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Abstract 

Rationale: Platinum-based chemotherapy is one of treatment mainstay for patients with advanced lung 
squamous cell carcinoma (LUSC) but it is still a “one-size fits all” approach. Here, we aimed to investigate the 
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predictive and monitoring role of circulating cell-free DNA (cfDNA) profiling for the outcome of first-line 
chemotherapy in patients with advanced LUSC. 
Methods: Peripheral blood samples of 155 patients from a phase IV trial and 42 cases from an external 
real-world cohort were prospectively collected. We generated a copy number variations-based classifier via 
machine learning algorithm to integrate molecular profiling of cfDNA, named RESPONSE SCORE (RS) to 
predict the treatment outcome. To monitor the treatment efficacy, cfDNA samples collected at different time 
points were subjected to an ultra-deep sequencing platform. 
Results: The results showed that patients with high RS showed substantially higher objective response rate 
than those with low RS in training set (P < 0.001), validation set (P < 0.001) and real-world cohort (P = 0.019). 
Furthermore, a significant difference was observed in both progression-free survival (training set, P < 0.001; 
validation set: P < 0.001; real-world cohort: P = 0.019) and overall survival (training set, P < 0.001; validation set: 
P = 0.037) between high and low RS group. Notably, variant allele frequency (VAF) calculated from an 
ultra-deep sequencing platform significantly reduced in patients experienced a complete or partial response 
after 2 cycles of chemotherapy (P < 0.001), while it significantly increased in these of non-responder (P < 0.001). 
Moreover, VAF undetectable after 2 cycles of chemotherapy was correlated with markedly better objective 
response rate (P < 0.001) and progression-free survival (P < 0.001) than those with detectable VAF. 
Conclusions: These findings indicated that the RS, a circulating cfDNA sequencing–based stratification index, 
could help to guide first-line chemotherapy in advanced LUSC. The change of VAF is valuable to monitor the 
treatment response. 

Key words: Non-small-cell lung cancer; cell-free DNA; chemotherapy; machine learning 

Introduction 
Lung squamous cell carcinoma (LUSC) is a 

common histological type of non-small-cell lung 
cancer (NSCLC) [1, 2]. Unlike lung adenocarcinoma, 
most of LUSC does not harbor targetable driver 
mutations. Even though some of LUSC had driver 
mutations, targeted therapies are rarely used in this 
setting [3, 4]. Recently, immunotherapy targeted 
programmed cell death 1 (PD-1) and its ligand 
(PD-L1) has shifted the treatment landscape in 
patients with advanced LUSC, but only ~20% of them 
got response to anti-PD-(L)1 monotherapy without 
biomarker selection [5-8]. Therefore, platinum-based 
chemotherapy still plays an important role in the 
treatment for patients with LUSC as either front line 
or second ling setting [9]. However, platinum-based 
chemotherapy in LUSC is still a “one-size fits all” 
approach. Although we endeavored to investigate 
single or combined molecular features to predict 
chemotherapy response, to date, none of them had 
been successfully implemented in clinical practice [9, 
10]. Recently, next generation sequencing (NGS) 
characterizes alterations in genome and demonstrated 
that tumor mutation burden (TMB) was associated 
with response to checkpoint inhibitors [11, 12]. 
Furthermore, other genomic signature was found to 
be correlated with molecular targeted agents [13], 
which showed the potent for identifying efficacy 
predictors to chemotherapy via genetic profiling. 

Circulating cell-free DNA (cfDNA) is a potential 
surrogate for the genomic profiling of tumor [14-17]. 
Several publications have reviewed the clinical 
application of cfDNA in NSCLC, and suggested 
cfDNA as an alternative predictor for targeted 

therapy and immunotherapy [14, 18-20]. Indeed, it is 
feasible for real-time monitoring of tumor relapse or 
disease progression [21-23]. Moreover, our previous 
study in a limited number of NSCLC patients found 
that those with objective response to first-line 
chemotherapy have distinct mutational landscape of 
cfDNA when compared with non-responders [24], 
indicating cfDNA profiling might be a potential 
marker to guide chemotherapy in NSCLC. 

