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Abstract 

Osteoarthritis (OA), characterized as an end-stage syndrome caused by risk factors accumulated with 
age, significantly impacts quality of life in the elderly. Circular RNAs (circRNAs) are receiving increasing 
attention regarding their role in OA progression and development; however, their role in the regulation 
of age-induced and oxidative stress-related OA remains unclear. 
Methods: Herein, we explored oxidative stress in articular cartilage obtained from patients of different 
ages. The presence of circRSU1 was detected using RNA sequencing of H2O2-stimulated primary human 
articular chondrocytes (HCs), and validated in articular cartilage and HCs using fluorescence in situ 
hybridization (FISH) staining. miR-93-5p and mitogen-activated protein kinase kinase kinase 8 (MAP3K8) 
were identified as interactive circRSU1 partners based on annotation and target prediction databases, and 
their associations were identified through dual-luciferase reporter analysis. The effect of the 
circRSU1-miR-93-5p-MAP3K8 axis on HCs was confirmed using western blot, quantitative real-time PCR 
(qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and reactive oxygen 
species (ROS) analyses. CircRSU1 and its mutant were ectopically expressed in mice to assess their 
effects in destabilization of the medial meniscus (DMM) in mice. 
Results: We found a marked upregulation of circRSU1 in H2O2-treated HCs and OA articular cartilage 
from elderly individuals. circRSU1 was induced by IL-1β and H2O2 stimulation, and it subsequently 
regulated oxidative stress-triggered inflammation and extracellular matrix (ECM) maintenance in HCs, by 
modulating the MEK/ERK1/2 and NF-κB cascades. Ectopic expression of circRSU1 in mouse joints 
promoted the production of ROS and loss of ECM, which was rescued by mutation of the mir-93-5p 
target sequence in circRSU1. 
Conclusion: We identified a circRSU1-miR-93-5p-MAP3K8 axis that modulates the progression of OA 
via oxidative stress regulation, which could serve as a potential target for OA therapy. 
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Introduction 
Osteoarthritis (OA), the most prevalent joint 

condition in older adults, often leads to pain and 
functional limitations and eventually degrades the 
quality of life [1]. OA currently affects more than 50 
million people in the US [2]. Globally, it is estimated 

that patients with OA account for 25% of adults living 
with joint disorders, making the disease the fourth 
leading cause of disability [3], thus placing a heavy 
burden on individuals, health systems, and social care 
systems [4-6]. Contemporary evidence of OA risk 
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factors have indicated the prominent influence of age, 
female sex, previous joint injury, overweight, genetic 
predisposition, malalignment, and abnormal joint 
shape [7, 8]. Moreover, population-based studies have 
demonstrated that increasing age is the strongest risk 
factor for OA [9] with people over the age of 65 
expected to be more vulnerable to radiographic 
changes in one or more joints [10-12]. 

The increased incidence of OA with age is a 
result of cumulative exposure to various risk factors 
and biological age-related changes in joint structures 
[13], leading to a common end-stage OA syndrome 
[14]. As the only cell type in articular cartilage, 
articular chondrocytes are responsible for 
maintaining homeostasis of the extracellular matrix 
(ECM) components. Hence, any biological event that 
disrupts their well-being or phenotypic stability can 
trigger the onset of OA [15]. Oxidative stress is one 
such factor that can activate pro-inflammatory 
pathways, contributing to the chronic degeneration of 
the articular chondrocyte, followed by low-grade 
chronic systemic inflammation of the cartilage [16]. 
The increased oxidative stress accompanied with 
elevated production of reactive oxygen species (ROS) 
in articular chondrocytes can ultimately trigger an 
inflammatory response [17], cellular senescence [18], 
dedifferentiation [19], and apoptosis [20]. Preclinical 
and clinical evidence has shown that age and OA are 
inter-related, not inter-dependent [21, 22]. 
Furthermore, OA animals injected with oxidized 
fragments are more vulnerable to OA due to 
upregulation of the degradation enzymes, matrix 
metallopoptidase (MMP)3 and MMP13 [23]. 
Mechanistically, ROS, acting as second messengers, 
can promote the state of OA primarily by stimulating 
ROS/mitogen-activated protein kinase (MAPK) [24], 
ROS/phosphoinositide-3-kinase (PI3K)/ serine/ 
threonine kinase (AKT) [25], and reactive nitrogen 
species (RNS)/tumor necrosis factor (TNF)-α/nuclear 
factor kappa-light-chain-enhancer of activated B cells 
(NF-κB) pathways [17, 26]. Thus, suppression of ROS 
production and its related signaling pathways is 
proposed as crucial in preventing the pathologic 
progression of OA, allowing chondrocytes to remain 
“young”. 

Circular RNAs (circRNAs) are a series of 
covalently closed-loop noncoding RNAs [27, 28]. 
CircRNAs can serve as microRNA (miRNA) or 
protein decoys [29-31], function as scaffolds 
facilitating contact between proteins [32, 33], and 
interfere with transcription or promote alternative 
splicing [34, 35]. The competitive RNA-RNA 
interactions in circRNA–miRNA–mRNA crosstalk has 
gradually become a research hotspot in various 
diseases [29, 36, 37]. Increasing evidence shows that 

differentially expressed circRNAs influence OA 
pathogenesis [38-40] by sponging miRNAs target 
downstream OA-associated genes. 

However, the role of circRNAs in age-associated 
and oxidative stress-induced OA remains unclear. 
Here, we investigated the expression of circRSU1 in 
H2O2-treated chondrocytes and older medial knee 
cartilage, and examined its contribution to 
chondrocyte matrix homeostasis disorder. The 
regulatory mechanisms employed by circRSU1 were 
also investigated in our study. Our findings highlight 
a novel role for the circRSU1–miR-93-5p–MAP3K8 
axis in ROS production and subsequent OA 
progression, thereby suggesting potential therapeutic 
targets for OA. 

Methods 
RNA-seq and Data Collection 

A circRNA profile was generated from an 
Illumina Hiseq yielding total RNA from a mixture of 
primary chondrocytes from five individuals treated 
with 500 μM of H2O2 for five days (H2O2-MIX) 
compared to a mixture of negative control primary 
chondrocytes from the same five individuals 
(NC-MIX) as previously reported [41]. The remaining 
samples were used for quantitative real-time PCR 
(qRT-PCR) to validate the profile. A | log2 (fold 
change) | > 1 and FDR ≤ 0.05 was regarded as 
significantly different. 

The other datasets used in our study were 
obtained from the following sources: Circbase 
(http://www.circbase.org/) for annotation of 
circRNA; TargetScan (http://www.targetscan.org/ 
vert_72/), RNAhybrid [42] and RegRNA (http:// 
regrna2.mbc.nctu.edu.tw/) for prediction of target 
miRNAs of circRNAs; TargetScan, RNA22 (https:// 
cm.jefferson.edu/rna22/), and miRDB (http:// 
mirdb.org/) for forecasting downstream mRNAs of 
miRNAs. The Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/, GSE 86578, 
GSM2306261, GSM2306265, GSM2306269, 
GSM2306268, GSM2306272, and GSM2306264) was 
used to detect differential mRNA expression induced 
by pro-inflammatory cytokines. EBI (https://www. 
ebi.ac.uk/Tools/psa/) was employed for pairwise 
sequence alignment. 

Human Cartilage Collection 
Human articular cartilage was collected from 

patients undergoing total knee replacement surgery, 
as approved by the Ethics Committee of Sir Run Run 
Shaw Hospital (Zhejiang, China) and proceeded in 
accordance with the approved guidelines. Written 
informed consent was obtained from all participants. 
All knee joints (n = 30) were divided into two groups 
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according to participant age. Those from individuals 
between 60 and 69 years (n = 15) were defined as 
younger, meanwhile those from 70–85 (n = 15) year 
participants were defined as older. Heterogeneity 
analysis of confounding factors associated with the 
onset of OA in the two groups, such as gender and 
BMI [14], between the two groups was performed. 
WOMAC [43], Kellgren & Lawrence, and Outbridge 
grade [44] were performed to evaluate the degree of 
OA in patients. 

Animal Models 
Adult male C57BL/6 mice (n = 40), aged eight 

weeks, were used for in vivo experiments. According 
to a previous study [45, 46], destabilization of the 
medial meniscus (DMM) surgery was performed to 
induce post-traumatic OA as the positive control. 
Briefly, mice (n = 10) were anesthetized, and their 
medial joint capsules were incised to expose the 
medial meniscotibial ligament (MMTL). 
Subsequently, the MMTL was transected with 
microsurgical scissors to release the ligament linked 
to the tibial plateau, consequently destabilizing the 
medial meniscus. The joint was irrigated with sterile 
saline and closed. A sham operation was performed in 
parallel by incising the medial knee joint capsule. The 
adeno-associated virus (AAV) of circRSU1 and its 
mutant were constructed and packaged by HanBio 
(Shanghai, China). One week after the operation, 
thirty sham-operated mice were randomly divided 
into three groups (SHAM+NC, SHAM+circRSU1, and 
SHAM+circRSU1 Mut; n = 10/group). A total of 10 μL 
(approximately 1 × 1011 PFU/mL) of negative control 
AAV, circRSU1 AAV, or circRSU1 mutant AAV was 
delivered intra-articularly into the knee joints. The 
DMM-operated mice were also injected with negative 
control AAV (DMM+NC). Eight weeks later, before 
being sacrificed, mice were evaluated for knee pain 
using a series of assessments [47], including a hot 
plate test, knee extension test, and electric shock 
stimulated treadmill test. Twenty-month-old 
C57BL/6 mice (n = 10; one per cage) were collected 
for aging and spontaneous OA for subsequent 
analysis [46]. Both knee articular cartilage were 
harvested for histological analysis or primary 
chondrocyte culture. All animal experiments were 
performed with the approval of the Institute of Health 
Sciences Institutional Animal Care and Use 
Committee (Zhejiang, China). 

