scavenger receptor B1; TIMP: tissue inhibitor of metalloproteinase; 
TNF-α: tumor necrosis factor-α; VCAM-1: vascular cell adhesion molecule-1; VEGF: vascular endothelial growth factor; VSMCs: vascular smooth muscle cells. 
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Figure 1. Potential molecular targets of SGLT2i in atherosclerosis. Although the existing evidence is not sufficient to directly prove the anti-atherosclerotic mechanism 
of action of SGLT2i, some preclinical and clinical studies have revealed some potential mechanisms. SGLT2i may inhibit the progression of atherosclerosis by impacting the levels 
of related inflammatory factors in the serum, inhibiting endothelial dysfunction, VSMC proliferation and migration, macrophage inflammation, foam cell formation, platelet 
activation, and oxidative stress and improve autophagy impairment. Abbreviations: ABCA1: ATP-binding cassette transporter A1; ACAT1: acetyl-coenzyme A acetyltransferase 
1; AGEs: advanced glycation end-products; AMPK: AMP-activated protein kinase; BHB: β-hydroxybutyrate; HbA1c: glycosylated hemoglobin; eNOS; endothelial nitric oxide 
synthases; HO-1: hemeoxygenase-1; ICAM-1: intercellular cell adhesion molecule-1; IL-1β: interleukin-1β; IL-6: interleukin-6; Lox-1; lectin-like oxidized low-density lipoprotein 
receptor-1; M1: M1 macrophages; M2: M2 macrophages; MCP-1: monocyte chemoattractant protein-1; NADPH: nicotinamide adenine dinucleotide phosphate; NF-κB: nuclear 
factor-κB; NLRP3: nucleotide-binding domain-like receptor protein 3; NO: nitric oxide; PAI-1: plasminogen activator inhibitor-1; ROS: reactive oxygen species; SIRT1: sirtuin-1; 
STAT3: signal transducer and activator of transcription 3; TLR4: toll-like receptors; TNF-α: tumor necrosis factor-α; VCAM-1: vascular cell adhesion molecule-1. 

 

Mechanisms of action of SGLT2 
inhibitors 

The main mechanism for SGLT2i to exert 
hypoglycemic effects is to increase the excretion of 
glucose in urine [10, 68]. However, in diabetic 
patients, the mechanism of the inhibitory effect of 
SGLT2i on atherosclerosis, which is the cause of 
cardiovascular events, remains unclear. The focus of 
clinical trials is to study the impact of SGLT2i on 
cardiovascular events, deaths and safety outcomes, 
but the research on their mechanism is mainly based 
on preclinical studies. In the past decade, various 
targets and signaling pathways mediating SGLT2i’s 
cardioprotective actions have been revealed. The 
potential molecular targets and beneficial effects of 
SGLT2i on atherosclerosis are discussed as below 
(Figure 1 and Figure 2). 

Improving endothelial dysfunction 
Endothelial dysfunction is an initial key event of 

atherosclerosis and an important contributor to 
vascular diseases [69, 70]. Substantial evidence 
showed that SGLT2i ameliorate endothelial 

dysfunction and improve endothelium-dependent 
vasodilation. Dapagliflozin regulated glycemic 
indices, which could improve flow-mediated 
vasodilation, arterial stiffness and endothelial 
function in patients with T2DM [71-73]. 

Several preclinical studies have demonstrated 
that endothelial dysfunction can be prevented by 
SGLT2i in different experimental models. 
Empagliflozin prevented the increased expression of 
atherothrombotic markers and improved endothelial 
function in ZSF1 rats that have metabolic syndrome 
and associated insulin resistance [74]. In this context, 
empagliflozin treatment decreased aortic stiffness and 
suppressed endothelial dysfunction by promoting 
glycosuria in a mouse model of T2DM [75]. 
Furthermore, empagliflozin attenuated high 
glucose-induced endothelial senescence and 
dysfunction by inhibiting the local angiotensin system 
[76]. Similarly, dapagliflozin reduced arterial stiffness 
and endothelial dysfunction in diabetic mice and 
enhanced diastolic function in a non-diabetic model 
[77, 78]. SGLT2i reversed endothelial activation and 
endothelial nitric oxide synthases (eNOS) deficit 
under diabetic conditions [78]. These results are 
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consistent with those of Gaspari et al. [79], who found 
that dapagliflozin treatment attenuated vascular 
endothelial cell activation and induced significant 
endothelium-independent vasorelaxation in ApoE−/− 
mice. Importantly, Tahara et al. [80] conducted a 
comparative experiment to compare the effects of six 
SGLT2i (luseogliflozin, ipragliflozin, tofogliflozin, 
empagliflozin, canagliflozin and dapagliflozin) on 
diabetes-related complications in T2DM mice and 
determined that all SGLT2i examined prevented the 
development of endothelial dysfunction suggesting 
this is a class effect for these agents although the 
commonality of reduced glycemia cannot be totally 
excluded. 

