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Abstract 

Recent studies have highlighted the biological significance of RNA N6-methyladenosine (m6A) 
modification in tumorigenicity and progression. However, it remains unclear whether m6A modifications 
also have potential roles in immune regulation and tumor microenvironment (TME) formation.  
Methods: In this study, we curated 23 m6A regulators and performed consensus molecular subtyping 
with NMF algorithm to determine m6A modification patterns and the m6A-related gene signature in colon 
cancer (CC). The ssGSEA and CIBERSORT algorithms were employed to quantify the relative infiltration 
levels of various immune cell subsets. An PCA algorithm based m6Sig scoring scheme was used to evaluate 
the m6A modification patterns of individual tumors with an immune response. 
Results: Three distinct m6A modification patterns were identified among 1307 CC samples, which were 
also associated with different clinical outcomes and biological pathways. The TME characterization 
revealed that the identified m6A patterns were highly consistent with three known immune profiles: 
immune-inflamed, immune-excluded, and immune-desert, respectively. Based on the m6Sig score, which 
was extracted from the m6A-related signature genes, CC patients can be divided into high and low score 
subgroups. Patients with lower m6Sig score was characterized by prolonged survival time and enhanced 
immune infiltration. Further analysis indicated that lower m6Sig score also correlated with greater tumor 
mutation loads, PD-L1 expression, and higher mutation rates in SMGs (e.g., PIK3CA and SMAD4). In 
addition, patients with lower m6Sig scores showed a better immune responses and durable clinical 
benefits in three independent immunotherapy cohorts. 
Conclusions: This study highlights that m6A modification is significantly associated with TME diversity 
and complexity. Quantitatively evaluating the m6A modification patterns of individual tumors will 
strengthen our understanding of TME characteristics and promote more effective immunotherapy 
strategies. 
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Introduction 
Methylation of N6 adenosine (m6A), which is 

widely observed in mRNAs, lncRNAs and miRNAs, 
is the most common type of RNA modification and 
plays crucial roles in multiple physiological processes 
and disease progression [1, 2]. m6A modification is 
also a kind of dynamic and reversible process, which 
is controlled by different types of regulatory proteins: 
the methyltransferases (“writers”), the demethylases 
(“erasers”) and binding proteins (“readers”) [3]. The 
expression and function of these regulatory proteins 
have great impacts on m6A modification, and 
investigation of these regulators can help 
understanding the mechanisms of m6A in gene 
regulation [4, 5]. Increasing evidence has 
demonstrated that dysregulated expression and 
genetic changes of m6A regulators are correlated with 
malignant tumor progression and immunomodu-
latory abnormalities [6-9]. A comprehensive 
understanding of the genetic variation and expression 
perturbations underlying cancer heterogeneity will 
further benefit the identification of RNA 
methylation-based therapeutic targets [10]. 

Colon cancer (CC) is one of the most common 
malignancies and remains the primary cause of cancer 
death worldwide, and 30% - 50% of patients develop 
recurrence, metastasis and even death within 5 years 
of treatment [11, 12]. Recently, with the increased 
understanding of the diversity and complexity of the 
tumor microenvironment contexture (including 
cancer cells, stromal cells, infiltrating immune cells, 
and secreted cytokines et al.), the crucial immune cell 
subsets in tumorigenesis and metastasis have been 
gradual recognized [13-16]. Indeed, assessment of the 
densities of lymphocyte populations (CD3 and 
cytotoxic CD8 T cells) at the tumor center and the 
tumor margin were demonstrated to play an 
important complementary role to the tumor staging 
system in relapse and mortality prediction in CC [17]. 
Moreover, current immunotherapies represented by 
specific immune checkpoint inhibitors (ICIs), such as 
anti-CTLA-4 and anti-PD-1/L1, have achieved a 
marked durable response in CC treatment [18, 19]. 
Evaluating immune infiltration based on the 
characteristics of the TME constitutes a critical 
approach to predicting the response to existing ICIs 
and developing novel immunotherapeutic strategies 
[20-22]. Current studies also proposed the novel 
concept of ‘immune contexture’, which classified CC 
tumors into three major immune coordination profiles 
(hot, excluded and cold) and represented different 
TME characteristics and treatment options [23-25]. 
Therefore, tumor immune phenotypes identified by 
comprehensively parsing the components of the 

tumor microenvironment will assist in guiding and 
predicting immunotherapeutic responsiveness [17, 26, 
27]. 

Recent studies revealed the interactions between 
TME immune cell infiltration and m6A modification, 
which cannot be fully explained by the RNA 
degradation mechanism. Han et al. reported that 
YTHDF1 promotes lysosomal protease-directed 
degradation of tumor neoantigens in dendritic cells by 
recognizing their m6A modification and enhancing 
their translation [28]. Loss of YTHDF1 in dendritic 
cells markedly enhances the cross-presentation of 
antigens and the cross-priming of CD8+ T cells. 
Another study demonstrated that FTO impeded 
interferon-gamma (IFN-γ)-induced cytotoxicity in 
melanoma cells in vitro by upregulating PD-1, 
CXCR4, and SOX10 through suppression of 
YTHDF2-mediated RNA decay process. Moreover, 
knockdown of FTO sensitized melanoma to anti-PD-1 
treatment in mice via the upregulation of IFN-γ [29]. 
METTL3-mediated mRNA m6A modification is 
essential for translation of the costimulatory 
molecules CD40, CD80, and the Snail homeostasis in 
cancer progression [30, 31]. However, the 
aforementioned studies were all restricted to one or 
two m6A regulators on account of technical 
limitations, while the antitumor effect of these 
regulators is regulated by numerous tumor 
suppressor factors that act in a highly coordinated 
manner. As an alternative, continuously accumulating 
transcriptomics and genomic data provide an ideal 
resource for comprehensive analysis of m6A 
regulators and immune regulation [32, 33]. Thus, 
recognizing the TME cell infiltration characteristics 
mediated by multiple m6A regulators will contribute 
to enhancing our understanding of cancer immunity. 

In this study, we comprehensively evaluated the 
association between m6A modification patterns and 
TME cell-infiltrating characteristics by integrating the 
transcriptomic and genomic data of 1307 CC samples 
from TCGA and GEO databases. Three distinct m6A 
modification patterns with nonnegative matrix 
factorization (NMF) clustering were identified, and 
the TME characteristics of these three patterns were 
closely linked to three previously reported immune 
phenotypes: immune-inflamed, immune-excluded, 
and immune-desert [25]. Moreover, we constructed a 
scoring scheme to quantify the m6A modification 
patterns of individual tumors and predict patients’ 
clinical response to ICI treatment. These findings 
suggested that m6A modification plays an 
indispensable role in shaping diverse tumor immune 
microenvironment profiles and in directing 
therapeutic intervention plans for colon cancer. 
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Methods 
Collect and preprocess of publicly attainable 
expression datasets 