To further investigate the predictive value of 
cfDNA profiling for doublet chemotherapy in patients 
with advanced LUSC, we conducted this biomarker 
exploratory analysis in patients from a randomized 
phase IV trial (named LIPUSU, NCT02996214). From 
the training cohort, we developed a copy number 
variations (CNV)-based classifier, named RESPONSE 
SCORE (RS, details are listed in the Methods: 
Definition and Algorithm of RESPONSE SCORE), via 
machine learning algorithm to integrate molecular 
profiling. Our results showed that patients with high 
RS showed significantly superior objective response 
rate (ORR), progression-free survival (PFS) and 
overall survival (OS) than those with low RS in 
training, validation set and an external real-world 
cohort. Notably, change of variant allele frequency 
(VAF) of common mutations could monitor response 
and might help to identify early disease progression 
of chemotherapy. 

Methods 
Patients’ enrollment and sample collection 

Eligible patients were consecutively enrolled 
from a randomized phase IV trial, named LIPUSU. 
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The purpose of LIPUSU is to investigate the efficacy 
and safety of paclitaxel liposome injection plus 
cisplatin compared with gemcitabine plus cisplatin as 
first-line therapy in patients with advanced LUSC. 
Details of the study design and patient eligibility 
criteria were summarized in https://clinicaltrials. 
gov/ (NCT02996214). Briefly, enrolled patients were 
randomly assigned to receive up to 6 cycles of 
paclitaxel liposome (175 mg/m2) plus cisplatin at a 
dose of 75 mg/m2 (LP) on day 1, every 21 days, or 
gemcitabine 1000 mg/m2 (on day 1 and 8, every 21 
days) plus cisplatin at a dose of 75 mg/m2 (GP), on 
day 1, every 21 days. Blood samples were collected at 
the baseline and two cycle of chemotherapy or disease 
progression. The study protocol was approved by the 
institutional ethics committee of each participating 
medical center. All patients signed informed consent 
forms before the initiation of any study-related 
procedure. We also adopted an external real-word 
cohort from online data to further validate the finding 
in this study. 

DNA extraction and sequencing 
Peripheral blood cells and plasma were 

separated by centrifugation at 1600×g for 10 min. 
Supernatant plasma was transferred to a 2 milliliter 
(mL) centrifuge tube and centrifuged at 16,000×g for 
10 min. MagMAXTM Cell-Free DNA isolation kit 
(Life Technologies, California, USA) was utilized to 
extract cfDNA in the plasma according to the 
instruction. TIANGEN whole blood DNA kit 
(TIANGEN, Beijing, China) was used to extract DNA 
from peripheral blood cells according to the 
manufacturer’s instructions. Further details of 
sequencing and bioinformatic analyses were provided 
in Supplementary Methods. 

Definition and Algorithm of RESPONSE 
SCORE 

To better predict the treatment response, we 
identified a set of genes to generate CNV-based 
classifier, named RESPONSE SCORE (RS). The criteria 
for the included genes were: (i) common driver 
mutations with frequency ≥ 2%; (ii) genes showed 
predictive value with P < 0.1 in univariate analysis 
from our cohort; (iii) genes potentially associated with 
efficacy of chemotherapy (e.g. ERCC1/2, BRAC1/2, 
RRM1, etc.) in previous studies; (iv) genes potentially 
correlated with the transport, metabolism and 
resistance of chemotherapeutic agents in previous 
publications; (v) genes involved in several biological 
processes associated with cancer cell survival, growth 
and apoptosis such as DNA replication, transcription 
and damage repair, cell cycle, immune response 
pathways and so on. The detailed algorithm of RS 

calculation was summarized in Supplemental 
Materials. 

Statistical analysis 
Both Wilcoxon signed rank test and t test were 

applied for comparison of CNV and mutation 
frequency between defined patients’ groups. 
Correlations between RS high and low group were 
analyzed using the chi-squared or Fisher’s exact test 
for categorical variables. The continuous variables 
were analyzed by ANOVA and Tukey’s multiple 
comparison tests. Mann-Whitney U tests or 
Kruskal-Wallis rank sum tests were used for 
comparisons of continuous variables across multiple 
groups. The Kaplan-Meier curve with log-rank test 
was used to test the significance of differences 
between two groups. All the diagrams were drawn 
with R packages including ComplexHeatmap and 
ClusterProfile. Circos-0.69-6 was used to generate 
circos plots for CNV distributions. All statistical 
analyses were conducted using GraphPad PRISM 6.0 
and the SPSS statistical software, version 22.0 (SPSS 
Inc., Chicago, IL, USA). P < 0.05 was considered 
statistically significant. 