Primary Chondrocyte Culture and Treatment 
Primary articular chondrocytes were isolated 

from human and mouse knee cartilage (HCs, MCs). 
Articular cartilage was extracted, shredded, and 
digested with 0.25% trypsin-EDTA (Sigma-Aldrich, 

USA) in a constant 37 °C shaker at a speed of 200 rpm 
for 1 h, followed by digestion with 0.2% type II 
collagenase (Sigma-Aldrich, USA) in a 37 °C incubator 
overnight. The supernatant was filtered through a 
0.075 mm strainer and centrifuged to collect the cell 
precipitate. Cells were washed twice with PBS and 
cultured in DMEM supplemented with 10% fetal 
bovine serum (FBS; Thermo Fisher Scientific, 
Waltham, MA, USA) and 1% penicillin-streptomycin. 
The culture was maintained in an incubator at 37 °C in 
a humidified atmosphere containing 5% CO2. At 
70-80% confluence, IL-1β, purchased from R&D 
Systems (Minnesota, USA), was added to induce 
inflammation, while H2O2, purchased from Millipore 
(Billerica, MA, USA), was added to induce production 
of ROS, at the indicated concentration [46]. 

Immunoblotting 
Western blot, immunohistochemistry (IHC), and 

immunofluorescence were performed as previously 
described [48] and the antibodies used in our study 
are listed in Table S1. All images were quantified 
using Image-Pro Plus 6.0 (NIH, Bethesda, MD, USA). 
Log2 (fold of change) was used to calculate the relative 
gray value of specific proteins normalized to β-actin 
or GAPDH, for western blot results, positive cell 
percentage for IHC analysis [49, 50], and relative 
fluorescence intensity for immunofluorescence 
analysis [51] as previously indicated. Enzyme-linked 
immunosorbent assay (ELISA) was used to detect and 
quantify pro-inflammatory factors (IL-1β, IL-6, and 
TNF-a) in the culture supernatant, using a kit from 
KeyGen (Nanjing, China), according to the 
manufacturer’s instructions. 

Quantitative Real-time PCR 
Total RNA was extracted from primary 

chondrocytes using RNAEX reagent (Accurate 
Biotechnology, Hunan, China) according to the 
manufacturer’s instructions. Reverse transcription of 
mRNAs or miRNAs to cDNA was performed using 
total RNA, with kits from Accurate Biotechnology 
(Hunan, China) or Sangon (Shanghai, China), 
respectively. Specific circRNAs or mRNAs were 
quantified with SYBR® Green Premix Pro Taq HS 
qPCR kit (Accurate Biotechnology, Hunan, China), 
and normalized to ACTB. Specific miRNAs were 
quantified with the MicroRNAs qPCR kit (Sango, 
Shanghai, China), and normalized to U6. The 2-ΔΔCt 
method was used to calculate the relative expression. 
All experiments were independently performed in 
triplicate. All primers are listed in Table S2. 

Measurement of Intracellular ROS Levels 
Intracellular ROS levels were evaluated using a 

reactive oxygen species assay kit (Beyotime, 
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Shanghai, China). Briefly, following treatment for 48 
h, 1 mL of serum-free medium supplemented with 10 
μM DCFH-A was added to adherent chondrocytes 
and incubated at 37 °C for 20 min to allow DCFH-A to 
penetrate the cell membrane into the cells. Oxidized 
by intracellular ROS, dichlorodihydrofluorescein, a 
fluorescent metabolite of DCFH-A, was detected and 
imaged using a fluorescence microscope (Eclipse 
E600; Nikon Corporation, Tokyo, Japan), and the 
images were processed with Image-Pro Plus 6.0 (NIH, 
Bethesda, MD, USA). The results are presented as 
relative fluorescence intensity. 

RNA Fluorescence In situ Hybridization 
Cy3-labeled CircRSU1 probes and FAM-labeled 

miR-93-5p probes were designed and synthesized by 
RiboBio (Guangzhou, China). A fluorescence in situ 
hybridization (FISH) kit (RiboBio, Guangzhou, China) 
was used to detect the probe signals in primary 
chondrocytes and tissue sections according to the 
manufacturer’s instructions. Images were acquired 
using a Nikon A1Si Laser Scanning Confocal 
Microscope (Nikon Instruments Inc., Japan), 
processed with Image-Pro Plus 6.0 (NIH, Bethesda, 
MD, USA), and reported as the relative fluorescence 
intensity as previously indicated [51]. 

RNA Immunoprecipitation 
RNA immunoprecipitation (RIP) experiments 

were performed using the Magna RIP RNA-Binding 
Protein Immunoprecipitation kit (Millipore, Billerica, 
MA, USA). Briefly, HEK-293T cells were transfected 
with the argonaute-2 (AGO2) plasmid or vector. 
Approximately 1×107 cells were pelleted by 
centrifugation and resuspended in 100 μL of RIP Lysis 
Buffer combined with protease inhibitor cocktail and 
RNase inhibitors. The cell lysates were incubated with 
anti-AGO2 (Millipore) antibody or anti-IgG 
(Millipore) and rotated at 4 °C overnight. The 
immunoprecipitated RNA was extracted using the 
RNeasy MinElute Cleanup kit (Qiagen) and reverse 
transcribed (AGbio) after treatment with proteinase K 
buffer. The expression of circRSU1 was determined 
using qRT-PCR and is expressed as a percentage of 
input. 

RNA Intervention 
Small interfering RNAs (siRNAs) targeting the 

backsplicing junction of circRSU1 (si circRSU1) or 
targeting the specific site of mitogen-activated protein 
kinase kinase kinase 8 (si MAP3K8), as well as the 
mimic or inhibitor of miR-93-5p (mimic miR-93-5p, 
inhibitor miR-93-5p) were designed and constructed 
by RiboBio (Guangzhou, China). Primary 
chondrocytes obtained from human articular cartilage 
were seeded into 6-well plates at a density of 2 × 105 

cells/well, and transfected with siRNAs or mimic/ 
inhibitor of miR-93-5p using Lipofectamine 
RNAiMAX (ThermoFisher, USA) in accordance with 
the manufacturer’s instructions. 

Stable silencing or overexpression of circRSU1 
and MAP3K8 (sh-circRSU1, oe-circRSU1; sh- 
MAP3K8, oe-MAP3K8) were achieved by lentivirus 
infection. The short hairpin RNA (shRNA) sequences 
were designed according to the siRNA sequences. 
Wild-type lentivirus and its mutant circRSU1 and 
MAP3K8 were formulated by HanBio (Shanghai, 
China). Polybrene was added to the target cells at a 
concentration of 10 μg/mL. 

RNA Pull-down Assay 
The RNA pull-down assay was performed using 

an RNA pull-down kit (BersinBio, Guangzhou, China) 
according to the manufacturer’s instructions. 
Biotinylated circRSU1 probe was designed and 
synthesized by RiboBio (Guangzhou, China). In brief, 
1 × 107 human chondrocytes were harvested, lysed, 
and sonicated. C-1 magnetic beads were incubated 
with a circRSU1 probe or oligo probe at 25 °C for 2 h 
to generate probe-coated beads. These probe-coated 
beads were incubated with the cell lysates at 4 °C 
overnight to pull down circRSU1. After three 
sequential washes with the wash buffer, RNA 
complexes bound to the beads, were extracted using a 
RNeasy Mini kit (QIAGEN), and analyzed by 
qRT-PCR. 

Dual-Luciferase Reporter Assay 
Binding between circRNA and miRNA, miRNA, 

and mRNA was validated by luciferase reporter 
assay. Genechem (Shanghai, China) constructed the 
luciferase reporter plasmids for the study, in which 
the 3ʹUTR sequence of circRSU1 or MAP3K8 and its 
mutants were inserted at the XbaI restriction site, 
between the Firefly_Luciferase-Renilla_Luciferase 
vector (hFLuc-XbaL-hRLuc). For luciferase reporter 
analysis, HEK-293T cells were seeded into 48-well 
plates and cultured to 50%-70% confluence. A miRNA 
mimic or mimic-NC (RiboBio, Guangzhou, China) 
was co-transfected with the specific luciferase 
reporter plasmid into HEK-293T using Lipofectamine 
3000 transfection reagent (ThermoFisher, USA) 
according to the manufacturer’s instructions. Forty- 
eight hours after incubation, the luciferase activity 
was measured using a dual-luciferase reporter assay 
system (Promega, Madison, WI). The relative 
luciferase activity was determined using the value of 
hRLuc standardized to hFLuc. 