Gene expression data and clinical features of CC 
samples were retrospectively collected from publicly 
available datasets of the NCBI GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) and TCGA 
(https://cancergenome.nih.gov/). The selection 
criteria of CC datasets were adopted from the 
workflow of Dai et al. [34], and a total of 1307 patients 
were enrolled for analysis, including those from the 
GSE39582/CIT Cohort (N = 557) [35], GSE37892 (N = 
130) [36], GSE14333 (N = 226) [37], and TCGA-COAD 
(The Cancer Genome Atlas-Colon Adenocarcinoma, 
N = 394) datasets (Table S1). The GSE17538 (N = 200) 
[38] dataset was excluded from this analysis owing to 
its probe cell intensity (CEL) files extensively 
overlapped with the GSE14333 series. Since these 
GEO datasets shared the same microarray sequencing 
platform (Affymetrix HG-U133 plus 2.0), we 
downloaded the raw “CEL” files and performed 
background adjustment and quantile normalization 
by ‘affy’ and ‘simpleaffy’ packages. TCGA RNA 
sequencing data (FPKM format) were downloaded 
from the UCSC Xena (https://gdc.xenahubs.net/ 
download/TCGA-COAD.htseq_fpkm.tsv.gz) and 
transformed into transcripts per kilobase million 
(TPM) format. The ComBat method from the ‘SVA’ R 
package was used to remove the batch effects among 
different GEO datasets [34]. The genomic mutation 
data (including somatic mutation and copy number 
variation) of TCGA-COAD were curated from the 
UCSC Xena database and the Davoli et al. study [39]. 
The R package ‘Rcircos’ was employed to plot the 
copy number variation landscape of 23 m6A 
regulators in human chromosomes. Nonsynonymous 
mutation (including frameshift mutation, inflame 
mutation, missense mutation, nonsense mutation, and 
splice site mutation) counts were recognized as tumor 
mutation load (TML). The clinical information and 
m6A regulator expression of the meta-GEO and TCGA 
datasets are listed in Table S2 and S3. 

Consensus molecular clustering of 
twenty-three m6A regulators by NMF 

We retrieved the literatures related to m6A 
methylation modification, and a total of 23 
acknowledged m6A regulator genes were curated and 
analyzed to identify distinct m6A methylation 
modification patterns [1-3, 6]. The 23 m6A regulators 
included 8 writers (CBLL1, KIAA1429, METTL14, 
METTL3, RBM15, RBM15B, WTAP, and ZC3H13), 2 
erasers (ALKBH5 and FTO), and 13 readers (ELAVL1, 
FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, 

IGF2BP3, LRPPRC, YTHDC1, YTHDC2, YTHDF1, 
YTHDF2, and YTHDF3). We performed consensus 
clustering with NMF to identify distinct m6A 
modification patterns based on the expression of 23 
m6A regulators. Specifically, the expression of 23 m6A 
regulators (Matrix A) was factorized into 2 
nonnegative matrices W and H (i.e., A≈WH). 
Repeated factorization of matrix A was performed, 
and its outputs were aggregated to obtain consensus 
clustering of colon cancer samples. The optimal 
number of clusters was selected according to 
cophenetic, dispersion, and silhouette coefficients. 
The R package ‘NMF’ (version 0.22.0) with the brunet 
algorithm and 200 nruns was used to perform the 
consensus clustering. 

Gene set variation analysis (GSVA) and Gene 
Ontology (GO) annotation 

 We utilized GSVA analysis [40] with the R 
package ‘GSVA’ to investigate the variation in 
biological processes between different m6A 
modification patterns. The well-defined biological 
signatures were derived from the Hallmarker gene set 
[41] (download from MSigDB database v7.1) and 
Mariathasan et al. constructed gene set [27] (curated 
from IMvigor210CoreBiologies packages). GO 
annotation for m6A phenotype-related genes was 
performed in the R package ‘clusterProfiler’ with the 
cutoff value of FDR < 0.01. 

Immune cell infiltration estimation by ssGSEA 
and deconvolution algorithm 

 Single sample gene set enrichment analysis 
(ssGSEA) was introduced to quantify the relative 
abundance of 28 immune cell types in the tumor 
microenvironment. Special feature gene panels for 
marking each immune cell type were curated from a 
recent study [42, 43]. The relative abundance of each 
immune cell type was represented by an enrichment 
score in ssGSEA analysis and normalized to unity 
distribution from 0 to 1. The biosimilarity of the 
infiltrating immune cells was estimated by 
multidimensional scaling (MDS) and a Gaussian 
fitting model. The deconvolution approach 
CIBERSORT [44] (http://cibersort.stanford.edu/) 
was used to estimate the abundances of 22 distinct 
leukocyte subsets with the gene expression profile of 
colon cancer. 

Quantify the immune response predictor: 
Immunophenoscore, TIDE and ESTIMATE 

Immunophenoscore (IPS) is a superior predictor 
of response to anti-CTLA-4 and anti-PD-1 regimens, 
which quantify the determinants of tumor 
immunogenicity and characterize the intratumoral 
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immune landscapes and cancer antigenomes [42]. The 
scoring scheme developed from a panel of 
immune-related genes belonging to the four classes: 
MHC-related molecules (MHC), checkpoints or 
immunomodulators (CP), effector cells (EC) and 
suppressor cells (SC). The weighted averaged Z score 
was calculated by averaging the samplewise Z scores 
of the four classes within the respective category and 
the sum of the weighted averaged Z score was 
calculated as the IPS. The Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm 
proposed by Jiang et al. was utilized to model distinct 
tumor immune evasion mechanisms [45], including 
dysfunction of tumor infiltration cytotoxic T 
lymphocytes (CTLs) and exclusion of CTLs by 
immunosuppressive factors. A higher TIDE score 
indicated tumor cells more likely to induce immune 
escape, thus indicating a lower response rate to ICI 
treatment. The Estimation of Stromal and Immune 
Cells in Malignant Tumors using Expression Data 
(ESTIMATE) algorithm [46], which takes advantage of 
the unique properties of the transcriptional profiles to 
infer the tumor cellularity as well as the tumor purity. 
By using the ESTIMATE algorithm, we calculated the 
immune and stromal scores to predict the level of 
infiltrating immune and stromal cells and these form 
the basis to infer tumor purity. Tumor tissues with 
abundant immune cell infiltration represented a 
higher immune score and lower level of tumor purity. 

Significantly mutated genes and tumor 
mutational signatures 

 We utilized the MutSigCV algorithm to identify 
significantly mutated genes (SMGs) [47, 48]. 
Specifically, MutSigCV measures the significant 
enrichment of nonsilent somatic mutations in a gene 
by addressing mutational context-specific 
background mutation rates. Genes with statistically 
significant (q < 0.1) and certified in the human Cancer 
Cell lines Encyclopedia (CCLE) [49] were recognized 
as SMGs [50] (Table S4). The mutational landscape of 
m6A modification genes and SMGs in TCGA-COAD 
cohort was depicted by the waterfall function of the R 
‘maftools’ package [51]. Mutational signatures 
extracted from the TCGA genomic data also adopted 
the ‘maftools’ package. ExtractSignatures function 
based on Bayesian variant nonnegative matrix 
factorization, factorized the mutation portrait matrix 
into two nonnegative matrices ‘signatures’ and 
‘contributions’, where ‘signatures’ represent 
mutational processes and ‘contributions’ represent 
the corresponding mutational activities [52]. The 
SignatureEnrichment function can automatically 
determine the optimal number of extracted 
mutational signatures and assign them to each sample 

based on the mutational activities. The extracted 
mutational portrait of CC was compared and 
annotated by cosine similarity analysis against the 
Catalogue of Somatic Mutations in Cancer (COSMIC) 
[53]. 