Results 
Baseline characteristics of included patients 

Totally, 155 patients with advanced LUSC were 
identified and their blood samples at baseline and 
cycle 2 treatment were prospectively collected (Figure 
1 and Figure S1). Baseline characteristics were 
summarized in Table S1. In brief, 151 (97.4%) of them 
were male and 129 (83.2%) had Eastern Cooperative 
Oncology Group (ECOG) performance status of 1. 
Most of patients had smoking history (96.1%). 80 
patients received LP and 75 received GP. In LP group, 
there were 1, 47, 18 and 14 patients’ that experienced 
complete response (CR), partial response (PR), stable 
disease (SD) and disease progression (PD) to first-line 
treatment, respectively. In GP group, 45, 10 and 20 
patients experienced PR, SD and PD. Median PFS and 
OS were 153 and 341 days in LP group, 154 and 384 
days in GP group, respectively. 

Mutational landscape of cfDNA and its 
association with treatment response 

We identified 106 common genetic alterations 
with mutational frequency ≥ 2% (Figure 2). The most 
common genetic alteration was TP53 (76.1%, 
118/155). We listed the SNV and CNV landscape of 
LP and GP group in Figure S2-5. Overall, the 
mutational landscape was analogous between 
patients with CR/PR and SD/PD (Figure 2). The 
median TMB was 6.5 and 7.6 mutations/Mb in LP and 
GP group, respectively. While we used different 
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cutoffs of TMB, it did not show any predictive value 
for both ORR and PFS (cutoff of TMB 25th, 50th and 
75th: ORR, P = 0.793, P = 0.760, P = 0.880, respectively; 
PFS, P = 0.9267, P = 0.7128, P = 0.5887, respectively; 
Figure S6A-F). Subgroup analysis showed distinct 
cutoffs of TMB was also not associated with ORR and 
PFS in both LP (cutoff of TMB 25th, 50th and 75th: 
ORR, P = 0.598, P = 0.999, P = 0.598, respectively; PFS, 
P = 0.9701, P = 0.8431, P = 0.7685, respectively; Figure 
S7A-F) and GP group (cutoff of TMB 25th, 50th and 
75th: ORR, P = 0.448, P = 0.925, P = 0.912, respectively; 
PFS, P = 0.6805, P = 0.5232, P = 0.8230, respectively; 
Figure S7G-L). Of note, when we investigated the 
predictive value of each prevalent gene alteration 
(frequency ≥ 5%), we found no individual gene 
alterations showed association with the outcome of 
chemotherapy. 

Generation of CNV-based RS for response 
prediction 

To identify the patients who might benefit from 
chemotherapy, we generated a CNV-based classifier, 
named RS (Figure 1A). Firstly, we focused on the 
potential impact of cfDNA concentrations. The results 
showed that baseline cfDNA concentrations had no 
significant difference between patients with CR/PR 
and SD/PD in all, LP and GP group (P > 0.05, P > 0.05, 
P > 0.05, respectively; Figure S8A-C). The median PFS 
was also similar among patients with different 
baseline cfDNA concentrations in three groups (P = 
0.143, P = 0.656, P = 0.103, respectively; Figure S8D-F). 
Secondly, we found that the fraction of circulating 

tumor DNA (ctDNA) also had no significant 
difference between patients with CR/PR and SD/PD 
in all, LP and GP group (P > 0.05, P > 0.05, P > 0.05, 
respectively; Figure S9A-C). Moreover, the median 
PFS was also comparable among patients with 
different fraction of ctDNA in three groups (P = 0.975, 
P = 0.869, P = 0.834, respectively; Figure S9D-F). 
Finally, we excluded the potential impact of 
maximum VAF of SNV and CNV on therapeutic 
response (Figure S10). Following our above- 
mentioned defined criteria and strict algorithm, we 
identified CNV pattern of 31 genes including CASP8, 
PPHLN1, PIGF, KEAP1, SDHC, MOV10L1, CCND3, 
MTRR, ID3, STK11, SEL1L3, ARMC5, MYCL, 
SMARCA4, BAT, MYO10, SMO, TSHR, IRFB, SOX9, 
CIC, CCR4, HSPA1B, FLCN, PRPF39, RRP1B, PRKCI, 
ARPC2, SOCS1, ERCC2 and CEBPA. The results 
showed obviously different distribution between 
patients with CR/PR and SD/PD in all, LP and GP 
group (Figure 3A-C). These genes had different 
co-efficient importance values in this predictive 
model (Figure 4A) and the sum of co-efficient 
importance values based on the selected features for 
each sample was its individual RS. Receiver operator 
characteristic (ROC) curve analysis indicated that RS, 
the developed predictor in this study, could 
effectively distinguish patients with CR/PR from 
these with SD/PD in both training set [area under the 
ROC curve (AUC) = 0.925, Figure 4B] and validation 
set (AUC = 0.815, Figure 4C). 

