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Abstract 

Rationale: This study aimed to use computed tomography (CT) images to assess PD-L1 expression in 
non-small cell lung cancer (NSCLC) and predict response to immunotherapy. 
Methods: We retrospectively analyzed a PD-L1 expression dataset that consisted of 939 consecutive 
stage IIIB-IV NSCLC patients with pretreatment CT images. A deep convolutional neural network was 
trained and optimized with CT images from the training cohort (n = 750) and validation cohort (n = 93) 
to obtain a PD-L1 expression signature (PD-L1ES), which was evaluated using the test cohort (n = 96). 
Finally, a separate immunotherapy cohort (n = 94) was used to assess the prognostic value of PD-L1ES 
with respect to clinical outcome. 
Results: PD-L1ES was able to predict high PD-L1 expression (PD-L1 ≥ 50%) with areas under the 
receiver operating characteristic curve (AUC) of 0.78 (95% confidence interval (CI): 0.75~0.80), 0.71 
(95% CI: 0.59~0.81), and 0.76 (95% CI: 0.66~0.85) in the training, validation, and test cohorts, 
respectively. In patients treated with anti-PD-1 antibody, low PD-L1ES was associated with improved 
progression-free survival (PFS) (median PFS 363 days in low score group vs 183 days in high score group; 
hazard ratio [HR]: 2.57, 95% CI: 1.22~5.44; P = 0.010). Additionally, when PD-L1ES was combined with a 
clinical model that was trained using age, sex, smoking history and family history of malignancy, the 
response to immunotherapy could be better predicted compared to either PD-L1ES or the clinical model 
alone. 
Conclusions: The deep learning model provides a noninvasive method to predict high PD-L1 expression 
of NSCLC and to infer clinical outcomes in response to immunotherapy. Additionally, this deep learning 
model combined with clinical models demonstrated improved stratification capabilities. 

Key words: PD-L1 expression; deep learning; computed tomography; immunotherapy; non-small cell lung 
cancer 
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Introduction 
Lung cancer remains the leading cause of cancer 

mortality worldwide [1]. Non-small cell lung cancer 
(NSCLC) represents 80-85% of primary lung 
malignancies [2]. The treatment strategy for NSCLC 
has rapidly evolved with the introduction of immune 
checkpoints inhibitors (ICIs) targeting PD-1 or PD-L1, 
but durable disease response remains limited to a 
subset of patients. Given the overall response rates to 
ICI treatment, ranging from 14% to 20% in unselected 
patients [3,4], it is essential to identify predictive 
biomarkers for the selection of patients who are more 
likely to respond to immunotherapy. 

PD-L1, which is expressed by cells in the tumor 
microenvironment, engages PD-1 on T cells and 
triggers inhibitory signaling of the T cell receptor, 
reducing T-cell killing capacity and blocking effector 
functions [5]. PD-L1 expression on tumor cells is 
induced by constitutive oncogenic signaling [6]. 
Alternatively, it can be induced in response to 
immune-stimulating cytokines, such as interferons, 
that are produced by an active antitumor immune 
response [7,8]. Currently, PD-L1 expression on tumor 
cells assessed by immunohistochemistry is the only 
approved diagnostic biomarker for immunotherapy 
in patients with NSCLC and has been convincingly 
demonstrated to be associated with the efficacy of ICIs 
in NSCLC [9,10]. In the first-line setting, 
pembrolizumab monotherapy demonstrated 
improved progression-free survival (PFS) and overall 
survival (OS) benefit compared to chemotherapy in 
NSCLC patients with PD‐L1 expression on ≥ 50% of 
tumor cells (KEYNOTE 024) [9,11]. According to a 
recent study, though PFS and OS were significantly 
longer in the pembrolizumab-treated group than in 
the chemotherapy-treated group in the full NSCLC 
cohort with PD-L1 ≥ 1%, a clear PFS and OS benefit 
was only observed in the subgroup of patients with 
PD-L1 ≥ 50%, and higher PD-L1 expression 
corresponded to greater benefit (KEYNOTE 042) [12]. 
The FDA approved immunohistochemistry assay for 
PD-L1 expression, utilizing a cut-off of 50% tumor 
proportion score (TPS) for first-line treatment with 
pembrolizumab. Pembrolizumab monotherapy is 
preferred for patients with stage IV NSCLC and 
PD-L1 levels of 50% or more who are negative for 
EGFR mutations and ALK fusions. However, 
expression levels of PD-L1 are intratumorally 
heterogeneous and dynamic by immunohisto-
chemistry analysis with different antibodies and 
platforms, as well as multiple scoring criteria, 
complicating interpretation of the results [13-15]. 
Therefore, a noninvasive and whole-tumor-based 
biomarker is urgently needed. 