Identification of DEGs between distinct m6A 
modification phenotypes 

The previous consensus clustering algorithm 
classified patients into three distinct m6A modification 
patterns, and we next determined m6A 
modification-related differentially expressed genes 
(DEGs) among distinct m6A phenotypes. The R 
package ‘limma’ [54] was used to evaluate DEGs in 
CC samples between different modification clusters. 
Specifically, gene expression data were normalized by 
voom and then fed to lmFit and eBayes functions to 
calculate the differential expressed statistics. The 
significance filtering criteria of DEGs were set as an 
adjusted P value less than 0.001. 

Construction of the m6Sig score 
We developed an m6A scoring scheme to 

quantify the m6A modification level of individual 
patients by using principal component analysis 
(PCA). Specifically, the overlapping DEGs identified 
from different m6A clusters were selected and 
employed to perform prognostic analysis for each 
gene using a univariate Cox regression model. The 
genes with a significant prognostic impact were 
extracted for further feature selection by using 
recursive feature elimination (RFE) with random 
forest and the 10-fold cross-validation method in the 
‘caret’ package. We then curated the expression 
profile of the final determined genes to perform PCA 
analysis, and principal components 1 and 2 were 
extracted and served as the signature score. This 
method mainly focuses on the score on the set with 
the largest block of well correlated (or 
inverse-correlated) genes in the set, while 
downweighting contributions from genes that do not 
track with other set members. We then adopted a 
formula similar to previous studies to define the 
m6Sig score [55, 56]: m6Sig score= ∑(PC1i+PC2i), 
where is the expression of final determined m6A 
phenotype-related genes. 

Collection of genomic and clinical information 
of the ICI-based cohort 

We systematically searched the gene expression 
profiles of ICI therapy, which could be publicly 
obtained and coupled with detailed clinical pathology 
information. Three immunotherapeutic cohorts were 
finally included in our study: metastatic melanoma 
treated with nivolumab (anti-PD-1 mcAb) [57] or 
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ipilimumab (anti-CTLA-4 mcAb) [58], and metastatic 
urothelial cancer (mUC) treated with atezolizumab 
(anti-PD-L1 mcAb) [27]. The gene expression profiles 
of pre-therapy biopsy samples were curated and 
transformed into the TPM format for further analysis. 

Statistical analyses 
 The statistical analyses in this study were 

generated by R-3.6.1. For quantitative data, statistical 
significance for normally distributed variables was 
estimated by Student’s t-tests, and nonnormally 
distributed variables were analyzed by the Wilcoxon 
rank-sum test. For comparisons of more than two 
groups, Kruskal-Wallis tests and one-way analysis of 
variance were used as nonparametric and parametric 
methods, respectively [59]. Two-sided Fisher exact 
tests were used to analyze contingency tables. 
Kaplan-Meier survival analysis and the Cox 
proportional hazards model were used to analyze the 
association between the m6A modification pattern and 
prognosis with the R package ‘Survminer’ (0.4.6). The 
surv-cutpoint function from the ‘survival’ package 
was applied to stratify samples into high and low 
m6Sig score subgroups. The receiver operating 
characteristic (ROC) curve was used to assess the 
prognosis classification performance of the m6Sig 
score model, and the area under the curve (AUC) 
were calculated using ‘timeROC’ package (0.3). 
Patients with detailed clinical information were 
included and adjusted for confounding factors in the 
multivariate regression model. All comparisons were 
two-sided with an alpha level of 0.05, and the 
Benjamini-Hochberg method was applied to control 
the false discovery rate (FDR) for multiple hypothesis 
testing [60]. 

Results 
Landscape of genetic variation of m6A 
regulators in colon cancer  

In this study, we investigated the roles of 23 m6A 
RNA methylation regulatory genes in CC (“writers”: 
CBLL1, KIAA1429, METTL14, METTL3, RBM15, 
RBM15B, WTAP, and ZC3H13; “readers”: ELAVL1, 
FMR1, HNRNPA2B1, HNRNPC, IGF2BP1, IGF2BP2, 
IGF2BP3, LRPPRC, YTHDC1, YTHDC2, YTHDF1, 
YTHDF2, and YTHDF3; and “erasers”: ALKBH5 and 
FTO). Figure 1A shows that the dynamic reversible 
process of these m6A regulators can recognize, 
remove and add m6A-modified sites and alter 
substantial biological processes, such as RNA 
splicing, RNA translation, and RNA degradation. GO 
enrichment and Metascape analyses of 23 m6A 
regulators were conducted, and significantly enriched 
biological processes are summarized in Figure 1B and 

Figure S1A. We first determined the prevalence of 
somatic mutations of 23 m6A regulators in CC. A total 
of 120 of the 394 (30.5%) samples experienced genetic 
alterations of m6A regulators, primarily including 
amplification, missense mutations, and deep 
deletions. ZC3H13 showed the highest mutation 
frequency, followed by KIAA1429 and YTHDC2 
(Figure 1C). We also examined mutation 
co-occurrence across all m6A regulators and found a 
significant mutation co-occurrence relationship 
between IGF2BP1 and YTHDC2, YTHDF1 and 
KIAA1429, LRPPRC and YTHDF2, and RBM15 and 
ZC3H13 (Figure S1B). Further analysis of 23 m6A 
regulators revealed that CNV mutations were 
prevalent. YTHDF1/3, IGF2BP1/2/3, KIAA1429 and 
HNRNPA2B1 showed widespread CNV 
amplification. In contrast, YTHDF2, YTHDC2, 
METTL14, RBM15 and ZC3H13 had prevalent CNV 
deletions (Figure 1D). The locations of CNV 
alterations of 23 m6A regulators on chromosomes are 
shown in Figure 1E. Moreover, we performed 
principal component analysis (PCA) based on paired 
tumor-normal specimens and found that the 23 m6A 
regulators completely distinguished CC samples from 
normal samples (Figure 1F). Further analysis 
demonstrated that ALKBH5, METTL14, YTHDC2, 
and YTHDF3 were significantly downregulated in 
tumor samples, whereas CBLL1, ELAVL1, 
HNRNPA2B1, HNRNPC, IGF2BP1, KIAA1429, 
LRPPRC, METTL3, RBM15, and YTHDF1 were 
significantly upregulated in tumor samples (Figure 
1G). The expression of m6A regulators with CNV 
amplification was significantly increased in CC 
samples compared to normal control samples, such as 
HNRNPA2B1, IGF2BP1, KIAA1429, and YTHDF1, 
while METTL14 and YTHDC2 were markedly 
decreased in the tumor specimens (Figure 1D, 1G). 
Furthermore, Spearman correlation analysis was 
performed to evaluate mutual regulation among these 
m6A regulators (Figure S1C). The erasers ALKBH5 
and FTO showed a significant inverse correlation with 
other m6A regulators. Cox regression analysis was 
employed to ascertain the relationship between these 
m6A regulators and the prognosis of CC patients. A 
forestplot showed that YTHDC1 could be considered 
a protective factor and was significantly associated 
with prolonged relapse-free survival, while IGF2BP1 
was recognized as a risk factor (Figure S1D-E). The 
above analysis demonstrated the significant 
differences and connections in the genomic and 
transcriptomic landscape of m6A regulators between 
normal and CC samples. Therefore, the expression 
alterations and genetic variation in m6A regulators 
played a crucial role in regulating CC occurrence and 
progression. 
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Figure 1. The landscape of genetic alterations of m6A regulators in colon cancer. (A) Regulation of m6A modification and its biological functions in RNA metabolism 
by m6A “writer”, “eraser” and “reader” proteins. m6A RNA methylation was known to be involved in all stages in the life cycle of RNA including pre-mRNA splicing, pre-miRNA 
processing, RNA translation, RNA degradation/stability, etc. (B) Metascape enrichment network visualization showed the intra-cluster and inter-cluster similarities of enriched 
terms, up to 20 terms per cluster. Cluster annotations were shown in the color code. (C) 120 of the 394 CC patients experienced genetic alterations of 23 m6A regulators, with 
a frequency of 30%, mostly including amplification, missense mutations, and deep deletions. The number on the right indicated the mutation frequency in each regulator. Each 
column represented individual patients. (D) The CNV mutation frequency of 23 m6A regulators was prevalent. The column represented the alteration frequency. The deletion 
frequency, pink dot; The amplification frequency, blue dot. (E) The location of CNV alteration of m6A regulators on chromosomes. (F) Principal component analysis of 23 m6A 
regulators to distinguish tumors from normal samples. (G) The difference of mRNA expression levels of 23 m6A regulators between normal and CC samples. The asterisks 
represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001). 