Improving vascular smooth muscle cell 
dysfunction 

Excessive proliferation and migration of vascular 
smooth muscle cells (VSMCs) as part of the 
development of the neointima play a crucial role in 
the pathogenesis of atherosclerosis [81, 82]. In this 
regard, VSMC growth and migration were 
significantly blunted in diabetic patients after 
canagliflozin treatment at clinically relevant doses 
[83]. Heme oxygenase-1 (HO-1) is a newly discovered 
target of canagliflozin. Treatment of VSMCs with 

canagliflozin stimulated HO-1 expression/activity 
[83]. 

Combination therapy with ipragliflozin and 
empagliflozin inhibited VSMC proliferation and the 
formation of neointima after vascular injury [84]. 
Furthermore, empagliflozin improved coronary 
microvascular function and contractile function [85]. 
Ipragliflozin also had the same actions (inhibiting the 
proliferation and migration of monocytes and VSMCs 
in vitro) [54]. 

Attenuation of macrophage inflammation, 
foam cell formation, and M1 polarization 

Macrophage inflammation, foam cell formation, 
and M1 polarization are critical events in the 
development of atherosclerosis [86]. Empagliflozin 
ameliorated cardiac macrophage infiltration in db/db 
mice [87]. Similar findings were reported by Pennig et 
al. [60] using STZ-induced diabetic mice. Glucose- 
lowering effects conferred by empagliflozin alleviated 
the proliferation of plaque-resident macrophages and 
the atherosclerotic plaque size was significantly 
smaller [60]. In addition, mechanistic studies revealed 
that empagliflozin reduced the accumulation of M1 
polarized macrophages, and redirected the 
macrophage phenotype toward an anti-inflammatory 

 
Figure 2. Potential cardiovascular actions of SGLT2i. SGLT2i have pleiotropic cardiovascular protective effects, such as: reduce weight, blood pressure, blood glucose, 
insulin resistance and glucotoxicity in patients, increases hemoconcentration, and inhibits oxidative stress and inflammation. The most direct effect of SGLT2i is inhibition of the 
reabsorption of glucose and a diuretic and natriuretic effect. In addition, SGLT2i also exerts other effects such as regulating ion channels, activating autophagy, inhibiting iron 
overload, attenuating activation of the NLRP3 inflammasome, and inhibiting the signaling of advanced glycation end products. The synergistic effects of these benefits may provide 
a therapeutic basis for the cardioprotective effects of SGLT2i. 
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M2 phenotype, reduced obesity-related chronic 
inflammation, attenuated insulin resistance, and 
activated AMP-activated protein kinase (AMPK) [88, 
89]. Similarly, canagliflozin directly inhibited the 
secretion of endothelial pro-inflammatory cytokine 
(MCP-1 and IL-6) through AMPK-dependent and 
-independent mechanisms [90]. AMPK activation 
increased ATP production and reduced ATP 
consumption [89]. The expression of lectin-like 
oxidized low-density lipoprotein receptor-1 (Lox-1) 
and acetyl-coenzyme A acetyltransferase 1 (ACAT1) 
genes was down-regulated in peritoneal macrophages 
isolated from diabetic mice receiving dapagliflozin, 
while the expression of ATP-binding cassette 
transporter A1 (ABCA1) was up-regulated [63]. 

In addition, macrophage infiltration into 
atherosclerotic lesions was reduced by dapagliflozin 
treatment [63]. In an infarction model in non-diabetic 
rats, dapagliflozin increased signal transducer and 
activator of transcription 3 (STAT3) activity, STAT3 
nuclear translocation, and M2 macrophage 
infiltration. [91]. Similar results were reported in a 
rabbit model, in which dapagliflozin increased M2 
macrophages and inhibited toll-like receptor 
4/nuclear factor-kappa B signaling pathway which 
serve as master regulators of inflammatory responses 
in macrophages [67]. 