Histological Analysis 
Human or mouse knee articular cartilage 

specimens were fixed in 4% paraformaldehyde and 
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decalcified before paraffin embedding. Each paraffin- 
embedded cartilage sample was sectioned into 5-μm- 
thick slices for subsequent histological analysis. To 
evaluate the proteoglycan (PG) loss, safranin O/fast 
green staining (0.1% Safranin O, 0.01% Fast Green 
solution) and Alcian blue staining (0.1% Alcian blue 
solution) were performed as previously described 
[48], after deparaffinization and hydration. OARSI 
Grade [52, 53] and the MANKIN Scoring System [54, 
55] were used to grade the severity of cartilage 
degeneration by two observers blinded to group- 
identifying information. OA severity was recorded 
with the maximal score of observed cartilage. 

Reconstructed imaging of the knee joint from 
mice was performed using a high-resolution 
micro-CT instrument (InspeXio SMX-225 CT FPD HR; 
Shimadzu Co. Ltd., Kyoto, Japan) as previously 
described [56]. Briefly, an X-ray energy of 225 kV and 
an isotropic voxel size of 4 µm was performed on knee 
articular cartilage as well as distal femur and 
proximal tibia. Each knee joint was reconstructed 
using a data analyzer (VGStudio MAX; Volume 
Graphics, Heidelberg, Germany). The number of 
abnormally proliferating osteophytes was counted. 

Statistical Analysis 
Statistical analyses were performed using SPSS 

v22.0. The results are presented as the mean ± 
standard deviation (SD). Group differences were 
considered statistically different at p < 0.05 between 
groups. 

Results 
Older medial knee cartilage displays more 
severe arthritis and higher oxidative stress 

There were no significant differences in gender 
or BMI between the older and younger groups (Table 
S3A, B). Meanwhile, cartilage from the medial side of 
most elderly knee joints had visible subchondral bone 
exposure, with their surfaces rougher than those from 
the lateral side (Figure 1A). WOMAC grades showed 
that older patients had more severe OA symptoms 
(Figure 1B). Kellgren & Lawrence and Outbridge 
grades indicated that medial knee articular cartilage 
was more vulnerable with increased age, compared to 
lateral knee cartilage, based on radiological and 
arthroscopic observations (Figure 1C). Safranin 
O/Fast green staining, Alcian blue staining, and IHC 
staining for MMP13 also showed that the corruption 
and erosion of PG, accompanied by upregulation of 
MMP13, was more severe in older medial cartilage 
than in the corresponding lateral cartilage, or those in 
the younger group (Figure 1D). Subsequent 
quantification of the histomorphology changes using 

OARSI and MANKIN grades reflected the same 
conclusions (Figure 1E). Western blot analysis of 
primary chondrocytes extracted from corresponding 
cartilage revealed that the lateral cartilage in the older 
group had higher expression of degradation enzymes, 
including MMP3, MMP9, MMP13, a disintegrin and 
metalloproteinase with thrombospondin motifs 
(ADAMTS)4, and ADAMTS5, as well as the 
pro-inflammatory proteins, cyclooxygenase 2 (COX-2) 
and inducible nitric oxide synthase (iNOS), while 
exhibiting lower expression of SRY-box transcription 
factor 9 (SOX9), collagen type II, alpha 1 (COL2A1), 
and aggrecan (Figure 1F). ROS activities detected 
using the DCFH-A probe demonstrated marked 
increase in oxidative stress in the older group, 
particularly in the medial cartilage (Figure 1G). These 
findings show that disruption of medial knee cartilage 
and oxidative stress are more pronounced with age in 
arthritic patients. 

Characterization of circRSU1 in human 
articular chondrocytes 

Given that the degree of oxidative stress is 
consistent with the severity of arthritis, we sequenced 
the total RNA from H2O2-MIX compared with 
NC-MIX using Illumina Hiseq. A total of 27,318 
circRNAs were identified by RNA-seq, most of which 
originated from protein-encoding exons, whereas 
others consisted of introns, or intergenic region 
(Figure S1A). The length of the identified circRNAs 
varied from 138 to 199,522 nucleotides in a skewed 
distribution, also indicating their complex 
mechanisms and functions (Figure S1B). Moreover, 
although no obvious difference was observed in the 
chromosomal distribution of circRNAs, total circRNA 
expression in the H2O2-MIX was greater than that in 
the NC-MIX (Figure S1C). A total of 550 differentially 
expressed circRNAs were identified by RNA-seq 
mapped to the reference genome (hg38, human 
genome), with a | log2 (fold change) | > 1 and FDR ≤ 
0.05, 296 of which were upregulated and 254 were 
downregulated in the H2O2-MIX compared to 
NC-MIX (Figure 2A). qRT-PCR analysis of the 
remaining samples verified the RNA-seq outcome 
with ten upregulated and ten downregulated 
circRNAs (Figure S1D). Here, owing to the less 
expression difference of downregulated circRNAs 
(Figure S1E) we were more interested in the 
upregulated circRNAs, which may play a key role in 
H2O2-induced OA. There were 16 circRNAs of the top 
20 upregulated circRNAs in RNA-seq matched in 
circBase. Thus, we perform qRT-PCR quantification to 
confirm the expression of these top 16 upregulated 
circRNAs in chondrocytes treated with IL-1β (10 
ng/mL) and H2O2 (500 μM; Figure 2B).  
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Figure 1. Older medial knee cartilage display more severe arthritis and higher oxidative stress. (A) Representative images of tibial plateau from patients of different ages after 
total knee arthroplasty. (B, C) WOMAC, Kellgren & Lawrence, and Outerbridge grade used for the evaluation of osteoarthritis symptoms in patients. (n = 15). *p < 0.05. (D) 
Representative images of Safranin O/ Fast green staining, Alcian blue staining, and immunohistochemistry (IHC) staining for MMP13 in human knee cartilage. Scale bars, 400, 200 
and 100 µm. (E) OARSI and MANKIN grades used for assessment of histological changes of human knee cartilage. The percentage of MMP13 positive cells used for the 
quantification of MMP13 labeled cartilage. (n = 15). *p < 0.05. (F) Left, western blot analyses of primary chondrocytes from specific specimens. Right, quantification of western 
blot analyses with log2 (fold of change). (n = 3). *p < 0.05 compared to the chondrocytes in the Younger Lateral group. #p < 0.05. (G) Left, representative images of reactive 
oxygen species (ROS) activity of primary chondrocytes from specific specimens. Scale bars, 500 µm. Right, quantification of ROS activity with relative fluorescence intensity. (n 
= 3). *p < 0.05 compared to the Younger Lateral, #p < 0.05. Data presented as means ± standard deviation. 
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Figure 2. Identification of circRSU1 in human articular chondrocytes. (A) Heat map of all differentially expressed circRNAs, with | log2 (fold change) | > 1 and FDR ≤ 0.05, 
between a mixture of H2O2 treated chondrocytes (H2O2-MIX) and a mixture of negative control chondrocytes (NC-MIX). (B) Quantitative real-time PCR (qRT-PCR) 
quantification of the top 16 upregulated circRNAs relative expression in human articular chondrocytes (HCs) stimulated by IL-1β (10 ng/mL) and H2O2 (500 µM) for 48 h. (n = 
3). *p < 0.05 compared to negative control (NC). (C) Left, DCFH-A-labeled reactive oxygen species (ROS) activity and circRSU1-labeled fluorescence in situ hybridization (FISH) 
staining of HCs stimulated by IL-1β and H2O2. Scale bars, 500 µm. Right, quantification of ROS activity and FISH staining with relative fluorescence intensity. (n = 3). *p < 0.05 
compared to NC. (D) Blue-scale heat maps showing the RNA levels of circRSU1 and mRSU1 in HCs stimulated by IL-1β (10 ng/mL) for 0–3 days, or by gradient concentrations 
of H2O2 (0-500 µM) for 5 days. (n = 3). *p < 0.05 compared to NC. (E) qRT-PCR quantification of circRSU1 relative expression in HCs from specific sections of knee cartilage. 
(n = 10). (F) Schematic of the annotated exon formation of circRSU1; sanger sequencing of PCR production using the indicated divergent flanking primers. (G) Representative 
images of circRSU1 FISH with junction-specific probe in HCs. Scale bars, 50 µm. Data presented as means ± standard deviation. 
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Based on heat map and qRT-PCR analyses 
circRSU1 (hsa_circ_0006577) was selected as the most 
significant circRNA among other candidates (Figure 
2B). ROS activity and relative fluorescence intensity of 
circRSU1 increased simultaneously in chondrocytes 
treated with IL-1β and H2O2 (Figure 2C). A chronic 
inflammatory environment was established by 
stimulating chondrocytes with IL-1β (10 ng/mL) for 
0-3 days, or with gradient concentrations of H2O2 
(0-500 μM) for five days [49], in which circRSU1 
showed a significant dose-dependent increase, 
whereas linear mRSU1 showed the opposite trend 
(Figure 2D). Particularly, FISH staining of medial 
cartilage showed higher circRSU1 fluorescence 
intensity in elderly patients (Figure S1F). qRT-PCR 
analysis also confirmed the highest expression of 
circRSU1 in the medial cartilage of older patients 
(Figure 2E). 