 

Identification of m6A methylation modification 
patterns mediated by 23 regulators 

Three GEO datasets with available survival data 
and clinical annotations (CIT/GSE39582, GSE14333 
and GSE37892) were enrolled in the meta-cohort. The 
comprehensive landscape of the interactions of the 23 
m6A regulators, the regulator connections and their 
prognostic significance in CC patients was illustrated 
in the m6A regulator network (Figure 2A). The results 

indicated that cross-talk among the regulators of 
writers, readers and erasers probably plays critical 
roles in the formation of different m6A modification 
patterns and was implicated in cancer pathogenesis 
and progression. Based on these hypotheses, we 
utilized consensus clustering analysis of the NMF 
algorithm to stratify samples with qualitatively 
different m6A modification patterns based on the 
expression of 23 m6A regulators. Accordingly, we 
identified three distinct modification pattern clusters, 
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including 221 cases in pattern cluster 1, 530 cases in 
cluster 2 and 162 cases in cluster 3 (Figure 2B, Figure 
S2A-C). We termed these clusters m6A-C1, m6A-C2, 
and m6A-C3, among which m6A-C1 exhibited a 
prominent survival advantage, whereas m6A-C3 had 
the worst prognosis in the meta-GEO cohort (P = 
0.012, log-rank test). In addition, we performed 
identical analyses in the TCGA-COAD cohort, and 
similar results were obtained (P < 0.001, log-rank test, 
Figure 2C, Figure S2D). Multivariate Cox proportional 
hazards regression analysis further demonstrated that 
this modification model was associated with patient 
survival outcomes after adjusting for clinicopatho-

logic factors in these two cohorts (meta-GEO cohort: 
m6A-C1 vs. m6A-C3, HR, 0.63 [95%CI, 0.46 to 0.87], P = 
0.005, Figure S3A; TCGA-COAD: m6A-C1 vs. m6A-C3, 
HR, 0.49 [95%CI, 0.29 to 0.83], P = 0.008, Figure S3B). 
We also noticed a significant difference in the 
expression of m6A regulators between distinct m6A 
modification patterns. IGF2BP1 and YTHDF1 were 
significantly elevated in the m6A-C3 subtype; FTO, 
RBM15B, METTL14, and YTHDC2 were markedly 
increased in the m6A-C2 subtype; and ALKBH5, 
IGF2BP3 and YTHDC1 were evidently increased in 
the m6A-C1 subtype (Figure S2C-D). 

 
 
 

 
Figure 2. m6A methylation modification pattern and relevant biological pathway. (A) The interaction of expression on 23 m6A regulators in CC. The m6A regulators 
in three RNA modification types were depicted by circles in different colors. Readers, yellow; Writers, blue; Erasers, red. The lines connecting m6A regulators represented their 
interaction with each other. The size of each circle represented the prognosis effect of each regulator and scaled by P-value. Protective factors for patients’ survival were 
indicated by a green dot in the circle center and risk factors indicated by the black dot in the circle center. (B) Kaplan-Meier curves of relapse-free survival (RFS) for 913 CC 
patients in meta-GEO cohort with different m6A clusters. The numbers of patients in m6A-C1, m6A-C2, and m6A-C3 phenotypes are 221, 530, and 162, respectively (Log-rank 
test). (C) Kaplan-Meier curves of relapse-free survival (RFS) for 394 CC patients in the TCGA cohort with three m6A clusters. The numbers of patients in m6A-C1, m6A-C2, and 
m6A-C3 phenotypes are 111, 203, and 80, respectively (Log-rank test). The m6A-C3 showed significantly worse prognostic than the other two m6A clusters in both meta-GEO 
and TCGA-COAD cohorts. (D) Heatmap shows the GSVA score of representative Hallmark pathways curated from MSigDB in distinct m6A modification patterns. The GEO 
cohort composition (GSE14333, GSE37892, and GSE39582) were used as sample annotations.  
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The m6A modification patterns characterized 
by distinct immune landscapes 

To explore the biological molecular changes 
underlying three distinct m6A modification patterns, 
we performed GSVA enrichment analysis against the 
Hallmarker gene set (Figure 2D). GSVA indicated that 
m6A-C1 was significantly enriched in immune 
activation-related processes, including interferon 
gamma/alpha response, allograft rejection and 
inflammatory response. However, m6A-C3 presented 
enrichment pathways prominently associated with 
carcinogenic activation and stromal pathways, such as 
the Wnt-β-catenin, TGF-β, and hedgehog signaling 
pathways. Intriguingly, m6A-C2 was highly enriched 
in both immune regulation and stromal-related 
signaling pathways. Furthermore, we constructed a 
heatmap with ssGSEA to visualize and compare the 
relative abundances of 28 immune infiltrating cell 
subpopulations among distinct m6A modification 
patterns (Figure 3A). Antitumor lymphocyte cell 
subpopulations, such as effector memory CD4+/CD8+ 
T cells, activated CD4+/CD8+ T cells, and NK T cells, 
were mainly enriched in the m6A-C1 and m6A-C2 
subtypes. However, regulatory T cells, type 2 T helper 
cells, monocytes, etc. were markedly elevated in the 
m6A-C3 subtype. We also further characterized the 
immune infiltration profile with CIBERSORT, a 
deconvolution algorithm using support vector 
regression to evaluate the immune cell subsets in the 
TME. A consistent result was also observed in this 
m6A methylation modification stratification (Figure 
3B). Previous studies revealed that the immune- 
excluded tumor phenotype was characterized by an 
abundance of immune cells, while these immune cells 
were retained in the stroma surrounding tumor cell 
nests rather than penetrating their parenchyma [25]. 
Therefore, we speculated that abundant stromal 
elements in the m6A-C2 subtype suppressed an 
effective antitumor immune response. Subsequent 
analyses demonstrated that stromal activation was 
markedly enhanced in the m6A-C2 subtype, as 
exhibited by processes related to epithelial- 
mesenchymal transition (EMT), TGF-β, and 
WNT-target pathways, further corroborating our 
hypothesis (Figure S3C-D). Moreover, we used the 
ESTIMATE algorithm to quantify the overall 
infiltration of immune cells (Immune Score) and 
tumor cell purity (Tumor Purity) across three 
modification patterns. Further analyses revealed that 
m6A-C1 exhibited the highest immune scores, 
followed by m6A-C2 and m6A-C3 (Figure 3C, upper 
panel). Conversely, m6A-C3 had a higher tumor 
purity than m6A-C2 and m6A-C1, suggesting that 
m6A-C2 and m6A-C1 subtype tumors are surrounded 