Prevention of platelet activation 
Platelet adhesion, activation and aggregation in 

plaques are key events in atherothrombosis [92]. The 
reduction in blood glucose by dapagliflozin treatment 
normalized reticulated platelet levels [93]. Spigoni et 
al. [94] showed that empagliflozin and dapagliflozin 
reduced inflammation and oxidative stress and might 
reduce ADP-stimulated platelet activation. 
Empagliflozin reduced the plasma concentration of 
plasminogen activator inhibitor-1 in patients with 
T2DM, which inhibited the development of 
thrombotic diseases [95]. Therefore, plaque 
stabilization and inhibition of thrombosis are the 
potential mechanisms of SGLT2i-mediated 
cardiovascular protection [94]. 

Attenuation of oxidative stress 
The development of atherosclerosis is closely 

related to oxidative stress. SGLT2i reduce oxidative 
stress in patients, experimental animals, and cultured 
cells. After SGLT2i treatment, NADPH oxidase 
subunits (NOX1, NOX2, NOX4, p22phox, and 
p47phox) were reduced [55, 96-98]. Surrogate 
parameters of oxidative stress, 3-nitrotyrosine- and 
hydroxynonenal-positive proteins, were almost 
normalized [99]. Moreover, parameters of 
pathological oxidative stress (hydrogen peroxide, 

3-nitrotyrosine, lipid peroxide) were attenuated in 
cardiomyocytes [100] and urinary excretion of 
8-hydroxydeoxyguanosine was reduced [97, 101]. 
Inhibition of oxidative stress restores the 
bioavailability of NO and explains the vasoprotective 
benefits of SGLT2i [102]. Kolijn et al. [100] conducted 
more in-depth mechanistic research and observed that 
empagliflozin improved endothelial vasorelaxation 
via reducing pro-inflammatory/pro-oxidative 
pathways and eNOS-dependent PKGIα (cyclic 
guanosine monophosphate-dependent protein kinase 
G Iα) oxidation. SGLT2i improved PAR2 (proteinase- 
activated receptor 2)-mediated NOS-dependent 
vasodilation, which is compromised by oxidative 
stress though an NAPDH oxidase/ROS-dependent 
signaling pathway [103]. 

Reduced inflammation 
Compared with most current glucose-lowering 

agents, SGLT2i have actions in reducing tissue 
inflammation. Evidence in mouse models suggested 
that SGLT2i inhibited the expression of circulating 
inflammatory molecules (TNF-α, MCP-1, PECAM-1, 
VCAM-1, ICAM-1, IL-1β, and IL-6) associated with 
atherosclerosis [52, 56, 62, 77]. Also, human evidence 
indicated that canagliflozin might induce changes in 
TNFR1, IL-6, MMP7, serum leptin, adiponectin and 
fibronectin 1 [104, 105]. Empagliflozin reduced 
superoxide production in leukocytes and reduced 
hs-CRP in patients with T2DM [106]. SGLT2i have the 
capacity to inhibit inflammation and reverse the 
adverse factors of atherosclerosis. 

Regulation of iron metabolism 
Iron metabolism occurs as a complex interplay 

between iron per se, inflammation and atherosclerosis 
[107]. Iron overload promotes the formation of highly 
reactive forms of oxygen free radicals, which 
accelerates atherosclerosis [108-111]. Serum ferritin is 
a reliable indicator of iron stores [110, 112]. High 
transferrin saturation signals iron overload [108]. 
Recent proteomic findings in plasma of T2DM 
demonstrated significant decrement in ferritin 
following empagliflozin treatment [113]. In addition, 
dapagliflozin treatment significantly reduced 
circulating hepcidin and ferritin concentrations [114]. 
Regulating iron metabolism might be one of the novel 
mechanisms of action of SGLT2i in cardiovascular 
protection but this area requires more investigation. 