Thus, subsequent experiments were conducted 
to verify the expression and role of circRSU1. 
According to Circbase, circRSU1 is generated by 
circularization of RSU1 exons 3–7 from NM_012425, 
chr10 (hg19), region 16794537-16824083 (hereafter 
referred to as circRSU1; Figure 2F). The circRSU1 PCR 
product was sequenced to confirm the presence of the 
backspliced junction between the 5ʹ splice site of exon 
3 and 3ʹ splice site of exon 7 (Figure 2F). CircRNA is 
reportedly more stable than mRNA due to its loop 
structure [27]; thus, digestion with RNase R led to a 
significant decrease in mRSU1, but not circRSU1 
(Figure S2A). The degradation speed of circRSU1 was 
much slower than that of mRSU1 when their synthesis 
was inhibited with actinomycin D (5 μM) for 12 h 
(Figure S2B). The lack of poly A tail implied that 
mRSU1 could be amplified by both oligo(dt)18 primers 
and random hexamer primers, whereas circRSU1 
could only be amplified by the latter (Figure S2C). As 
indicated by a previous study [38], circRSU1 could be 
amplified by both convergent and divergent primers 
designed against its cDNA, however, could not be 
amplified by divergent primers designed against its 
genomic DNA, given its distinct backsplice (Figure 
S2D). As shown in Figure 2G, circRSU1 was 
abundant in the cytoplasm of HCs, but not in the 
nuclei. Taken together, these results suggest that in 
addition to the byproduct of splicing, the circular 
structure circRSU1, functionally different from the 
linear-structure mRSU1, is significantly upregulated 
in HCs from OA cartilage as well as in oxidative stress 
and inflammation-induced HCs. 

CircRSU1 promotes human articular 
chondrocyte OA 

To further study the biological function of 

circRSU1 in HCs, three siRNAs targeting the 
backspliced junction of circRSU1 were tested. Given 
that circRSU1-directed siRNA #1 and #2 displayed 
the most significant reduction in circRSU1 and did not 
influence the expression of linear mRSU1(Figure 
S2E), si circRSU1 #1, and si circRSU1 #2 were selected 
and designed as shRNAs (sh circRSU1 #1, sh 
circRSU1 #2) for subsequent experiments. The 
knockdown of circRSU1 using shRNA lentivirus in 
stably-transfected HCs resulted in obvious reduction 
of circRSU1, followed by significantly reduced mRNA 
levels of degradation enzymes (MMP3, MMP9, 
MMP13, ADAMTS4, and ADAMTS5) as well as 
pro-inflammatory factors (IL-1β, IL-6, and TNF-α) 
(Figure 3A), however, increased the mRNA levels of 
COL2A1 and SOX9 (Figure 3B). The results of western 
blot and ELISA analysis were consistent with the 
qRT-PCR analysis (Figure 3C, D). 
Immunofluorescence experiments further revealed 
that OA progression, as assessed primarily by 
MMP13, ADAMTS4, and COL2A1, was inhibited in 
HCs following circRSU1 shRNA lentivirus infection 
(Figure 3E). We found that induction of COX-2 and 
iNOS expression (Figure 3F) corresponded to the 
changes in ROS activities, which were stimulated by 
H2O2 and inhibited upon silencing of circRSU1 
(Figure 3G). 

Subsequently, we studied the effect of stably 
overexpressing circRSU1 (oe-circRSU1) in HCs. 
Following infection with circRSU1-expressing 
lentivirus, the RNA levels of circRSU1 increased 
nearly hundredfold, whereas linear mRSU1 levels 
remained constant (Figure S2F). qRT-PCR revealed 
increases in degradative enzymes (MMP3, MMP9, 
MMP13, ADAMTS4, and ADAMTS5) as well as 
pro-inflammatory factors (IL-1β, IL-6, TNF-α) in HCs 
overexpressing circRSU1 (Figure 4A); mRNA levels of 
COL2A1, SOX9, and aggrecan were obviously 
inhibited (Figure 4B). Western blot and ELISA 
analysis also further proved the disruptive and 
pro-inflammatory effects of circRSU1 overexpression 
on HCs (Figure 4C, D). Relative immunofluorescence 
intensities of important OA markers (MMP13, 
ADAMTS4, COL2A1) were consistent with the above 
results (Figure 4E). Following circRSU1 
overexpression, the expression of COX2 and iNOS 
was upregulated (Figure 4F). Increased oxidative 
stress in HCs was also detected by the DCFH-A probe 
(Figure 4G). Collectively, these data indicate that 
circRSU1 plays a key role in the progression of OA 
and production of ROS, and its effect could be 
reversed by circRSU1 silencing. 
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Figure 3. The knockdown of circRSU1 inhibits OA progression in human chondrocytes. (A) Quantitative real-time PCR (qRT-PCR) quantification of relative RNA levels 
associated with catabolic enzymes and pro-inflammatory cytokines after circRSU1 knockdown. (n = 3). *p < 0.05. (B) qRT-PCR quantification of relative mRNA levels associated 
with synthetase and proteoglycans after circRSU1 knockdown. (n = 3). *p<0.05. (C) Left, western blot analyses of extracellular matrix (ECM) associated protein after circRSU1 
knockdown. Right, quantification of western blot analyses with log2 (fold of change). (n = 3). *p < 0.05. (D) Enzyme-linked immunosorbent assay (ELISA) analyses of IL-1β, IL-6 
and TNF-α expression. (n = 3). *p < 0.05. (E) Left, representative images of MMP13, ADAMTS4 and COL2A1 labeled immunofluorescence after circRSU1 knockdown. Scale 
bars, 200 µm. Right, quantification of immunofluorescence with relative fluorescence intensity. (n = 3) *p < 0.05. (F) Upper, western blot analyses of reactive oxygen species 
(ROS) associated pro-inflammatory protein after circRSU1 knockdown, with or without H2O2 (500 µM) stimulation. Lower, quantification of western blot analyses with log2 
(fold of change). (n = 3). *p < 0.05. (G) Left, representative images of ROS activity detected by DCFH-A probe after circRSU1 knockdown, with or without H2O2 stimulation. 
Right, quantification of ROS activity with relative fluorescence intensity. (n = 3). *p < 0.05. Data presented as means ± standard deviation. 
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Figure 4. The overexpression of circRSU1 promotes the progression of osteoarthritis in human chondrocytes. (A) Quantitative real-time PCR (qRT-PCR) quantification of 
relative RNA levels associated with catabolic enzymes and proinflammatory cytokines after circRSU1 overexpression. (n = 3). *p < 0.05. (B) qRT-PCR quantification of relative 
mRNA levels associated with synthetase and proteoglycans after circRSU1 overexpression. (n = 3). *p<0.05. (C) Left, western blot analyses of extracellular matrix (ECM) 
associated proteins after circRSU1 overexpression. Right, quantification of western blot analyses with log2 (fold of change). (n = 3). *p < 0.05. (D) Enzyme-linked immunosorbent 
assay (ELISA) analyses of IL-1β, IL-6 and TNF-α expression. (n = 3). *p < 0.05. (E) Left, representative images of MMP13, ADAMTS4 and COL2A1 labeled immunofluorescence 
after circRSU1 overexpression. Scale bars, 200 µm. Right, quantification of immunofluorescence with relative fluorescence intensity. (n = 3). *p < 0.05. (F) Left, western blot 
analyses of reactive oxygen species (ROS)-associated proinflammatory proteins after circRSU1 overexpression. Right, quantification of western blot analyses with log2 (fold of 
change). (n = 3). *p < 0.05. (G) Left, representative images of ROS activity detected by DCFH-A probe after circRSU1 overexpression. Right, quantification of ROS activity with 
relative fluorescence intensity. (n = 3). *p < 0.05. Data presented as means ± standard deviation. 
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Figure 5. CircRSU1 functions as a competing endogenous RNA for miR-93-5p. (A) Quantitative real-time PCR (qRT-PCR) quantification of argonaute-2 (AGO2)-bound 
circRSU1, immunoprecipitated (IP)/ input values normalized to negative control (NC). (n = 3). *p < 0.05. (B) Venn plot showing forecast downstream miRNAs of circRSU1 
converged by simultaneous analyses and overlapping of the TargetScan, Rnahybrid and RegRNA databases. (C) qRT-PCR quantification of the efficiency of the circRSU1 probe 
for RNA-pull down analysis. IP/ input values normalized to control probe. (n = 3). *p < 0.05. (D) qRT-PCR quantification of the circRSU1-bound miRNAs, IP/ input values 
normalized to control probe. (n = 3). *p < 0.05. (E) Relative luciferase activity of circRSU1 luciferase reporter after co-transfection with different candidate miRNAs mimics into 
HEK-293T cells. (n = 3). *p < 0.05. (F) qRT-PCR quantification of the candidate miRNAs relative expression induced by IL-1β (10 ng/mL) and H2O2 (500 µM) for 48 h. (n = 3). 
*p < 0.05. (G) Schematic of dual-luciferase reporters (hFLuc-XbaL-hRLuc), carrying wild-type or mutant circRSU1 sequence in the XbaL region. (H) Relative luciferase activity 
after co-transfection of dual-luciferase reporters (Luc-circRSU1 WT or Luc-circRSU1 Mut) with miR-93-5p mimic or its control mimic into HEK-293T cells. (n = 3). *p < 0.05. 
(I) Representative images of circRSU1 (red) and miR-93-5p (green) labeled fluorescence in situ hybridization (FISH) staining. Scale bars, 50 µm. (J) Left, western blot analyses of 
extracellular matrix (ECM) associated proteins after the overexpression of circRSU1 or its mutant (mutant in miR-93-5p target sequence). Right, quantification of western blot 
analyses with log2 (fold of change). (n = 3). *p < 0.05. (K) qRT-PCR quantification of miR-93-5p relative expression in primary human chondrocytes from specific parts of knee 
cartilage. (n = 10). *p < 0.05. Data presented as means ± standard deviation. 
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CircRSU1 functions as a competing 
endogenous RNA for miR-93-5p 