by more nontumor components (e.g., immune cells 
and stromal cells) (Figure 3C, lower panel). Marisa et 
al. (CIT cohort/GSE39582) stratified CC patients into 
four dominant molecular subtypes (CIN, CSC, 
dMMR, and KRASm) and identified dMMR tumors 
associated with immune coordination while CIN 
associated with ECM-receptor interaction, focal 
adhesion, and Wnt receptor pathways [35]. Consistent 
with the previous findings, patients with the CIN 
subtype were predominantly clustered into m6A-C2 
and m6A-C3, whereas the dMMR subtype was mainly 
concentrated within m6A-C1 tumors (Figure 3D). 
Considering that PD-L1 is a well-established 
biomarker for predicting the response to 
anti-PD-1/L1 treatment [61], we also compared the 
PD-L1 expression level in different m6A modification 
clusters and observed a significant up-regulation in 
the m6A-C1 subtype (Figure 3E). Based on these 
findings, we confirmed that the three m6A 
modification patterns were characterized by different 
immune infiltration profiles. As expected, m6A-C1 
was recognized as an immune-inflamed phenotype 
characterized by immune activation and abundant 
immune cell infiltration; m6A-C2 was recognized as 
an immune-excluded phenotype characterized by 
stromal activation and weakened immune cell 
infiltration; and m6A-C3 was recognized as an 
immune-desert phenotype characterized by immune 
suppression. 

 We further investigated the specific association 
between each m6A regulator and immune cell 
infiltration by using Spearman’s correlation analyses 
(Figure S4A). High expression of ALKBH5, FTO, 
IGF2BP3, and WTAP was significantly associated with 
enhanced immunocyte infiltration, whereas CBLL1, 
ELAVL1, FMR1, HNRNPA2B1, IGF2BP1, KIAA1429, 
LRPPRC, RBM15, YTHDF1-3, and ZC3H13 expression 
exhibited a negative correlation with the immune 
infiltration level. Among these m6A regulators, the 
m6A binding protein IGF2BP1 attracted our attention 
on account of its significant negative correlation with 
prognostic outcomes and immune infiltration. 
Moreover, a strong positive correlation between 
IGF2BP1 and YTHDF1 was identified in the 
aforementioned results (Figure 2A). Current studies 
revealed the mechanism of m6A-regulator YTHDF1 in 
mediating the activation of dendritic cells (DCs) and 
antigen cross-priming of CD8+ T cells by enhancing 
translation of mRNA encoding cathepsins (lysosomal 
proteases that degrade antigens in phagosomes) [28]. 
Our study also found that IGF2BP1 exhibited a 
significant negative correlation with the infiltration 
levels of activated DCs, immature DCs, and CD8+ T 
cells (Figure S4A-B). We next stratified IGF2BP1 into 
high versus low expression subgroups and explored 



Theranostics 2021, Vol. 11, Issue 5 
 

 
http://www.thno.org 

2209 

the molecular pathogenesis behind IGF2BP1. GSEA 
analysis demonstrated that samples with low 
IGF2BP1 expression showed enrichment of genes 
involved in the interferon gamma/alpha response, 
TNFα via NF-κB, and inflammatory response 
signaling pathways (Figure S4C). The ESTIMATE 
algorithm exhibited a higher immune score in the 
IGF2BP1 low-expression subgroup, which confirmed 
the above findings (Figure S4D). Four categories of 
immunogenicity analysis revealed that the low 
IGF2BP1 expression subgroup was characterized by 
the upregulation of cross-presentation-related MHC 
molecules and immune effector cells but 
downregulation of immune suppressor cells (Figure 
S4E). In addition, we observed that tumors with 
IGF2BP1 mutations harbored significantly greater 
TML than those without IGF2BP1 mutations (Figure 
S4F). Taken together, we speculated that IGF2BP1 
may coordinate with YTHDF1 to mediate methylation 

modification that suppressed the activation of DCs 
and cytotoxic T lymphocytes, thus impeding the 
intratumoral antitumor immune response. 

m6A phenotype-related DEGs in colon cancer 
Although the consensus clustering algorithm 

based on m6A regulator expression classified CC 
patients into three m6A modification phenotypes, the 
underlying genetic alterations and expression 
perturbations within these phenotypes were not well 
known. Based on these queries, we further examined 
the potential m6A-related transcriptional expression 
change across three m6A modification patterns in CC. 
The empirical Bayesian approach was applied to 
determine overlapping differentially expressed genes 
(DEGs) among the three m6A modification patterns. A 
total of 524 DEGs that represented the critical 
distinguishing index of the three m6A modification 
patterns were considered as m6A-related signature 

 

 
Figure 3. TME characteristics in distinct m6A modification patterns. (A) Unsupervised clustering of 23 m6A regulators in the meta-GEO CC cohort. 
Clinicopathological information including age, gender, and tumor stage, as well as the m6A cluster, is shown in annotations above. Red represented the high expression of 
regulators and blue represented the low expression. (B) The fraction of tumor-infiltrating lymphocyte cells in three m6A clusters using the CIBERSORT algorithm. Within each 
group, the scattered dots represented TME cell expression values. The thick line represented the median value. The bottom and top of the boxes were the 25th and 75th 
percentiles (interquartile range). The whiskers encompassed 1.5 times the interquartile range. The statistical difference of three gene clusters was compared through the 
Kruskal-Wallis H test. *P < 0.05; **P < 0.01; ***P < 0.001. (C) The immune score and tumor purity of three gene clusters were analyzed and plotted. (D) The proportion of 
molecular subtypes in the three modification patterns. (E) Comparison of PD-L1 expression level across three m6A modification patterns. 
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and illustrated in a Venn diagram (Figure 4A, Table 
S5). GO enrichment analysis of these signature genes 
revealed that the biological processes related to RNA 
modification, transcription, and immune regulation 
were significant over-represented (Figure 4B). These 
results further demonstrated the overlapped DEGs 
were characterized by m6A modification and 
immunity, and could be regarded as the m6A-related 
gene signatures. Based on the 524 most representative 
m6A phenotype-related signature genes, we 
performed unsupervised consensus clustering 
analysis and obtained three stable transcriptomic 
phenotypes (Figure S5A-B). These stratifications 
divided patients into three distinct m6A gene 
signature subgroups that had different clinicopatho-
logic features and were defined as m6A gene-S1, m6A 
gene-S2 and m6A gene-S3 (Figure 4C). We found that 
patients with an advanced clinical stage were 
represented by the m6A gene-S3 subgroup, and 
patients with CIN subtypes and down-regulated 
PD-L1 expression were mainly concentrated in the 
m6A gene-S2 and S3 subgroups (Figure 4C, Figure 
S5C). Further survival analysis indicated a significant 
prognostic differences among the three m6A gene 
signatures in CC samples. The m6A gene-S1 signature 
was proven to be associated with better prognosis, 

while m6A gene-S3 was associated with worse 
survival outcomes (Figure 4D). The association 
between the m6A gene signatures with survival 
remained statistically significant after considering 
age, gender, MMR and stage (Cox proportional 
hazards model, m6A-S2 vs. m6A-S3, HR, 0.61 [95%CI, 
0.41 to 0.89], P = 0.010; Figure 4E). The expression 
levels of the 23 m6A regulators among three gene 
signature subgroups were also compared and shown 
in Figure S5D. We observed significant differences in 
m6A regulator expression between the three m6A gene 
signature subgroups, which was consistent with the 
expected results of the m6A methylation modification 
patterns. 