Promoting autophagy 
Autophagy is related to the clearance of 

apoptotic macrophages from atherosclerotic plaques 
[115]. Blocking autophagy renders macrophages more 
susceptible to cell death and promotes necrosis in 
advanced atherosclerosis [115]. Canagliflozin 
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inhibited intracellular glucose metabolism and 
promoted autophagy that might be associated with 
inhibited 6-phosphofructo-2-kinase (PFK2) expression 
and increased AMPK phosphorylation [116]. 
Autophagy is closely related to AMPK and sirtuin-1 
(SIRT1). Canagliflozin upregulated the expression of 
SIRT1 [117]. Similarly, empagliflozin treatment 
activated AMPK and enhanced cardiac autophagy 
[118]. Following MI in patients with diabetes, 
empagliflozin inhibited ROS and restored autophagy 
to normalize the size and number of mitochondria 
[119]. Empagliflozin treatment increased the level of 
mitochondrial SIRT3 and enhanced the activation of 
TLR9, thereby activating autophagy [120]. Therefore, 
enhancing autophagy might be a potential mechanism 
for SGLT2i to exert atheroprotective effects. 

Regulation of ion exchange channels 
K+ channels regulating depolarization/ 

hyperpolarization are the main determinants of 
vascular tone. The voltage-dependent K+ (Kv) 
channels could be the target of dapagliflozin. The 
vasodilatory effect of dapagliflozin occured through 
direct activation of protein kinase G and subsequent 
activation of Kv channels [121]. 

Na+/H+ exchanger 1 (NHE1) in endothelial cells 
might be another target of SGLT2i. Dapagliflozin 
inhibited the activity of NHE1 in endothelial cells to 
reverse endothelial activation [78]. Empagliflozin 
treatment directly inhibited NHE1 mediated Na+ 
influx, thereby reducing myocardial cytoplasmic Na+, 
regardless of SGLT2 activity [122]. However, the latest 
research proves that empagliflozin treatment did not 
inhibit cardiac NHE1 activity [123]. It remains unclear 
whether SGLT2i affect the progression of 
atherosclerosis through targeting ion channels. 

Increasing ketone bodies 
An important feature of diabetic patients treated 

with SGLT2i is the increase of circulating ketone 
bodies [124]. Ferrannini et al. [125-127] indicated that 
increased β-hydroxybutyrate (BHB) promote ketone 
bodies as metabolic substrates and result in improved 
energy metabolism of the heart. In addition to the 
involvement in energy metabolism, other protective 
effects have been proposed for ketone bodies. For 
example, preclinical findings demonstrate that BHB 
has a strong anti-inflammatory effect. Empagliflozin 
has been reported to significantly increase the 
abundance of serum BHB leading to inhibition of 
NLRP3 and reduction of IL-1β levels [128]. The 
importance of ketone bodies as an adjuster of the 
benefits of SGLT2i in atherosclerosis remain 
uncertain. 

Reduced body weight 
Inhibition of glucose reabsorption leads to 

calorie loss, accompanied by weight loss [129]. Several 
meta-analyses of clinical trials in patients with T2DM 
have suggested that body weight was significantly 
reduced following SGLT2i treatment [130, 131]. 
SGLT2i convert glucose metabolism into fatty acids 
and ketones, and enhance fat utilization that are 
favorable factors which confer anti-atherosclerotic 
effects. 

Regulation of diuresis, natriuresis, 
hemoconcentration and blood pressure 

SGLT2i have natriuretic and diuretic effects 
[124]. Induction of diuresis and natriuresis by SGLT2i 
decrease plasma volume and contribute to systolic 
and diastolic blood pressure control [132, 133]. 
Hypertension is a contributing factor to 
atherosclerosis and its thrombotic complications [1]. 
Reductions in blood pressure were greater with 
empagliflozin compared with placebo [134]. 
Natriuresis also activates the tubuloglomerular 
feedback response [135]. The synergistic effect of these 
several mechanisms may provide an indirect but 
useful basis for the anti-atherosclerotic effects of 
SGLT2i. 

Lowering the level of uric acid 
SGLT2i treatment resulted in lower circulating 

levels of uric acid [136-138]. Uric acid is considered an 
activator of oxidative stress and inflammation, which 
induces activation of the NLRP3 inflammasome [124, 
139]. Lowering uric acid might be an indirect 
mechanism of SGLT2i to improve atherosclerosis, and 
its deeper mechanism remains to be evaluated. 