It has been previously proposed that circRNAs 
can serve as competing endogenous RNAs in the 
cytoplasm [37, 57], a function mediated by 
argonaute-2 (AGO2) [29]. Given the characteristics of 
circRSU1, including its cytoplasmic localization in 
chondrocytes and enrichment by AGO2 antibody 
(Figure 5A), it was conceivable to determine whether 
circRSU1 could interact with miRNAs to modulate the 
characteristics of chondrocytes. Simultaneous 
assessment of TargetScan, Rnahybrid, and RegRNA 
databases for circRSU1 interacting partners yielded an 
overlap of nine candidate miRNAs (Figure 5B), which 
were identified by RNA pull-down analysis using a 
circRSU1 probe (Figure 5C). Of the nine candidate 
miRNAs, five miRNAs were significantly enriched in 
more than 5% of the input, including miR-93-5p, 
miR-637, miR-449c-5p miR-1207-5p, and miR-4763-3p 
(Figure 5D). Among these enriched miRNAs, 
miR-93-5p and miR-449c-5p exhibited better species 
conservation in mammals according to TargetScan 
databases. To validate the interaction between 
circRSU1 and candidate miRNAs, each of the five 
miRNA mimics and dual-luciferase reporter (hFLuc- 
circRSU1 sequence-hRLuc) were co-transfected into 
HEK-293T cells. As shown in Figure 5E, miR-93-5p, 
miR-637, miR-1207-5p, and miR-4763-3p mimics 
reduced the relative luciferase reporter activity 
(Renilla luciferase normalized to Firefly luciferase) 
compared to the negative control vector. Treatment 
with IL-1β or H2O2 for 48 h caused a marked decrease 
in miR-93-5p expression; whereas the opposite trend 
was observed with miR-449c-5p and miR-1207-5p, 
and miR-637 and miR-4763-3p remained unchanged 
(Figure 5F). Given that miR-93-5p may be the best 
binding candidate for circRSU1, a dual-luciferase 
reporter assay was subsequently performed to verify 
the binding site of circRSU1 on miR-93-5p. Figure 5G 
displays sequences of wild-type or mutant miR-93-5p 
target sites of circRSU1 according to TargetScan 
database, which were inserted into luciferase 
reporters (Luc-circRSU1 WT and Luc-circRSU1 Mut). 
Following co-transfection in HEK-293T cells with 
Luc-circRSU1 WT and mimic miR-93-5p, the relative 
luciferase activity was significantly reduced 
compared to the other combinations (Figure 5H), 
further indicating that circRSU1 provided the 
competing site to sponge miR-93-5p. Images obtained 
under a confocal microscope clearly showed the 
colocalization of circRSU1 (in red color) and 
miR-93-5p (in green color) in the cytoplasm of 
chondrocytes (Figure 5I). Overexpression of circRSU1 
carrying a mutant of miR-93-5p target sequence 

showed recovery of overexpressed wild-type 
circRSU1, based on western blot analyses (Figure 5J). 
Moreover, qRT-PCR analysis of miRNA in the HCs 
from specific sections of the specimens also showed 
that the expression trend of miR-93-5p in the tissue 
opposed that of circRSU1 (Figure 5K). 

To explore the role of miR-93-5p in the 
progression of OA, miR-93-5p mimic or inhibitor was 
transfected into chondrocytes and compared with 
mimic-NC or inhibitor-NC. The expression of 
miR-93-5p in chondrocytes was markedly 
upregulated following transfection with miR-93-5p 
mimic, although it was modestly downregulated with 
miR-93-5p inhibitors (Figure 6A), which is likely due 
to the inhibitor competitively binding the miRNA 
without affecting its formation. Despite this, 
overexpression of miR-93-5p indeed reduced mRNA 
expression of MMP3, MMP9, MMP13, ADAMTS4, 
ADAMTS5, IL-1β, IL-6, and TNF-α, but increased the 
mRNA expression of COL2A1, and SOX9 compared 
to levels in control cells. Meanwhile, inhibition of 
miR-93-5p resulted in the opposite effect (Figure 6B, 
C). The results of western blot and ELISA 
corresponded to those of qRT-PCR (Figure 6D, E). 
Immunofluorescence labeling of MMP13, ADAMTS4, 
and COL2A1 also demonstrated similar outcomes 
(Figure 6F). To investigate the role of miR-93-5p in 
regulating oxidative stress in chondrocytes, western 
blot, and ROS detection were performed. After 24 h of 
IL-1 stimulation and another 24 h after transfection 
with the miR-93-5p mimic, the levels of COX-2 and 
iNOS did not increase significantly due to H2O2 
stimulation (Figure 6G) and the activity of ROS 
remained protected (Figure 6H). However, inhibition 
of miR-93-5p resulted in the opposite effect (Figure 
6G, H). 

CircRSU1-miR-93-5p-MAP3K8 axis regulates 
chondrocyte characteristics 

To fully elucidate the mechanism associated 
with circRNA biological effects through competitive 
binding of miRNA, also known as a circRNA –

miRNA – mRNA regulatory molecular axis, we 
explored potential downstream target genes. First, we 
employed a published transcriptome profiling dataset 
of human chondrocytes (GSE 86578), the reliability of 
which which was previously validated by Chan et al 
[58] and Macdonald et al [59]. Many inflammatory 
mediators are reportedly involved in the pathogenesis 
of OA [60] thus, we used a 24-h stimulation with IL-1β 
(and OSM (oncostatin M) in HCs to represent the 
arthritis group (GSM2306268, GSM2306272, and 
GSM2306264), the phenotypes of which were much 
similar to those of arthritic chondrocytes, versus the 
negative control group (GSM2306261, GSM2306265, 
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and GSM2306269). Of the 336 differentially expressed 
mRNAs with a | log2 (fold change) | ≥1, 198 were 
upregulated, whereas 138 were downregulated in 
IL-1β+ OSM-treated chondrocytes compared to 
control samples (Figure 7A, B). Simultaneous 
analyses and overlapping of TargetScan, RNA22, and 
miRDB databases converged on 466 possible 
downstream target genes of miR-93-5p (Figure 7C). 
Combining the two results, we identified nine target 
genes that may affect OA progression and could be 
downregulated by miR-93-5p (Figure 7D). Five 
mRNAs-interferon regulatory factor 1 (IRF1), 
leukemia inhibitory factor (LIF), bone morphogenetic 
protein 2 (BMP2), heart development protein with 
EGF like domains 1 (HEG1), and MAP3K8—were 
upregulated in IL-1β+OSM-treated chondrocytes (in 
red), whereas cytochrome B reductase 1 (CYBRD1), 
isthmin 1 (ISM1), Ral guanine nucleotide dissociation 
stimulator like 1 (RGL1), and plexin domain 
containing 2 (PLXDC2) were downregulated (in 
green; Figure 7D). Stimulation with IL-1β (10 ng/mL 
for 0–72 h) or H2O2 (0–500 μM for 5 days) further 
confirmed the role of the selected upregulated target 
genes. As shown on the red-scale heat map, only the 
expression of MAP3K8 and BMP2 mRNA increased 
during longer incubation with IL-1β or higher 
concentrations of H2O2 (Figure 7E, F); whereas IRF1 
and LIF displayed an IL-1β-dependent increase but 
not H2O2 dependence, and HEG1 showed the 
opposite tendencies (Figure 7E, F). We next tested 
whether the candidate mRNAs were regulated by the 
circ-miRNA-mRNA axis using qRT-PCR analysis. 
Overexpression of miR-93-5p inhibited the mRNA 
levels of five of the candidate genes, whereas IRF1, 
MAP3K8, and BMP2 were downregulated by 
circRSU1 shRNA (Figure 7G). These findings were 
further confirmed by silencing of MAP3K8 and BMP2 
expression using siRNAs (Figure S3A). Figure 7H 
and Figure 7I reveal the mRNA and protein levels of 
MAP3K8 and BMP2 and their ability to prevent OA 
progression in HCs, with MAP3K8 showing superior 
performance. Moreover, we used a dual-luciferase 
reporter, which consisted of a MAP3K8 sequence with 
wild-type or mutant miR-93-5p target sites, as well as 
Firefly luciferase and Renilla luciferase (Figure 7J). 
Co-transfection of HEK-293T cells with Luc-MAP3K8 
WT reporter and mir-93-5p mimic significantly 
reduced the relative luciferase activity (Renilla 
luciferase/Firefly luciferase; Figure 7K). However, 
the Luc-MAP3K8 Mut reporter did not interact with 
miR-93-5p. Notably, medial knee articular cartilage in 
older patients reflected higher expression of MAP3K8 
mRNA, compared to levels in the lateral sections, or 
in younger patients (Figure 7L). 