Construction of the m6Sig score and 
exploration of its clinical relevance 

Although our findings identified the role of m6A 
modification in prognosis and immune infiltration 
modulation, these analyses were only based on the 
patient population and could not accurately predict 
the patterns of m6A methylation modification in 
individual tumors. Therefore, we developed a scoring 
scheme termed the m6Sig score, which is based on the 
identified m6A-related signature genes, to quantify 
the m6A modification pattern of individual CC 

 

 
Figure 4. Construction of differential expression of m6A gene signatures and functional annotation. (A) 524 m6A-related differentially expressed genes (DEGs) 
between three m6A-clusters were shown in the Venn diagram. (B) Functional annotation for m6A-related genes using GO enrichment analysis. The color depth of the barplots 
represented the number of genes enriched. (C) Unsupervised clustering of overlapping m6A phenotype-related DEGs to classify patients into different genomic subtypes, termed 
as m6A gene S1-3, respectively. The gene signature subtypes, m6A clusters, molecular subtypes, tumor stage, gender, and age were used as patient annotations. (D) The survival 
curves of the m6A phenotype-related gene signatures were estimated by the Kaplan-Meier plotter. (P = 0.015, Log-rank test). (E) Subgroup analysis estimating clinical prognostic 
value between m6A gene signature in independent CC data sets and cancer stage by univariate Cox regression. The length of the horizontal line represented the 95% confidence 
interval for each group. The vertical dotted line represented the hazard ratio (HR) of all patients.  
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patients. Considering the complexity of the 
quantification of m6A modification, we illustrated the 
workflow of m6Sig score construction with the 
alluvial diagram (Figure 5A). These results indicated 
that m6A gene-S2 with the CIN subtype was linked to 
a higher m6Sig score, whereas m6A gene-S1 exhibited 
a lower m6Sig score. Notably, m6A-C3 showed the 
highest m6Sig score, followed by m6A-C2 and m6A-C1 
(Figure S6A). We examined the relationship between 
known biological signatures and the m6Sig score 
through Spearman analysis. A heatmap of the 
correlation matrix demonstrated that the m6Sig score 
was markedly negatively correlated with the immune 
activation process and DNA repair signatures but 
positively correlated with EMT and stromal-relevant 
signatures (Figure 5B). There was also a significant 
inverse correlation between the m6Sig score and the 
immune score (r = -0.44, P < 0.001), demonstrating the 
crosstalk between the m6Sig score and immune 
infiltration evaluation (Figure S6B). Similarly, 
compared with the subgroups of patients with a high 
m6Sig score, the low m6Sig score subgroup had higher 
proportions of MHC molecules and immune effector 
cells but lower proportions of suppressor cells and 
checkpoint molecules (Figure S6C). Furthermore, we 
sought to determine the prognostic ability of the 
m6Sig score in predicting survival outcome by 
dividing the patients into low- or high-score 
subgroups with a cutoff value of 1.8947 (Methods 
section). As expected, patients with low m6Sig score 
were significantly associated with a better prognosis 
in the CIT cohort (HR, 0.47 [95%CI, 0.35 to 0.63], P < 
0.001, Figure 5C), and the results of the ROC curves 
analysis validated the predictive advantage of the 
established risk model (AUC = 0.732, Figure S6D). 
Furthermore, multivariate Cox regression model 
analysis considering patient age, gender, tumor stage, 
molecular subtype and MSI status confirmed the 
m6Sig score as a robust and independent prognostic 
biomarker for evaluating patient outcomes (HR, 0.58 
[95%CI, 0.42 to 0.80], P < 0.001, Figure S6F). We also 
explored the relationship between the m6Sig score and 
molecular subtype and found that the dMMR subtype 
was associated with a lower m6Sig score than other 
CC subtypes (Figure 5D). Additionally, the PD-L1 
expression level was investigated, and there was a 
pronounced elevation in the low m6Sig score group 
(Figure 5E). 

We next validated the constructed m6A scoring 
system by integrating the clinical characteristics and 
genomic information of TCGA-COAD database. It 
was also found that m6Sig score displayed the 
potential prognosis predictive value in TCGA cohort 
(AUC = 0.704, Figure S6E), and patients with low 
m6Sig score indicated a prominent survival benefit 

(HR, 0.62 [95%CI, 0.42 to 0.91], P = 0.014; Figure 5F). 
Multivariate analysis for the TCGA cohort also 
confirmed that the m6Sig score could act as an 
independent prognostic biomarker in CC (HR, 0.65 
[95%CI, 0.41 to 0.90], P = 0.009; Figure S6G). TCGA 
analysis revealed a comprehensive molecular 
characterization of CC and suggested subdividing 
tumors into four subtypes based on MSI status. A 
significant lower m6Sig score was found in samples of 
the MSI-H subtype than in those of the other three 
subtypes (Figure 5G). To further verify the reliability 
of the m6A scoring model, we utilized the two 
aforementioned CC cohorts and an independent 
cohort to determine the relationship between the 
m6Sig score and patient prognosis (GSE14333, 
GSE37892 and GSE33113). Consistent with the above 
findings, the low m6Sig score group showed an 
obvious survival advantage over the high score group 
(Figure S7A-C). The above results strongly suggested 
that the m6Sig score can represent the m6A 
modification patterns and predict the prognosis of CC 
patients. 