Radiological images are routinely available in 
clinical practice. Unlike traditional biopsy-based 
assays that represent only part of the tumor, images 
reflect information on the entire tumor burden in a 
non-invasive manner and avoid the effects of tumor 
heterogeneity [16,17]. Radiomics is the science of 
quantifying patterns of tumor phenotypes on 
radiographic images in a high throughput manner 
and analyzing them with bioinformatics tools to build 
clinically relevant models that assess tumor and 
microenvironment heterogeneity [19]. Indeed, 
radiomics-based biomarkers have shown success in 
predicting response to different treatments in 
different tumor types [21-26]. 

In this study, we aimed to develop a radiomic 
signature to predict PD-L1 TPS ≥ 50% and to evaluate 
its potential ability to predict clinical outcomes in 
anti-PD-1 immunotherapy-treated metastatic NSCLC 
patients. 

Methods 
Patients 

This study was granted ethics approval by the 
institutional review board of the West China Hospital, 
Sichuan University (Approval number: 2019-612) and 
was performed in accordance with ethical standards 
of the 1964 Declaration of Helsinki and its later 
amendments. Medical records were retrieved to 
collect clinical data (age, gender, smoking status, and 
family history), treatment regime, and survival 
outcome. Informed consent was waived due to the 
retrospective nature of this study. 

PD-L1 expression dataset 
A consecutive cohort of 2094 patients with stage 

IV NSCLC who underwent PD-L1 staining based on 
histological specimens from January 2016 to 
December 2018 at the West China Hospital of Sichuan 
University were retrospectively screened. Eight 
hundred twenty-four patients were excluded due to 
low-quality CT images. In this study, low-quality CT 
was defined as CT reconstructed with 30f 
reconstruction kernel. All included CTs were 
reconstructed with 60f kernel. Three hundred thirty- 
one patients were excluded due to insufficient clinical 
or pathological information. Finally, 939 patients were 
included in the analysis. Immunohistochemical (IHC) 
assays were performed using SP142 antibody on the 
Ventana Benchmark platform. Slides were scanned 
and independently scored by two pathologists who 
estimated the percentage of PD-L1 protein in both 
tumor cells and tumor infiltrating immune cells. 
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Immunotherapy dataset 
Patients who met the following inclusion criteria 

were included in this dataset: 1) histologically 
confirmed primary NSCLC; 2) stage IV; 3) receipt of 
pembrolizumab monotherapy (200 mg every 3 weeks 
at the approved dose) or pembrolizumab combined 
with chemotherapy as the first-line treatment; and 4) 
pretreatment CT and CT data during follow-up were 
available. Patients were excluded if they met one or 
more of the following criteria: 1) clinical data, 
including age, sex, smoking status and family history 
of tumor were missing; 2) other treatments, such as 
radiotherapy, surgery or herbs, were adopted during 
immunotherapy treatment; 3) low-quality CT images; 
or 4) lost to follow-up before disease progression. All 
enrolled patients submitted to CT scan two weeks 
before immunotherapy. The follow-up interval was 8–
10 weeks, and routine laboratory tests and CT scans 
were performed during this time. Finally, 94 patients 
admitted between January 2017 to December 2018 
from West China Hospital were included in the 
cohort. PFS was obtained using iRECIST criteria, 
which is the response criteria used in trials testing 
immunotherapeutic [27]. 