We next assessed whether overexpression of 

MAP3K8 could rescue the consequences of 
transfection with circRSU1 shRNA or miR-93-5p 
mimic. The western blot analyses showed that 
MAP3K8 expression was efficiently downregulated or 
upregulated (Figure S3B). As OA characteristics were 
repressed in chondrocytes upon inhibiting circRSU1, 
or overexpressing miR-93-5p, upregulated MAP3K8 
could reverse aberrant mRNA levels, including 
MMP3, MMP9, MMP13, ADAMTS4, ADAMTS5, 
IL-1β, IL-6, TNFα (Figure 8A), COL2A1, SOX9, and 
aggrecan (Figure 8B), an observation that was 
confirmed by western blot and ELISA analyses 
(Figure 8C, D). Moreover, a recovery was observed in 
the expression of COX2 and iNOS in western blot 
(Figure 8E) as well as in ROS activity, as detected by 
DCFH-A probe (Figure 8F). Immunofluorescence 
analysis of suppressed MAP3K8 and overexpressed 
MAP3K8, as shown in Figure S3C, D, further proved 
that MAP3K8 could promote the progression of 
arthritis in HCs. MAP3K8 labeled staining of the knee 
articular cartilage from younger or older specimens 
indicated its role in the progression of OA (Figure 
8G). Collectively, we conclude that circRSU1 
modulates the characteristics of chondrocytes by 
sponging miR-93-5p to regulate the expression of 
MAP3K8. 

The CircRSU1-miR-93-5p-MAP3K8 axis is 
significant and occurs via the ERK1/2 and 
NF-κB pathways 

We further investigated the pathways involved 
in the progression of OA by the circRSU1–miR-93-5p–
MAP3K8 axis. Published observations [61-64] have 
shown that the MAPK and NF-κB pathways are 
responsible for degeneration of articular cartilage. 
MAP3K8 is known to regulate downstream signaling 
pathways such as MEK/ERK MAPK, mTOR, NF-κB, 
and p38 MAPK in many diseases, including 
tumorigenesis in mice [65], rabies virus infection [66] 
and a model of chronic myeloid leukemia [67]. Thus, 
mRNA levels of downstream genes of MAPK and 
NF-κB signaling pathways were detected by qRT-PCR 
following MAP3K8 silencing. As shown in Figure 9A, 
mRNA levels of AKT2, AKT3, cAMP response 
element binding protein 1 (CREB1), extracellular 
signal-regulated kinase (ERK)1, ERK2, glycogen 
synthase kinase (GSK)3A, GSK3B, heat shock protein 
(HSP)27, mitogen-activated protein kinase 8 (JNK1), 
mitogen-activated protein kinase 9 (JNK2), mitogen- 
activated protein kinase kinase (MKK)3, MKK6, 
mitogen- and stress-activated kinase 2 (MSK2), p38α, 
p53, ribosomal protein S6 kinase (RPS6K)B1, 
RPS6KA1, RPS6KA3, and NF-κB were significantly 
reduced, indicating the excellent protective effect of 
downregulated MAP3K8 on chondrocytes.  
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Figure 6. miR-93-5p promotes the progression of OA in human chondrocytes. (A) Quantitative real-time PCR (qRT-PCR) quantification of miR-93-5p relative expression 
regulated by its mimic or inhibitor (n=3) *p<0.05. (B) qRT-PCR quantification of mRNA relative levels associated with catabolic enzymes and proinflammatory cytokines after 
intervention for miR-93-5p (n = 3). *p < 0.05. (C) qRT-PCR quantification of relative mRNA levels associated with synthetase and proteoglycans after intervention for miR-93-5p. 
(n = 3). *p < 0.05. (D) Upper, western blot analyses of extracellular matrix (ECM) associated proteins after intervention for miR-93-5p. Lower, quantification of western blot 
analyses with log2 (fold of change) (n = 3). *p < 0.05. (E) Enzyme-linked immunosorbent assay (ELISA) analyses of IL-1β, IL-6 and TNF-α expression (n = 3). *p < 0.05. (F) Upper, 
representative images of MMP13, ADAMTS4 and COL2A1 labeled immunofluorescence after intervention for miR-93-5p. Scale bars, 200 µm. Lower, quantification of 
immunofluorescence with relative fluorescence intensity. (n = 3). *p < 0.05. (G) Upper, western blot analyses of reactive oxygen species (ROS)-associated proinflammatory 
proteins after intervention for miR-93-5p, with or without IL-1β (10 ng/mL) stimulation. Lower, quantification of western blot analyses with log2 (fold of change) (n = 3). *p < 
0.05. (H) Upper, representative images of ROS activity detected by DCFH-A probe after intervention for miR-93-5p, with or without IL-1β stimulation. Lower, quantification 
of ROS activity with relative fluorescence intensity. (n = 3). *p < 0.05. Data presented as means ± standard deviation. 
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Figure 7. MAP3K8 is selected and confirmed as the downstream gene for circRSU1 and miR-93-5p. (A) Heat map abstracted from a published transcriptome profiling dataset 
of human chondrocytes (GSE 86578). (B) Volcano map showing 213 downregulated mRNAs and 157 upregulated mRNAs, with a |log2 (fold change)| ≥ 1, in IL-1β and oncostatin 
M (OSM) treated chondrocytes (IL-1β+OSM group) compared to the negative control (NC group). (C) Venn plot showing forecast downstream mRNAs of miR-93-5p 
converged by simultaneous analyses and overlapping of TargetScan, RNA22 and miRDB databases. (D) Nine mRNAs refined according to the overlapping of 466 forecast 
downstream mRNAs of miR-93-5p and 336 different-expressed mRNAs from GSE86578. The green, red, and black points represent downregulated, upregulated, and no 
statistically significant difference mRNAs in the IL-1β+OSM group compared with the NC group, respectively. (E, F) Red scale heat maps showing the RNA levels of the 
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candidate mRNA in HCs stimulated by IL-1β (10 ng/mL) for 0–3 days, or by gradient concentrations of H2O2 (0-500 µM) for 5 days. (n = 3). *p < 0.05 compared to NC. (G) 
qRT-PCR quantification of candidate mRNA relative expression after the knockdown of circRSU1 or overexpression of miR-93-5p. (n = 3). *p < 0.05 compared to NC. (H) 
qRT-PCR quantification of mRNA relative expression associated with extracellular matrix (ECM) maintenance and proinflammatory cytokines after the knockdown of the 
candidate genes. (n = 3). *p < 0.05 compared to NC. (I) Left, western blot analyses of proteins associated with ECM maintenance and proinflammatory cytokines after the 
knockdown of BMP2 and MAP3K8 genes. Right, quantification of western blot analyses with log2 (fold of change). (n = 3). *p < 0.05 compared to NC. (J) Schematic of 
dual-luciferase reporters (hFLuc-XbaL-hRLuc), carrying wild-type or mutant MAP3K8 sequences in the XbaL region. (K) Relative luciferase activity after the co-transfection of 
dual-luciferase reporters (Luc-MAP3K8 WT or Luc-MAP3K8 Mut) with miR-93-5p mimic or its control mimic into HEK-293T cells. (n = 3). *p < 0.05. (L) qRT-PCR quantification 
of MAP3K8 relative expression in primary human chondrocytes from specific parts of knee cartilage. (n = 10). *p < 0.05. Data presented as means ± standard deviation. 

 
Figure 8. The overexpression of MAP3K8 could reverse the outcome due to transfection of circRSU1 shRNA or miR-93-5p mimic. (A) qRT-PCR quantification of relative 
mRNA expression associated with catabolic enzymes and proinflammatory cytokines after the transfection of the circRSU1 shRNA or miR-93-5p mimic, with or without 
overexpressed MAP3K8 (n = 3). *p < 0.05 compared to NC and #p < 0.05 (B) qRT-PCR quantification of relative mRNA expression related to synthetase and proteoglycans 



Theranostics 2021, Vol. 11, Issue 4 
 

 
http://www.thno.org 

1893 

after the transfection of the circRSU1 shRNA or miR-93-5p mimic, with or without overexpressed MAP3K8 (n = 3). *p < 0.05 compared to NC and #p < 0.05. (C) Left, western 
blot analyses of extracellular matrix (ECM) associated proteins after the transfection of the circRSU1 shRNA or miR-93-5p mimic, with or without overexpressed MAP3K8. 
Right, quantification of western blot analyses with log2 (fold of change) (n = 3). *p < 0.05. (D) ELISA analysis of IL-1β, IL-6 and TNF-α expression (n = 3). *p < 0.05 compared 
to NC and #p < 0.05. (E) Left, western blot analysis of ROS-associated proinflammatory proteins expression after the transfection of the circRSU1 shRNA or miR-93-5p mimic, 
with or without overexpressed MAP3K8. Right, quantification of western blot analyses with log2 (fold of change) (n = 3). *p < 0.05 compared to NC. (F) Left, representative 
images of reactive oxygen species (ROS) activity detected by DCFH-A probes after the transfection of the circRSU1 shRNA or miR-93-5p mimic, with or without overexpressed 
MAP3K8. Scale bars, 500 µm. Right, quantification of ROS activity with relative fluorescence intensity (n = 3). *p < 0.05 compared to NC and #p < 0.05. (G) Left, representative 
images of MAP3K8 labeled immunohistochemistry (IHC) from specific parts of human articular cartilage. Scale bars, 200 and 100 µm. Right, quantification of IHC with the 
percentage of MAP3K8 positive cells (n=10) *p < 0.05. Data presented as means ± standard deviation. 