Increasing evidence has demonstrated an 
association between the tumor genome somatic 
mutations and responsiveness to immunotherapy. 
Consequently, we investigated the distribution 
patterns of tumor mutation load in different m6Sig 
score groups and revealed that the low m6Sig score 
group had higher mutation frequencies (Figure 5H). 
We also noticed a higher frequency of somatic copy 
number alterations (SCNA) in the low m6Sig score 
subgroup, consistent with the previous finding that 
SCNA correlated positively with immune evasion and 
tumor cell proliferation (Figure 5I). We further 
performed significantly mutated gene (SMG) analysis 
for CC samples in the low m6Sig score subgroup 
versus the high score subgroup. The SMG mutational 
landscapes showed that PIK3CA (33% vs. 19%) and 
SMAD4 (14% vs. 5%) had higher somatic mutation 
rates in the low m6Sig score group, whereas TP53 
(50% vs. 63%) had higher somatic mutation rates in 
the high m6Sig score subtype (Fisher’s exact test, P < 
0.05, Figure 5J). To gain further insights into the 
mutational processes operative in CC, we extracted 
three mutational signatures (known as signatures 1, 6, 
and 10) from the TCGA-COAD mutational profile. We 
found that the low m6Sig score subtype exhibited a 
significantly higher proportion of mutational 
signature 6 (Fisher’s exact test, P = 0.013, Figure 5J). 
These data enabled us to depict the effect of m6Sig 
score classification on genomic variation more 
comprehensively, as well as to reveal the potentially 
complex interaction between individual somatic 
mutations and m6A modifications. 
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Figure 5. Construction of m6Sig score and explore the relevance of clinical features. (A) Alluvial diagram of m6A clusters in groups with different molecular subtypes 
(CIN, CSC, dMMR and KRASm), m6A-gene cluster, and m6Sig score. (B) Correlations between m6Sig score and the known biological gene signatures using Spearman analysis. The 
negative correlation was marked with blue and positive correlation with red. (C) Kaplan-Meier curves for high and low m6Sig score patient groups in CIT cohort. Log-rank test, 
P < 0.001. (D) Distribution of m6Sig score in the different molecular subtypes. The thick line represented the median value. The bottom and top of the boxes were the 25th and 
75th percentiles (interquartile range). The whiskers encompassed 1.5 times the interquartile range. The differences between every two groups were compared through the 
Kruskal-Wallis H test. (E) Relative distribution of PD-L1 expression in high m6Sig score versus low m6Sig score subgroups. (F) Kaplan-Meier curves for patients with high and low 
m6Sig score subgroups in the TCGA cohort. (G) Violin plot showing m6Sig score in groups with high or low MSI and stable status. The differences between the four groups were 
compared through the Kruskal-Wallis test. MSS, microsatellite stable; MSI-H, high microsatellite instability; MSI-L, low microsatellite instability. (H-I) Relative distribution of 
tumor mutation load (H) and somatic copy number alternation (I) in m6Sig score high versus low subgroups. (J) Mutational landscape of SMGs in TCGA-COAD stratified by low 
(left panel) versus high m6Sig score (right panel) subgroups. Individual patients were represented in each column. The upper barplot showed TML, the right bar plot showed the 
mutation frequency of each gene in separate m6Sig score groups. m6A cluster, stage, gender, MSI status, and mutational signatures were shown as patient annotations. 
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The role of m6Sig score in predicting 
immunotherapeutic benefits 

ICI treatment represented by CTLA-4/PD-1 
inhibitors has undoubtedly caused a major 
breakthrough in antitumor therapy. In addition to 
well-known TML, PD-L1, and MSI [48, 62], newly 
identified predictors, such as TIDE and IPS, are 
widely used and strongly recommended to evaluate 
the immune response. Our analysis also revealed that 
the TIDE was significantly decreased in the low m6Sig 
score group, and IPS was significantly elevated in the 
low m6Sig score group (TIDE distribution in 
TCGA-COAD and CIT, both P < 0.001, Figure 6A-B; 
IPS distribution in TCGA-COAD and CIT, both P < 
0.001, Figure 6C-D). These findings indirectly 
demonstrated that the representation of tumor m6A 
modification patterns plays a crucial role in mediating 
the immune response. 

Considering the strong connection of the m6Sig 
score with the immune response, we next investigated 
whether the m6A modification signature could predict 
patients’ response to ICI therapy in three independent 

immunotherapy cohorts. Firstly, in both the anti-PD-1 
cohort [57] (Riaz et al. study) and anti-CTLA-4 cohort 
[58] (Vanallen et al. study), patients with a low m6Sig 
score group exhibited significant clinical advantages 
and markedly prolonged survival (anti-PD-1, HR, 0.40 
[95%CI, 0.18 to 0.92], P = 0.030. Figure 6E; an-CTLA-4, 
HR, 0.42 [95%CI, 0.19 to 0.92], P = 0.032, Figure 6G). 
The significant therapeutic benefits and immune 
response to ICI treatment were confirmed in patients 
with low m6Sig score compared to those with high 
m6Sig score (response rate of anti-PD-1 cohort: 39% vs. 
11%, Figure 6F; response rate of anti-CTLA-4 cohort: 
42% vs. 25%, Figure 6H). A consistent result was also 
observed in the anti-PD-L1 cohort (Mariathasan et al. 
study), lower m6Sig scores in mUC patients were 
significantly associated with better clinical outcomes 
and higher tumor mutational load (anti-PD-L1, HR, 
0.66 [95%CI, 0.49 to 0.88], P = 0.004, Figure S7D-F). 
Taken together, our findings strongly suggest that the 
m6Sig score is associated with the response to 
immunotherapies and can further predict the 
prognosis of patients.  

 
 

 
Figure 6. The m6Sig score predicts immunotherapeutic benefits. (A-D) The relative distribution of TIDE was compared between m6Sig score high versus low groups in 
TCGA-COAD (A) and CIT (B) cohort, respectively. The relative distribution of IPS was also compared between m6Sig score high and low groups in TCGA-COAD (C) and CIT 
(D) cohort. (E) Kaplan-Meier curves for high and low m6Sig score patient groups in the Riaz et al. cohort. Log-rank test, P = 0.030. (F) The fraction of patients with clinical 
response to anti-PD-1 immunotherapy (Riaz et al. cohort) in low or high m6Sig score groups. CR/PR vs. SD/PD: 39% vs. 61% in the low m6Sig score groups, 11% vs. 89% in the high 
m6Sig score groups. (G) Kaplan-Meier curves for high and low m6Sig score patient groups in the Vanallen et al. cohort. Log-rank test, P = 0.032. (H) The fraction of patients with 
clinical response to anti-CTLA-4 immunotherapy in low or high m6Sig score groups of Vanallen et al. cohort. CR/SD vs. PD: 42% vs. 58% in the low m6Sig score groups and 25% 
vs. 75% in the high m6Sig score groups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. 
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Discussion 
Mounting evidence has shown that m6A 

modification plays an essential role in innate 
immunity, inflammation, and antitumor effects 
through interaction with diverse m6A regulators [6, 7, 
63]. Although plenty of elegant studies have revealed 
the epigenetic modulation of m6A regulators in the 
immune contexture, the overall TME characteristics 
mediated by integrated m6A regulators have not been 
comprehensively recognized. Therefore, identifying 
distinct m6A modification patterns in the tumor 
immune microenvironment will provide insights into 
the interactions of m6A RNA methylation on 
anti-tumor immune response and facilitate more 
effective precision immunotherapy strategies. 

 In this study, we identified three distinct m6A 
methylation modification patterns characterized by 
different immune phenotypes, which were correlated 
with diverse anticancer immunity. The m6A-C1 was 
characterized by immune activation and tumor- 
infiltrating lymphocyte infiltration, corresponding to 
an immune-inflamed phenotype. The m6A-C2 was 
characterized by the presence of immune cells and 
stroma, together with EMT, TGF-β and Wnt signaling 
pathway activation, corresponding to an immune- 
excluded phenotype. The m6A-C3 was characterized 
by the immunosuppression TME, corresponding to an 
immune-desert phenotype. A previous study 
demonstrated that the tumor microenvironment 
contexture plays a crucial role in tumor progression 
and immunotherapeutic efficacy [20]. Baseline levels 
of tumor-infiltrating CD4+/CD8+ T cells, Macrophage 
M1, NK cells and inflammatory cytokines secretion et 
al. have been shown to be correlated with the 
likelihood of immune response [20, 64, 65]. We also 
identified that the m6A-C1 pattern was significantly 
associated with elevated tumor-infiltrating 
lymphocyte and PD-L1 levels, supporting the 
potential predictive value on immunotherapy 
benefits. Recent studies reported that the activation of 
EMT- and TGF-β-related pathways impeded the 
penetration of lymphocyte cells into the parenchyma 
of these tumors [66]. Specific molecular inhibitors 
targeting TGF-β have been shown to reshape the 
tumor microenvironment (e.g. reprogram peritumoral 
stromal fibroblasts) and restore the anti-tumor 
immunity [27, 67]. Based on these findings, we 
speculated that CC patients with the m6A-C2 pattern 
may benefit from combination treatment with ICB 
agents and TGF-β blockade.  