 

 
Figure 1. Schematic illustration of the overall investigation. A. Machine learning algorithm to generate CNV-based RS for response prediction via integrating cfDNA 
molecular features; B. ICP-based dynamic change of VAF as baseline and cycle 2 treatment monitored the treatment response. 
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Figure 2. The mutational landscape of included patients. Upper panel: The frequency of listed driver genes. Middle panel: The matrix of mutations in a selection of 
frequently mutated genes. Columns represent samples. Right panel: The total number of patients harboring mutations in each gene. LP, paclitaxel liposome plus cisplatin; GP, 
gemcitabine plus cisplatin; CR, complete response; PR, partial response; SD, stable disease; PD, disease progression. 

 

Relationship between RS and treatment 
outcomes 

We then evaluated the relationship between RS 
and outcomes of first-line chemotherapy. The cutoff 
of RS was defined as the numerical value that showed 
the best accuracy and AUC in distinguishing patients 
with different treatment response. Therefore, all the 
patients in this study were divided into high or low 
RS group. As shown in Figure 5, patients with high RS 
showed markedly higher ORR than those with low RS 
in both training (93.0% vs. 26.3%, P < 0.001; Figure 5A) 
and validation set (70.0% vs. 11.5%, P < 0.001; Figure 
5B). A significant difference was also observed in PFS 
(training set: HR = 0.38, P < 0.0001, Figure 5C; 
validation set: HR = 0.41, P = 0.0004, Figure 5D) and 
OS (training set: HR = 0.45, P < 0.0001, Figure 5E; 
validation set: HR = 0.55, P = 0.0368, Figure 5F) 
between two groups. Subgroup analysis in training 
set indicated that RS was a suitable predictor for both 
LP and GP group (Figure S11). However, RS could not 
distinguish the ORR (Figure S12A-B) and PFS (Figure 

S12C-D) of LP from GP in training and validation set. 

Validation of predictive value of RS in a 
real-word cohort 

Considering the potential impact of different 
histology (e.g. LUSC vs. LUAD) and chemotherapeutic 
regimens, we further survey the universal significance 
of RS for predicting first-line chemotherapy outcomes 
in advanced NSCLC. We evaluated its predictive 
value in an external real-world cohort from previous 
publication[24]. 42 patients with advanced NSCLC 
received docetaxel plus cisplatin/carboplatin as 
first-line treatment (Figure S13A). The results showed 
that high RS was also correlated with significantly 
better ORR (54.5% vs. 15.0%, P = 0.019; Figure S13B) 
and PFS (HR = 0.42, P = 0.0023; Figure S13C) than 
those with low RS. These results suggested RS might 
be served as a universal predictor for first-line 
platinum-based doublet chemotherapy in advanced 
NSCLC and further investigation with large sample 
size is warranted. 
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Figure 3. CNV pattern of 31 genes including CASP8, PPHLN1, PIGF, KEAP1, SDHC, MOV10L1, CCND3, MTRR, ID3, STK11, SEL1L3, ARMC5, MYCL, 
SMARCA4, BAT, MYO10, SMO, TSHR, IRFB, SOX9, CIC, CCR4, HSPA1B, FLCN, PRPF39, RRP1B, PRKCI, ARPC2, SOCS1, ERCC2, CEBPA showed 
obviously distinct distribution between patients with CR/PR and SD/PD in all (A), LP (B) and GP (C) group. From inside to out of each circus plot: the first circle 
represents the CNVs of patients in SD and PD group (orange represents amplification, green represents loss or deletion); the second circle represents the CNVs of patients in 
PR and CR group (red represents amplification, blue represents loss or deletion). Outermost circle represents the chromosomes. CR, complete response; PR, partial response; 
SD, stable disease; PD, disease progression. LP, paclitaxel liposome plus cisplatin; GP, gemcitabine plus cisplatin. 