 
Figure 9. The circRSU1–miR-93-5p–MAP3K8 axis occurs via ERK1/2 and NF-κB pathways. (A) Quantitative real-time PCR (qRT-PCR) quantification of relative mRNA 
expression involved in MAPK and NF-κB pathways, after MAP3K8 silencing. (n = 3). *p < 0.05 compared to negative control (NC). (B) Left, western blot analyses of typical 
phosphorylated proteins in MAPK and NF-κB pathways, after MAP3K8 silencing. Right, quantification of western blot analyses with log2 (fold of change). (n = 3). *p < 0.05 
compared to NC. (C) Upper, western blot analyses of marker phosphorylated proteins in MEK-ERK1/2 and NF-κB pathways, after the downregulation or upregulation of 
MAP3K8. Lower, quantification of western blot analyses with log2 (fold of change). (n = 3). *p < 0.05 compared to NC. (D) Left, western blot analyses of marker phosphorylated 
proteins in MEK/ERK1/2 and NF-κB pathways, after the transfection of circRSU1 shRNA or miR-93-5p mimic. Right, quantification of western blot analyses with log2 (fold of 
change). (n = 3). *p < 0.05 compared to NC. Data presented as means ± standard deviation. 
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Western blot was then performed to assess the 
phosphorylation levels of the marker proteins in the 
affected pathway. Figure 9B shows that upon 
MAP3K8 inhibition, phosphorylated ERK1/2 
(p-EKR1/2) and phosphorylated NF-κB (p-NF-κB; 
p-p65) levels were markedly reduced, and 
phosphorylated JNK (p-JNK 1/2/3) levels was 
moderately abrogated, however, levels of 
phosphorylated p38 (p-p38) remained unchanged. 
Considering the results of qRT-PCR and western blot, 
we speculated that MAP3K8 prominently affects the 
ERK1/2 and NF-κB pathways in HCs. Therefore, we 
evaluated the activities of the major components of 
the two pathways (Figure 9C). In MAP3K8 
shRNA-transfected HCs, we observed reduced 
phosphorylation of Ser217/ Ser221 of MEK1/2, which 
promotes the processing and activation of ERK1/2. 
We also observed decreased phosphorylation of 
ERK1/2 at Thr202/ Tyr204 as well as reduced 
phosphorylation of MSK1 at Thr581, modulated by 
ERK1/2. Further, IKKα/β phosphorylation at 
Ser176/Ser180 was markedly inhibited in MAP3K8 
shRNA-transfected HCs, which contributed to the 
decreased phosphorylation of IκBα on Ser132. The 
activity of NF-κB was also inhibited, with reduced 
phosphorylation at Ser536. MAP3K8 overexpression 
caused the opposite effect on MEK1/2-ERK1/2 and 
NF‐κB cascades (Figure 9C). These data are consistent 
with promotion of OA following silencing of circRSU1 
or upregulation of miR-93-5p (Figure 9D), indicating 
that the modulation of MEK1/2-ERK1/2 and NF-κB 
signaling by the circRSU1-miR-93-5p-MAP3K8 axis 
indeed plays a key role in HCs. 

The circRSU1-miR-93-5p-MAP3K8 axis is 
conserved in mice and overexpressed 
circRSU1 induces knee articular OA in mice 

Based on published studies [68, 69], the majority 
of circRNAs are evolutionarily conserved and 
abundantly expressed across species. We obtained the 
sequence of hsa_circRSU1 and mmu_circRsu1 from 
the CircBank database to compare them using the 
EMBOSS Needle tool in the EBI website. Through 
pairwise sequence alignment, we found that 431 of the 
489 nucleotides of circRSU1 were conserved between 
humans and mice (Figure S4A). Furthermore, a total 
of 27 nucleotides upstream and downstream of the 
miR-93-5p target sequences in circRSU1 were highly 
conserved (highlighted in Figure S4A). The 
TargetScan database also indicated the conservation 
of miR-93-5p and its target MAP3K8 gene in humans 
and mice (Figure S4B). Using the conservation of the 
circRSU1–miR-93-5p–MAP3K8 axis both in human 
and mice as leverage, we designed primers for 
mmu_circRsu1 and confirmed the presence of its 

backspliced junction using Sanger sequencing (Figure 
S4C). RNase R and actinomycin D treatments were 
also performed to validate its stable circular structure 
(Figure S4D, E), and oligo(dt)18 primers and random 
hexamer primers were used to distinguish the lack of 
poly A tail (Figure S4F). RNA FISH staining of 
mmu_circRsu1 also indicated the cytoplasmic 
localization of mmu_circRsu1 in MCs (Figure S4G), 
which was consistent with the previous results of 
hsa_circRSU1. 

To corroborate these findings, we further 
investigated the effect of circRSU1 in mice. Figure 
S5A shows similar infection efficiency of negative 
controlled AAV and the AAV carrying the circRSU1 
gene. CircRSU1 AAV intra-articular delivery to 
sham-operated mice contributed to marked PG loss, 
the symptoms of which were similar to those of 
DMM-operated mice treated with vector AAV (Figure 
10A). However, there was no significant difference in 
infection with circRSU1 harboring a mutant form of 
miR-93-5p target sequence (circRSU1 Mut AAV) 
compared to the sham-operated mice administered 
vector AAV (Figure 10A). Furthermore, we clearly 
observed upregulated expression of MMP13 in knee 
articular cartilage collected from circRSU1 AAV 
treated mice, whereas sham-operated mice injected 
with vector or circRSU1 Mut AAV exhibited healthier 
behaviors (Figure 10A). OARSI and MANKIN grades 
indicated severe pathological degeneration of 
cartilage in the DMM+NC group and SHAM 
+circRSU1 AAV group, but not in SHAM+NC group 
and SHAM+circRSU1 Mut AAV group (Figure 10B). 
Three-dimensional reconstruction of the knee joint 
from mice specimens using micro-CT scanning 
indicated an unbalanced bone reconstruction, 
manifested as increased osteophyte production 
(Figure 10C). Hot plate test, knee extension test, and 
electric shock stimulated treadmill test displayed 
greater discomfort and suffering in the knee of SHAM 
+circRSU1 AAV group versus SHAM+NC or 
SHAM+circRSU1 Mut AAV groups (Figure 10D). 
Western blot analyses and ROS activity detection in 
primary MCs, collected from the four groups further 
validated reduced degradation and oxidative stress 
with more synthetic ECM in SHAM+NC or 
SHAM+circRSU1 Mut AAV groups, compared to 
DMM+NC and SHAM +circRSU1 AAV groups 
(Figure 10E, F). Furthermore, using an aging mouse 
model to simulate the knee joints of elderly patients in 
accordance with published studies [46], we detected 
increased degradation and oxidative stress in knee 
articular cartilage of 20-month-old mice, compared to 
those of 2-month-old mice.  
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Figure 10. Overexpressed circRSU1 promotes the progression of OA in mice. (A) Representative images of Safranin O/ Fast green, Alcian blue, and MMP13 labeled 
immunohistochemistry (IHC) staining of knee cartilage from mice. Scale bars, 200 and 100 µm. (B) OARSI and MANKIN grade used for the assessment of histological changes 
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of mouse knee cartilage. The percentage of MMP13 positive cells used for quantification of MMP13 labeled cartilage. (n = 10) *p < 0.05 compared to SHAM+NC group. (C) Left, 
representative three-dimensional (3D) reconstruction images of mouse knee joints showing abnormal growth of osteophytes (indicated by yellow arrow). Scale bars, 2 mm. 
Right, quantification of 3D reconstruction images by counting the number of osteophytes. (n = 10). *p < 0.05 compared to the SHAM+NC group. (D) Quantification of the hot 
plate test, vocalizations evoked by extension of the knee and knee pressure test, and electric shock stimulated treadmill test to evaluate the pain in the knee joints of mice (n = 
10). *p < 0.05 compared to the SHAM+NC group. (E) Upper, representative images of reactive oxygen species (ROS) activity detected by DCFH-A probes in primary 
chondrocytes from mice knee articular cartilage. Scale bars, 500 µm. Lower, quantification of ROS activity with relative fluorescence intensity (n = 3). *p < 0.05 compared to the 
SHAM+NC group. (F) Left, western blot analyses of proteins associated with extracellular matrix (ECM) maintenance and proinflammatory cytokines in primary chondrocytes 
from mice knee articular cartilage. Right, quantification of western blot analyses with log2 (fold of change) (n = 3). *p < 0.05 compared to the SHAM+NC group. Data presented 
as means ± standard deviation. AAV: adeno-associated virus; DMM+NC: DMM-operated mice injected with negative control AAV; SHAM+NC: sham-operated mice injected 
with negative control AAV; SHAM+circRSU1: sham-operated mice injected with AAV carrying wild-type circRSU1; SHAM+circRSU1 Mut: sham-operated mice injected with 
AAV carrying mutant circRSU1. 