Data preprocessing 
This study consisted of two datasets, the PD-L1 

expression dataset and the immunotherapy dataset. 
Both datasets contained 4 clinical characteristics (age, 
gender, smoking status, and family history), as well as 
CT images. The PD-L1 expression dataset was used to 
train the PD-L1 expression signature (PD-L1ES) 
program to reflect whether PD-L1 TPS is higher than 
50%, while the immunotherapy dataset was used to 
evaluate the PFS utilizing the PD-L1ES program. In 
this experiment, we obtained the training, validation 
and test cohorts from the PD-L1 expression dataset by 
stratified and random sampling of patients at a ratio 
of 8:1:1. Details of the datasets and experimental flow 
chart are shown in Supplementary Figure 1. 

To make full use of the enrolled data, the 
k-nearest neighbor (KNN) algorithm was first 
performed to impute missing clinical values. In detail, 
the Euclidean distance between patients was 
calculated using patients’ nonmissing variables, and 
missing values were filled by the weighted average of 
the closest K patients’ value (k = 3 in this study). Then, 
all clinical characteristics were normalized to make 
the model easier to learn. All CT images were 
resampled to the same resolution of 1×1×1 mm3. 

Delineation of the region of interest (ROI) 
The region of interest (ROI) of the primary tumor 

lesion was delineated by an experienced respiratory 
medicine specialist on the workstation. Next, we 

performed rectangular clipping of the ROI area 
amplifying to 5 pixels around to avoid the bias of ROI 
area delineation. Additionally, the upper and lower 
slices of the ROI slice were also cut and used as 
training sample to amplify the amount of available 
data. Furthermore, extracting the upper and lower 
slices at the same time also mitigates the error 
introduced by the radiologists’ selection of slices. 
Finally, to unify the input size, we resized all ROI 
patches into 112×112 pixels. To more fully describe 
the tumor, we extracted radiomic features of ROIs to 
improve the accuracy of the model. 

Establishment and evaluation of PD-L1 
expression signature 

We built the PD-L1ES using a deep learning 
approach. The network (Figure 1) consisted of three 
parts, a deep learning feature extraction module 
based on the densenet121, a handcrafted conventional 
radiomic feature extraction module, and a classifier 
module based on the fully connected classification 
layer. 

The input of the deep learning feature extraction 
module primarily included the slice of the CT tumor 
region. Before inputting the radiomic features, we 
employed the Mann Whitney U test to reduce the 
dimensionality of the radiomic features based on the 
training cohort. For clinical characteristics, we 
standardized them with z-score and concatenate them 
with radiomic features and deep learning features as 
the input of the fully connected layer. The output of 
the whole model represented the high expression 
probability and was regarded as PD-L1ES. During 
training of the model, cross-entropy loss function and 
Adam optimizer were used, and the learning rates 
were set to 1e-4, 1e-5 and 1e-6. We dropped the 
learning rate by 20 epochs per training. The best 
standard for training in each step was the best result 
of the validation cohort. 

The predictive value of the PD-L1ES was 
evaluated with area under the receiver operating 
characteristic curve (AUC) and the decision curve. 
Meanwhile, we also compared PD-L1ES to a clinical 
model (CM; built using clinical characteristics only), a 
radiomic model (RM; built using only predefined 
radiomic features), and a deep learning (DL) model 
(only comprising deep learning features). In addition, 
we read the machine manufacturer, X-ray tube 
current and slice thickness from the CT 
metainformation and then analyzed the influence of 
these parameters on the PD-L1ES results. To verify the 
robustness of PD-L1ES, we randomly re-divided the 
validation and test cohorts and retrained twice. 
Furthermore, we used PD-L1ES obtained from the 
model to perform PFS prediction in the 
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immunotherapy dataset. Meanwhile, we also used 
clinical features to establish a clinical model via Cox 
regression and performed comparative analysis with 
respect to PD-L1ES. 