 

Change of VAF monitored the treatment 
response 

Several studies revealed that cfDNA dynamics 
could predict the treatment response of targeted 
therapies or immune checkpoint inhibitors. Here, we 
designed the Panel 2 covering 29 prevalent tumor 
related driver genes (Table S3) to explore whether 
changes of VAF in cfDNA could monitor 
chemotherapy response (Figure 1B). We collected 
eligible blood samples from 79 cases at baseline and 
cycle 2 treatment. Patients of responder (CR+PR) 
experienced a significant decrease of VAF while 
patients of non-responder (SD+PD) experienced an 
increase at cycle 2 treatment (Figure 6A). Moreover, 
patients of VAF undetectable at cycle 2 had 
significantly higher ORR (78.7% vs. 31.3%, P < 0.001; 
Figure 6B) and longer PFS (HR = 0.41, P < 0.0001; 
Figure 6C) than those of VAF detectable. Subgroup 
analysis showed that reduction of VAF was associated 
with durable clinical benefit in both LP (Figure S14A) 

and GP (Figure S14D) group. VAF undetectable at 
cycle 2 was correlated with substantially better ORR 
and PFS in both LP (ORR: 87.0% vs. 31.3%, P < 0.001, 
Figure S14B; PFS: HR = 0.36, P < 0.0001, Figure S14C) 
and GP group (ORR: 70.8% vs. 31.3%, P = 0.014, Figure 
S13E; PFS: HR = 0.46, P = 0.0089, Figure S14F) than 
those with detectable VAF. These findings suggested 
that changes of VAF in cfDNA could monitor the 
response to first-line chemotherapy in patients with 
advanced LUSC. 

Discussion 
The current study comprehensively investigated 

the predictive value of cfDNA profiling for first-line 
platinum-based chemotherapy in patients with 
advanced LUSC. Our genetic analysis indicated that 
no single gene alternations were associated with 
outcome of chemotherapy and TMB could also not 
predict therapeutic response in patients with 
advanced LUSC. Alternatively, we generated a 
CNV-based classifier (RS) via machine learning 
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algorithm to integrate cfDNA molecular profiling. We 
found that patients with high RS showed significantly 
superior ORR, PFS and OS than those with low RS in 
both training and validation set. We also validated 
these findings in an external real-world cohort. 
Notably, patients with objective response experienced 
a significant decrease of VAF after 2 cycles of 
treatment. Moreover, VAF undetectable at cycle 2 
treatment was correlated with significantly better 
ORR and PFS than those with detectable VAF. 

cfDNAs are derived from dying cells, detectable 
in plasma and are typically short DNA fragments 
(average length of 120–160 bp). In spite of the 
ambiguous biology of cfDNA, its clinical application 
(e.g. prediction or monitoring of treatment response, 
relapse, drug resistance, prognosis, etc.) has been 

extensively investigated [25]. Using cfDNA as a 
predictor for therapeutic response in NSCLC has been 
investigated in many previous studies and majority of 
them focused on cfDNA levels [26, 27]. However, a 
recent large-scale study found that the baseline 
cfDNA concentration did not validate its predictive 
value for outcome of systemic therapy in NSCLC [28]. 
Meanwhile, dynamic changes in plasma cfDNA also 
did not correlate with radiologic response [28], 
suggesting that cfDNA concentration could not serve 
as a predictor of systemic therapy. Consistently, our 
results also found that the baseline cfDNA level 
cannot distinguish patients with CR/PR from those 
with SD/PD. Collectively, these results recommended 
that future studies on the predictive value of cfDNA 
should shift from its concentration or dynamics.  