 
Based on Safranin O/Fast Green and Alcian blue 

staining, there was a decomposition of proteoglycan 
in elderly mice, accompanied by increased expression 
of ECM degrading enzymes, such as MMP13 (Figure 
S5B), which were quantified using OARSI and 
MANKIN grades, as well as percentage of MMP13 
positive cells (Figure S5C). The expression of marker 
proteins involved in OA development was detected as 
presented in Figure S5D. Moreover, ROS activities 
were considerably promoted in MCs collected from 
the cartilage of elderly mice (Figure S5E). 
Consistently, there was an upregulation of mmu_ 
circRsu1 and downregulation of mmu_miR-93-5p in 
articular cartilage of the elderly mice, as observed via 
FISH staining, compared to that in 2-month-old mice 
(Figure S5F). 

Discussion 
Although immortality is an unattainable vision 

for everyone, maintaining a young articular cartilage 
in elderly patients is the ultimate goal of all 
orthopedic surgeons. Aging places an unprecedented 
burden on articular cartilage, which eventually 
reduces the quality of life for the elderly [70]. 
Currently, joint replacement surgery remains the 
most effective treatment for patients with end-stage 
OA [71], compared to pharmacological treatments 
such as NSAIDs, which offer limited alleviation of 
symptoms[72], or regenerative medicine such as 
mesenchymal stem cell injections, whose efficacy is 
unclear [73]. 

Upregulated intracellular ROS has been detected 
in cartilage obtained from older patients [74, 75], 
which subsequently exacerbates the pathological 
changes caused by aging [18, 22]. Similar to previous 
studies, we found that the level of ROS was closely 
related to the degree of arthritis, showing a positive 
correlation. Furthermore, the medial knee articular 
cartilage from older patients, which bears more body 
weight than the lateral cartilage [76], displayed 
elevated ROS and more catabolic activities compared 
to those in younger patients. Although a few studies 
have focused on circRNAs in OA [38, 40, 48, 77], the 
relationship between circRNAs, ROS, and OA has not 
yet been elucidated. Considering that earlier studies 
have shown the role of H2O2 in the inhibition of 

proteoglycan biosynthesis [49, 78] and induction of 
ROS production, we performed RNA sequencing 
using H2O2-treated chondrocytes. Hsa_circ_0006577, 
which is backspliced from the RSU1 gene (thus named 
as circRSU1), was distinct among the circRNAs 
induced by H2O2, the upregulation of which was also 
confirmed in human biopsies of cartilage from older 
individuals. Further experiments validated the role of 
circRSU1 in upregulating the level of ROS in 
chondrocytes and its pro-inflammatory effect on 
chondrocytes. Silencing circRSU1 expression caused a 
significant reduction in iNOS and COX2 as well as 
catabolic enzymes, showing a wide inhibition of ECM 
degradation. 

CircRNAs often function as a sponge for 
miRNAs, and circRSU1 was no exception. In our 
work, for the first time, we elucidated the role of the 
circRSU1–miR-93-5p–MAP3K8 axis in regulating the 
progression of OA. MAP3K8, also known as TPL-2 or 
COT, has been demonstrated to have an effect on 
obesity [79], tumor phenotype [80, 81], atherogenesis 
[82] and mammalian inflammation [83]. Using the 
GEO database (GSE 86578), affiliated with TargetScan, 
RNA22, and miRDB databases, the MAP3K8 gene was 
first forecasted as the target gene of miR-93-5p, and its 
importance was then demonstrated in age-associated 
OA. Previous studies have suggested that the 
pro-inflammatory effect of MAP3K8 gene occurs 
primarily through propelling MAPK and NF-κB 
cascades in other diseases [79-84], we further 
elaborated that MAP3K8 promotes the progression of 
OA mainly through the EKR1/2 and NF-κB 
pathways, which are also the downstream signaling 
pathways of ROS signaling as well as the typical 
pathways involved in OA [21]. CircRSU1 and 
miR-93-5p also modulated phosphorylation levels of 
proteins in the two pathways. Thus, we could 
logically conclude that the circRSU1 – miR-93-5p –

MAP3K8 axis participated in the progression of OA 
principally via the MEK/ERK1/2 and NF-κB 
pathways. 

Higher species conservation generally indicates 
more important biological functions. The sequence of 
hsa_circRSU1 was highly similar to mmu_circRSU1, 
with 431 of 489 bases (88.14%) conserved in both 
humans and mice. Furthermore, the miR-93-5p, and 
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MAP3K8 interacting sites in circRSU1 were well 
conserved, thus providing the possibility of a 
significant effect of circRSU1 in mice. Recovery was 
achieved with infection of mutant circRSU1 AAV 
harboring mutation in miR-93-5p target sites, 
compared to the severe OA symptoms observed in 
sham-operated mice injected with circRSU1- 
overexpressing vectors. Given the critical role of 
circRSU1, we hypothesized that the miR-93-5p target 
sites in circRSU1 may serve as a potential target to 
control age-associated OA. 

Nevertheless, our study could be improved by 
using transgenic mice with a chondrocyte-specific 
promoter for circRSU1, rather than using intra- 
articular injection to upregulate circRSU1 expression. 
However, clinically, the method used to transport 
“drugs” into articular cavities is closer to the method 
currently used in clinical practice, considered as a 
local treatment with more reliable curative effects and 
fewer systemic side effects. Furthermore, to limit the 
potential off-target risk of anti-circRSU1, there is a 
need to develop a safe and reliable method to weaken 
the circRSU1 effect by precise targeted therapy. The 
importance of each element in the circRSU1–
miR-93-5p–MAP3K8 axis poses a variety of measures 
for OA therapy, including blocking the formation of 
circRSU1, inhibiting the activity of MAP3K8, or 
injecting miR-93-5p. We have suggested the pivotal 
role of circRSU1 and its mutant in established OA 
mouse models, providing a potential site for the 
management of OA. Thus, the development of a 
circRSU1-specific drug targeting the miR-93-5p site 
would be a more beneficial treatment, after testing its 
safety and efficacy. For instance, a designed antisense 
RNA sequence would not only recognize the 
backsplicing site of circRSU1, but also competitively 
bind to the miR-93-5p target sequence. 

Another limitation lies in the connection 
between mRSU1 and circRSU1. A previous review 
summarized that competition between splicing and 
backsplicing could regulate the biogenesis of circRNA 
[85]. Given the cytoplasmic localization and exonic 
formation of circRSU1, as well as the opposite 
expression trend of circRSU1 and linear mRSU1 under 
IL-1β and H2O2 stimulation, we hypothesized the 
presence of a mechanism that regulates their 
biogenesis. Xu et al. [86] reported that circSMARCA5 
can form an R-loop at its parent gene locus, which 
results in transcriptional pausing of SMARCA5 and 
leads to the upregulated circSMARCA5 and 
downregulated mSMARCA5 in breast cancer. Zhang 
et al. [87] also reported a mechanism for the selection 
of RNA pairing across flanking introns or within a 
single individual intron that leads to competition 
between the back-splicing of circRNAs and the 

canonical splicing of linear mRNAs. These actions are 
performed by specific RNA binding proteins (RBPs) 
and therefore, the biogenesis of circRSU1 was 
hypothesized to be post-transcriptionally regulated 
by specific RBPs. However, it is still unclear if its 
corresponding linear mRSU1 is regulated by circRSU1 
itself or specific RBPs. Interestingly, RSU1 was 
originally regarded as a suppressor of Ras-induced 
transformation [88, 89], and its effect was further 
validated on several kinases downstream of the Ras 
oncogene, such as inhibition of JNK and activation of 
ERK [90]. In our work, we revealed that the circRSU1–
miR-93-5p–MAP3K8 axis regulated kinase 
phosphorylation in the MEK/ERK1/2 pathway. 
Specifically, MAP3K8 reportedly has a significant 
effect on Ras-induced inflammation signaling [84]. 
Therefore, further investigation is needed to explore 
possible feedback regulation among the networks of 
circRSU1, mRSU1, MAP3K8, and Ras proteins. 

In summary, our study describes, for the first 
time, the predominant presence of circRSU1 in 
cartilage from age-associated OA, as well as IL-1β- 
and H2O2-stimulated chondrocytes. Furthermore, we 
reveal a circRSU1–miR-93-5p–MAP3K8 axis as pivotal 
to the role of circRSU1 in regulating oxidative stress 
and ECM homeostasis in human chondrocytes, which 
occurs via the MEK/ERK1/2 and NF-κB pathways. 
The circRSU1-centered axis also exerts a regulatory 
function in established OA mouse models due to its 
superior conservation across species, which together, 
presents circRSU1 as a potential target for the 
treatment of age-associated OA. 
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