Statistical analysis 
PD-L1ES was built in the training cohort and 

verified in the testing cohort. During the training 
process, results of the adjustment were primarily 
determined by the results of the validation cohort. 
Delong test was used as a method to calculate the 
receiver operating characteristic curve (ROC) 
difference. Moreover, the predicted value of the 
binarized signature (using X-tile [28]) in predicting 
the efficacy of immunotherapy was investigated with 
Kaplan-Meier curves and Log-rank test, which was 
further compared to the Kaplan-Meier curves 
obtained based on IHC of PD-L1 expression [28]. We 
performed all analysis using R software (version 3.5.2; 
http://www.R-project.org) and Python (version 3.6.5, 
https://www.python.org/). 

Results 
Clinical characteristics 

In the PD-L1 expression dataset, 939 patients 
were included. The mean age was 58.8 years (±10.7), 
and 576 (61.3%) patients were male. There were 432 
(46.0%) never-smokers, and PD-L1 expression values 
were greater than 50% in 328 (34.9%) patients. 
Demographic and clinical characteristics of the PD-L1 
expression dataset are shown in Table 1. 

In the immunotherapy dataset, 77 patients 

(81.9%) were male, with a mean age of 60.7 years (± 
11.1). Seventy-three (77.7%) were smokers, and the 
remaining 21 (22.3%) were nonsmokers. Fifty were 
diagnosed with adenocarcinoma, and the remaining 
included 33 patients with squamous cell carcinoma, 7 
patients with neuroendocrine tumors, 2 patients with 
lymphoepithelioma-like carcinoma and 2 patients 
with undifferentiated NSCLC. Fifty-one (54.3%) 
received pembrolizumab monotherapy as the 
first-line treatment, and 43 (45.7%) received 
pembrolizumab combined with chemotherapy as the 
initial treatment. Clinical characteristics of the 
immunotherapy dataset are shown in Supplementary 
Table 1. 

Validation of PD-L1 expression signature in 
predicting PD-L1 expression 

We extracted 1316 radiomic features that were 
calculated from images processed using different 
filters. Detailed information about the filters and 
features is shown in Supplementary Table 2. All 
radiomic features we extracted abided by the feature 
definitions that expand on the Imaging Biomarker 
Standardization Initiative (IBSI) [29]. 

Figure 2A-C shows the ROC curves of PD-L1ES, 
where the AUCs of the training, validation and test 
datasets were 0.78 (95% CI: 0.75~0.80), 0.71 (95% CI: 
0.59~0.81), and 0.76 (95% CI: 0.66~0.85), respectively. 
All results were significantly better than the DL, 
radiomic and clinical models (P<0.0001; ROC test was 
performed on the PD-L1 expression dataset). We 
concluded that PD-L1ES demonstrated good ability to 
distinguish between high and low expression of 

 

 
Figure 1. The structure of deep learning network. The entire network includes a feature extraction module (a convolutional network) for extracting deep learning features, and 
a classification module (a fully-connected network) for classifying PD-L1 expressions based on deep learning features combined with predefined radiomic features and clinical 
characteristics. 
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PD-L1 (≥ 50% and < 50%). In addition, the decision 
curves of the training and test cohorts further 
validated our conclusion (Figure 2D-F). We also 
found that PD-L1ES performed well in different layer 
thicknesses (greater than or equal to 5 mm and less 
than 5 mm) and X-ray tube current (the median is 
divided into two queues; cut-off point: 290) 
(Supplementary Figure 2). In addition, to evaluate 
the robustness of PD-L1ES, we randomly divided the 
validation and the test cohorts and re-established the 

signature. In the experimental verification results of 
the first random division, the AUC of the training, 
validation and test cohorts were 0.79 (95% CI: 
0.77~0.82), 0.73 (95% CI: 0.61~0.85) and 0.76 (95% CI: 
0.67~0.87). In the experimental verification results of 
the second random division, the AUC of the training, 
validation and test cohorts were 0.77 (95% CI: 
0.74~0.80), 0.74 (95% CI: 0.60~0.86) and 0.75 (95% CI: 
0.66~0.84). The results of two additional experiments 
revealed that PD-L1ES was more robust. 

 

 
Figure 2. PD-L1 expression signature assessment results for high and low expression classification. (A, B and C) were the ROC curves of the training, validation, and test 
cohorts, respectively. (D, E and F) were the decision curves of the training, validation, and test cohorts, respectively. Among them, each figure contained the results of PD-L1 
expression signature (PD-L1ES), deep learning model (DLM), radiomic model (RM) and clinical model (CM). They all showed that PD-L1 expression signature was superior to 
other models. 