Inhibition of NLRP3 inflammasome 
Nucleotide-binding domain-like receptor 

protein 3 (NLRP3) inflammasome plays a vital role in 
inflammation and immunity [140]. The activation of 
NLRP3 inflammasome and the subsequent release of 
IL-1β and IL-18 contribute to the pathogenesis of 
atherosclerosis and HF [141-143]. Current research on 
the effect of SGLT2i on NLRP3 inflammasome is 
focused on diabetic nephropathy, steatohepatitis, 
cardiomyopathy and atherosclerosis. 

Empagliflozin attenuated the activation of 
NLRP3 inflammasome in a Ca2+-dependent manner 
[144]. Kim et al. [128] demonstrated that empagliflozin 
significantly inhibited the activation of NLRP3 
inflammasome by increasing serum BHB levels and 
reducing insulin levels in T2DM and CVD patients, 
regardless of glycemic control. Dapagliflozin 
treatment reduced the production of NLRP3 protein 
and ROS in aortic tissues, thereby partially reversing 
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the formation of atherosclerosis [62]. Dapagliflozin 
also inhibited the activation of NLRP3 inflammasome 
by activating AMPK and mTORC2 [145, 146]. In 
conclusion, SGLT2i attenuates the activation of 
NLRP3 inflammasome, which might help explain its 
inhibitory effect on atherosclerosis. 

Reduction of advanced glycation end-products 
The binding of advanced glycation end-products 

(AGEs) to endothelial AGE receptors (RAGE) 
stimulates oxidative stress and expression of 
cytokines, chemokines, and adhesion molecules [147]. 
Methylglyoxal, a primary precursor of AGEs, 
decreased the phosphorylation of eNOSSer1177 and 
protein kinase B (Akt), which inhibited eNOS activity. 
SGLT2i decreased the levels of methylglyoxal, 
prevented AGE formation and AGE/RAGE signaling, 
and ameliorated decreased phosphorylation of 
eNOSSer1177 and Akt, thus conferring atheroprotective 
effects [96, 97, 101]. 

Conclusions and perspectives 
As a new category of oral hypoglycemic agents, 

SGLT2i have a specific mechanism of action and 
target glucose removal which is distinct from other 
hypoglycemic agents. By increasing the excretion of 
urinary glucose, SGLT2i regulate glucose levels 
without an increased risk of hypoglycemic events. A 
recent observational study suggested that SGLT2i 
might be more effective than GLP-1RA in 
ameliorating cardiovascular outcomes of T2DM with 
comparable rate of adverse events [148]. In addition, 
SGLT2i significantly decreased the risk of HF or 
cardiovascular death independent of diabetes status 
in patients on background therapy for HF [39, 149]. 

The cardiovascular actions and anti- 
inflammatory effects of SGLT2i have been excellently 
reviewed elsewhere [11, 150-153]. Here, we provide a 
focused review of the protective effects of SGLT2i in 
different stages of atherosclerosis (the leading cause of 
CVD), illuminating the molecular targets of this 
category of drugs in atheroprotection. In patients with 
diabetes, SGLT2i show cardio-renal protection and 
have important clinical advantages but there are also 
some adverse reactions. The most commonly 
observed adverse effect is polyuria. Empagliflozin 
increased the risk of urogenital infections in women 
and men [9]. Another important safety concern, 
observed in the CANVAS trial, was amputations and 
fractures of the legs and feet in patients treated with 
canagliflozin compared with placebo [33]. However, a 
recent real-world study suggested that the risk of 
amputations in patients treated with SGLT2i was not 
higher compared with other anti-diabetic drugs [154]. 
Also, the application of SGLT2i for patients with type 

1 diabetes should be considered with caution due to 
increased incidence of ketoacidosis and diarrhea 
[155]. Long-term systemic side effects of SGLT2i are 
warranted to be evaluated in large-scale randomized 
controlled trials. 

By deepened understanding of the mechanism of 
action of SGLT2i, the adverse reactions after drug 
treatments could be reduced. Results of recent clinical 
trials involving individuals without diabetes might 
repurpose this drug as “a drug for cardiorenal 
protection” [156]. Taken together, SGLT2i have broad 
therapeutic prospects, and their pharmacological 
mechanisms and precise molecular targets beyond 
SGLT2 inhibition and glycemic control need to be 
elucidated in future studies. 
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