Furthermore, differentially expressed genes 
(DEGs) identified from distinct m6A modification 
patterns were significantly over-represented in 
biological pathways implicated in RNA 
polyadenylation and immunity, suggesting that these 

DEGs were considered as m6A phenotype-related 
gene signatures. Similar to the results of m6A 
modification clustering, three transcriptomic subtypes 
based on m6A signature genes were identified and 
were significantly associated with different survival 
outcomes and TME landscapes. We further 
established a quantification system named the ‘m6Sig 
score’ to define different m6A modification patterns, 
thus guiding therapeutic strategies for individual 
patients more precisely. As a result, the m6A 
modification pattern characterized by the 
immune-excluded phenotype and immune-desert 
phenotype exhibited a higher m6Sig score, while the 
pattern characterized by the immune-inflamed 
phenotype showed a lower m6Sig score. Further 
analyses highlighted that the m6Sig score was a 
prognostic biomarker in colon cancer and associated 
with mutational signatures, SCNA and MSI-H status, 
suggesting that the m6Sig score may serve as a 
preferable surrogate for genomic aberrations. In 
addition, we observed that the m6Sig score was 
strongly associated with predictors of the immune 
response, including TML, PD-L1, IPS, and TIDE, 
implying that m6A modification could influence the 
therapeutic efficacy of immunotherapy. Actually, we 
identified the robust prediction ability of the m6Sig 
score in the immune response via three independent 
ICI cohorts. These findings verified our hypothesis 
that the m6A modification pattern could be applied in 
clinical practice to determine immune phenotypes 
and guide therapeutic regimens. 

Besides elucidated the clustering results of 
m6A-modification, we also explored the specific role 
of individual m6A-regulator in the regulation of 
tumor immunity. Recent advances have indicated that 
RNA N6-methyladenosine enhances mRNA stability 
and translation mainly through mRNA binding 
proteins of IGF2BPs [68]. Of these, IGF2BP1 was 
recognized as a tumor oncogene as it impairs 
miRNA-directed downregulation of oncogenic factors 
in various cancer types [69, 70]. Our analyses revealed 
that IGF2BP1 was up-regulated in tumor tissues and 
associated with reduced survival time. Further 
analysis indicated a strong positive correlation 
between IGF2BP1 and YTHDF1 in colon cancer. A 
previous study reported that YTHDF1 could 
recognize m6A-marked transcripts encoding 
lysosomal proteases and result in degradation of 
neoantigens in dendritic cells, thereby suppressing 
cross-presentation of tumor neoantigens and 
cross-priming of CD8+ T cells [28]. Furthermore, 
higher expression of IGF2BP1 exhibited a significantly 
lower infiltration level of activated DCs and immature 
DCs, suggesting that IGF2BP1 mediated m6A 
modification may be involved in the activation of 
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TME DCs. IGF2BP2/3 were also functioned as 
‘readers’ in identifying and stabilizing the m6A site, 
and played a nonnegligible role in colorectal 
carcinoma progression via post-transcriptional 
regulation manner [71, 72]. Although high expression 
of IGF2BP2 was not a strong indicator of prognosis, 
leukocyte subsets analyses indicated that it was 
significantly negatively correlated with the infiltration 
of tumor infiltrating lymphocytes (TILs). Accordingly, 
the m6A modification effect of IGF2BP1/2 on 
immunosuppressive mechanisms still require further 
validation in low-throughput biological experiments 
with cell culture and PDX mouse models. KIAA1429 
and RBM15/15B contain RNA-binding domains, and 
thus may facilitate the recruitment of the ‘writer’ 
complex to specific sites in mRNA [73, 74]. Here, we 
observed that KIAA1429 and RBM15 had prevalent 
CNV alterations and significant up-regulation in 
tumor tissues, suggesting the potential role of 
promoting the migration and invasion of cancer cells 
[75]. Subsequent correlation analysis also revealed 
that the two m6A-writers were inversely associated 
with immune cell infiltration. Inversely, the m6A RNA 
demethylase ALKBH5 exhibited an obvious 
enhancement in T lymphocyte infiltration and signifi-
cant up-regulation in normal samples, indicating that 
the multiple types of post-transcriptional regulation 
underlay anti-tumor effects [76, 77]. Together, these 
results suggest a diverse heterogeneity of m6A 
modification, demonstrating the importance of a 
comprehensive assessment of the m6A modification 
patterns and enhancing our understanding of 
epigenetic regulation on diverse physiological 
processes. 

Evaluation of the mutated driver genes 
underlying human tumors is a critical foundation for 
cancer diagnostics, therapeutics, and rational therapy 
selection. Here, we identified that the mutation rates 
of the SMGs of PIK3CA and SMAD4 were markedly 
augmented in the low score subgroup compared to 
the high score subgroup, while the TP53 mutation rate 
was elevated in the high score subgroup. Previous 
studies demonstrated that the PIK3CA mutation was 
associated with increased immune cell infiltration and 
decreased tumoral PD-L1 expression [78, 79]. SMAD4 
belongs to the SMAD protein family, which is 
involved in the TGF-β signaling pathway that usually 
impedes immune activation in the tumor 
microenvironment [80]. TP53 is frequently mutated in 
most tumor types, and its mutation results in the 
downregulation of the immune response in 
hepatocellular carcinoma [81]. These m6Sig 
score-related tumor driver gene mutations were 
markedly associated with the immune activity, 
suggesting the complicated interaction of m6A 

modification with tumor immunogenomic 
characteristics. 

 Although we reviewed the literature and 
curated a catalog of 23 recognized regulators of RNA 
methylation, a series of new identified regulators 
need to be incorporated into the model to optimize 
the accuracy of the m6A modification patterns. In the 
absence of an appropriate ICI-based colon cancer 
dataset, we hope that combined with different 
immunotherapy regimens (anti-PD1/L1 or 
anti-CTLA-4) across different malignancies 
(Melanoma and Urothelial cancer) to verify the effects 
of m6Sig score could further strengthen our 
conclusion. Besides, the m6A modification patterns 
and m6Sig score were identified by using 
retrospective datasets; thus, a prospective cohort of 
CC patients receiving immunotherapy is needed to 
validate our findings. Moreover, as not all patients 
with low m6Sig score exhibited robust clinical benefits 
from ICI therapy, more clinicopathological features 
should be incorporated into the prediction models to 
improve accuracy. 

In this study, we comprehensively evaluated the 
m6A modification patterns among 1307 colon cancer 
samples based on 23 m6A regulators, and 
systematically correlated these modification patterns 
with TME cell-infiltrating characteristics. This 
integrated analysis indicated that dysregulation of 
RNA methylation lays a critical foundation for 
understanding the regulation of tumor immunity. 
More broadly, evaluating the m6A modification 
patterns of the individual tumor will contribute to 
enhancing our cognition of the characteristics of TME 
infiltration and provide important insight into 
immunotherapeutic efficacy. 
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