Table 1. Clinical characteristics of the PD-L1 expression dataset 

Characteristics Total (n = 939) Training cohort (n = 750) Validation cohort (n = 93) P Value* Test cohort (n = 96) P Value** 
Age, year, mean ± SD 58.8 ± 10.7 58.9 ± 10.7 58.0 ± 10.3 0.462 59.0 ± 11.3 0.892 
Gender, n (%)    0.838  0.408 
Male 576 (61.3) 455 (60.7) 58 (62.4)  63 (65.6)  
Female 363 (38.7) 295 (39.3) 35 (37.6)  33 (34.4)  
Smoking status, n (%)    0.938  0.409 
Never 432 (46.0) 348 (46.4) 43 (46.2)  41 (42.7)  
Occasionally 374 (39.8) 300 (40.0) 36 (38.7)  38 (39.6)  
Constantly 95 (10.1) 74 (9.7) 11 (11.8)  10 (10.4)  
Unknown 38 (4.0) 28 (3.7) 3 (3.2)  7 (7.2)  
Family history of cancer, n (%)    0.686  0.437 
No 764 (81.4) 610 (81.3) 79 (84.9)  75 (78.1)  
Yes 139 (14.8) 113 (15.1) 11 (11.8)  15 (15.6)  
Unknown 36 (3.8) 27 (3.6) 3 (3.2)  6 (6.3)  
PD-L1 expression, n (%)    0.988  0.995 
≥ 50% 328 (34.9) 261 (34.8) 33 (35.5)  34 (35.4)  
< 50% 611 (65.1) 489 (65.2) 60 (64.5)  62 (64.6)  
Categorical data are shown as numbers (%) and continuous data as mean ± SD; 
*The P value is the test result of the training cohort and the validation cohort; 
**The P value is the test result of the training cohort and the test cohort. 
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Figure 3. Prognostic performance in different subgroups, comparing high PD-L1 expression signature and low PD-L1 expression signature. (A) Progression-free survival (PFS) 
of patients relative to PD-L1 expression signature (high or low, as defined by the median value) in whole immunotherapy dataset. (B) PFS of patients in pembrolizumab combined 
with chemotherapy group. (C) PFS of patients in pembrolizumab-monotherapy group. 

 

Validation of PD-L1 expression signature in 
predicting the efficacy of immunotherapy 

To explore the value of predicting the efficacy of 
immunotherapy using PD-L1 expression scores, we 
performed a Kaplan-Meier curve analysis based on 
PD-L1ES. The PD-L1ES was binarized with a cut-off 
of 0.66 obtained with X-tile. The group with PD-L1ES 
greater than 0.66 were termed the high PD-L1ES 
(high-risk) group, while the remaining were termed 
the low PD-L1ES (low-risk) group. 

The univariable Cox analysis identified the 
binarized PD-L1ES as a significant prognostic variable 
(C-index: 0.66, 95% CI: 0.48~0.83; Hazard Ratio (HR): 
2.57, 95% CI: 1.22~5.44; P = 0.010). In this study, low 
PD-L1ES was associated with improved PFS (Figure 
3). The median PFS in the high-risk group was 183 
days (95% CI: 122~257) and 363 days (95% CI: 363~) in 
the low-risk group. 

Moreover, stratified analysis was performed 
based on the treatment regime. For patients who 
received immunotherapy, the low-risk and high-risk 
groups showed significant differences in PFS (P = 
0.028). In patients administered immunotherapy 
combined with chemotherapy, a median PFS of 271 
days was observed in the low-risk group compared to 
248 days in the high-risk group (P = 0.038). 

Exploring the relationship between PD-L1 
expression signature and clinical 
characteristics 

We performed a stratified analysis for different 
clinical characteristics. Among them, we found that 
except for age (PAge = 0.028), other clinical 
characteristics were not effective in stratifying 

patients into high and low-risk (PFamily history = 0.17; 
PSmoking status = 0.22; PGender = 0.95) groups. The best 
cut-off value for age was 63. All Kaplan-Meier curves 
are shown in Supplementary Figure 3. 

To further exploit the efficacy of PD-L1ES, 
multivariable Cox regression analysis was performed 
with a combination of signature and clinical 
characteristics. Clinical characteristics were not 
significant when the signature and each characteristic 
were combined separately (PFamily history = 0.064; PSmoking 

status = 0.245; PGender = 0.374, PAge = 0.088). 
To explore the best predictive level of signature, 

we used all clinical characteristics to build a clinical 
model. Cox regression analysis was performed using 
a combination of signature and clinical models. We 
used Cox regression modeling with age, gender, 
smoking status, and family history. After using X-tile 
to select the best cut-off point (0.05 in this study), the 
clinical model classified patients into high-risk and 
low-risk groups (HR: 2.09, 95% CI: 1.05~4.18; P = 
0.032) significantly, and the median PFS for high-risk 
and low-risk is 172 days and 257 days, respectively. Its 
prognostic stratification effect is not as good as 
PD-L1ES. Using the clinical model in combination 
with PD-L1ES for combinatorial analysis, we found 
that both variables were very significant (PPD-L1ES = 
0.0396; PClinical model = 0.010; Cut-off point = 0.05) in the 
combination of clinical model and PD-L1ES. 
Fortunately, the model also demonstrated strong 
stratification capabilities (HR: 3.53, 95% CI: 1.86~6.72; 
P < 0.001; Cut-off point = 1.78) and the median PFS 
has been significantly improved. The median PFS for 
high and low-risk groups was 122 days and 363 days, 
respectively. Results of the fusion model were 
superior to both the clinical and PD-L1ES models 
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(Figure 4). Next, we performed the same subgroup 
analysis of the clinical model and fusion model as 
PD-L1ES. Results indicated that the clinical model 
was unable to significantly stratify patients in the 
immunotherapy group and immune combined 
chemotherapy group (PImmunotherapy = 0.068; 
PImmunotherapy combined chemotherapy = 0.054), while the fusion 
model demonstrated better performance than 
PD-L1ES in both groups (PImmunotherapy = 0.016; 
PImmunotherapy combined chemotherapy = 0.003). 

Visualization 
A high-expression patient (Patient 1) and a low- 

expression patient (Patient 2) in the immunotherapy 
dataset are shown as an example. The class activation 
map was generated by the gradient of the deep 

learning to observe important regions that the model 
considers. At the same time, two representative 
radiomic features based on univariate analysis were 
also visualized in the ROI. Details of the patients and 
the corresponding visualization results are shown in 
Figure 5. 

From this figure, we found that regardless of 
high and low expression, the primary observations of 
the deep learning model were located at the border of 
the lesion. In addition, huge texture differences in the 
lesion areas between two patients were seen from the 
visualization of the radiomic features, termed 
Wavelet-HL_glcm_SumEntropy and Wavelet-LL_ 
glrlm_GrayLevelNonUniformityNormalized.

 

 
Figure 4. Prognostic performance of clinical model and fusion model. (A, B and C) were the KM curves which indicated progression-free survival (PFS) of patients relative to 
clinical model in entire immunotherapy cohort, pembrolizumab-monotherapy group and pembrolizumab combined with chemotherapy group, respectively. (D, E and F) were 
the KM curves which indicated PFS of patients relative to combination of PD-L1 expression signature (PD-L1ES) and clinical model in entire immunotherapy cohort, 
pembrolizumab-monotherapy group and pembrolizumab combined with chemotherapy group, respectively. 
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Figure 5. The information of patients and model feature visualization. (A) Contained a random sample of a high-expression patient and a low-expression patient and their 
corresponding CT images. (B) Indicated the visual images of the imaging features (including deep learning features and typical radiomic features). 

 

Discussion 
Radiomics is an emerging method that can 

convert medical images into quantitative data to 
profile tumor phenotypes [30,31]. In our study, we 
established PD-L1ES via deep learning techniques to 
identify patients with high PD-L1 expression with 
high accuracy (AUCs ≥ 0.71), which could help to 
predict the efficacy of immunotherapy in patients 
with NSCLC. 

Currently, IHC is the primary technique utilized 
to detect PD-L1 expression levels and has many 
limitations, including sampling bias due to intra-
tumoral heterogeneity and dynamic characteristics of 
PD-L1 expression levels. As such, some noninvasive 
PET imaging novel radiotracers, including 89Zr- 
nivolumab, and 18F-BMS-98619210, demonstrated the 
predictive value of PD-L1 expression. However, they 
have not been clinically leveraged [32-34]. Utilizing 
the commonly acquired PET/CT images, Jiang et al. 
assessed PD-L1 expression by radiomic features in 
NSCLC patients [35], achieving an AUC of 0.80 with 
only CT radiomic features in predicting PD-L1 
(SP142) expression levels over 1%. Though this result 

is similar to that of our study (AUCTraining cohort = 0.78; 
AUCValidation cohort = 0.71; AUCTest cohort = 0.76), further 
prognostic validation of the predicted PD-L1 
expression was not investigated. There are several 
benefits in assessing PD-L1 expression levels by 
radiomic-based signatures. First, its noninvasive 
manner outperformed IHC which demands tissue 
samples obtained from surgery or biopsy. 
Additionally, radiomic-based signatures can 
dynamically evaluate PD-L1 expression stratification 
and immune therapeutic efficacy, ultimately 
informing drug adjustment. 

Several studies have evaluated associations 
between radiomics and other immunotherapy-related 
genomics or biology. Sun and colleagues evaluated 
the association between a radiomics-based biomarker 
of tumor-infiltrating CD8 cells and clinical outcomes 
of anti-PD-1 and PD-L1 treatment [36]. They found 
that the gene expression signature of CD8 cells 
discriminated inflamed tumors from immune-desert 
tumors (AUC: 0.76). Furthermore, high baseline 
radiomic scoring was also associated with improved 
overall survival in patients treated with 
immunotherapy. Trebeschi and colleagues performed 
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artificial intelligence (AI)-based characterization of 
primary and metastatic lesions from 203 patients 
using pretreatment CT imaging data to develop and 
validate a machine learning biomarker for response to 
immunotherapy [37]. They found that when 
combining lesion-wide predictions, immunotherapy 
response was predicted with an AUC of 0.76 for 
NSCLC and melanoma (P < 0.001). However, various 
tumor types were included in these studies. 

In our study, we first reported on PD-L1 
expression prediction using a CT-based deep learning 
model in NSCLC patients. In addition, we generated 
visualization of the category activation map and 
radiomic features. We found that deep learning was 
more concerned with the marginal zone of the lesion 
area, and huge textural differences were observed 
from the visualization maps of texture features, 
named Wavelet-HL_glcm_SumEntropy and 
Wavelet-LL_glrlm_GrayLevelNonUniformityNormal
ized. This result confirmed that classification of high 
and low PD-L1 expression with deep learning 
features and quantitative radiomic features were 
complementary. 

Our study has some limitations. First, it was a 
single-center study, and the predictive value of the 
obtained imaging biomarker has not been validated in 
other centers. Second, it was retrospective; therefore, 
potential bias may exist. In this study, we found that 
the higher the signature value, the greater the risk, 
which is contrary to common sense. The reasons for 
this situation can be summarized into two aspects. 
First, only a small number of patients were included 
in the immunotherapy dataset. Secondly, censored 
data existed in some patients. In addition, since only a 
minority of patients died in the follow-up period, we 
did not obtain median OS data. Thus, we are 
uncertain about the predictive value of this model on 
long-term efficacy of immunotherapy. In subsequent 
studies, we will include more immunotherapy 
patients, and use a combination of retrospective and 
prospective methods for signature verification and 
optimization. 

Conclusions 
The deep learning model provides a noninvasive 

method for predicting high PD-L1 expression in 
tumors and for inferring clinical outcomes of 
immunotherapy. In addition, this deep learning 
model combined with clinical models improved 
prediction of the response to immunotherapy. 
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