 

 
Figure 4. Generation of CNV-based RS for response prediction. A. Different co-efficient importance values in this model via selecting features with the best accuracy 
score in the ensemble or LASSO supervised method; B. Receiver operator characteristic curve analysis result in training set; C. Receiver operator characteristic curve analysis 
result in validation set. CNV, copy number variation; AUC, area under the ROC curve. Feature selection (Fig. A) was carried out with two steps. First, several statistical methods 
were utilized to evaluate the difference between two groups of samples in training set for each feature, including deviation, mutual information, AUC and p-values of Chi-Square 
test, Wilcoxon rank sum test, ANOVA and Student’s t test, after which features with significantly different signal in at least four of criteria mentioned above were selected. Then, 
the method of LASSO was conducted to select features with the best accuracy score. 
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Figure 5. Relationship between RS and treatment outcomes. A. ORR comparison between RS high and low group in training set; B. ORR comparison between RS high 
and low group in validation set; C. Kaplan-Meier curve of PFS comparison between RS high and low group in training set; D. Kaplan-Meier curve of PFS comparison between RS 
high and low group in validation set; E. Kaplan-Meier curve of OS comparison between RS high and low group in training set; F. Kaplan-Meier curve of OS comparison between 
RS high and low group in validation set. RS, RESPONSE SCORE; ORR, objective response rate; PFS, progression-free survival; HR, hazard ratio. Unpaired student t test were 
applied for comparison of response rate between RS high and low groups. The Kaplan-Meier curve with log-rank test was used to test the significance of differences between two 
groups. 

 
Figure 6. ICP-based dynamic change of VAF monitored the treatment response. A. ICP-based change of VAF between CR/PR and SD/PD at baseline and cycle 2 
treatment. B. ORR comparison between VAF detectable and undetectable at cycle 2 treatment; C. Kaplan-Meier curve of PFS comparison between VAF detectable and 
undetectable at cycle 2 treatment. ORR, objective response rate; PFS, progression-free survival; BL, baseline; C2, cycle 2 treatment; CR, complete response; PR, partial response; 
SD, stable disease; PD, disease progression. Paired student t test were applied for the dynamic change of cfDNA VAF between baseline and C2 detection time. Unpaired student 
t test were applied for comparison of response rate between C2 detectable and undetectable groups. The Kaplan-Meier curve with log-rank test was used to test the significance 
of differences between two groups. 
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Single gene alterations as predictor for first-line 
chemotherapy in NSCLC went through a tortuous 
course and most of them finally failed [9]. Our 
findings also showed that there were no frequent 
genetic mutations associated with the outcomes of 
chemotherapy in patients with advanced LUSC, 
suggesting that individual gene alterations showed 
very limited and inconsistent value for predicting 
outcomes of first-line chemotherapy in advanced 
LUSC. To improve the predictive power, we 
developed a CNV-based classifier (RS) via integrating 
cfDNA profiling in this study. CNV is considered as 
one of the major types of genome aberrations that 
contribute to tumorigenesis, maintenance and 
progression [29]. Previous studies indicated that CNV 
pattern in cfDNA could act as a surrogate of primary 
tumor in various solid tumors [30, 31]. Moreover, 
Louise et al. reported that CNV-based classification 
from circulating tumor cells could distinguish 
chemosensitive from chemorefractory cases with an 
accuracy of 83.3% in small cell lung cancer [32]. In the 
current study, we integrated 31 frequent genes CNV 
as RS. As we mentioned above, most of them were 
involved in the carcinogenesis (e.g. KEAP1, 
SMARCA4, MYCL, SOX9, STK11), cell cycle 
regulation (e.g. CCND3, SEL1L3), DNA replication, 
transcription and damage repair (e.g. PPHLN1, 
MOV10L1, ID3, CIC, FLCN, PRPF39, RRP1B, ARPC2, 
CEBPA), immune response pathways (e.g. IRF8, 
HSPA1B, CCR4, SOCS1), chemotherapeutic drug 
transport and metabolism (e.g. ERCC2, MTRR, PIGF, 
SDHC, TSHR) in NSCLC. Although the association of 
each individual gene with treatment response was 
limited, a robust correlation between RS and 
chemotherapeutic response was observed. Patients 
with high RS had significantly better ORR, PFS and 
OS than those with low RS. Taken together, these 
findings indicated that this 31-genes CNV-based RS 
could be utilized to guide first-line chemotherapy in 
patients with advanced LUSC. 

The genetic profiling of cfDNA also exhibited 
promising results for monitoring the efficacy of 
systemic therapy. Mok T et al. found that patients with 
circulating EGFR mutation clearance at cycle 3 had 
longer PFS and OS, suggesting that dynamic change 
of blood-based EGFR status could be a useful 
predictive marker [22]. Several recent publications 
reported that plasma cfDNA profiling could also 
predict response to immune checkpoint inhibitors [23, 
33-35]. However, to date, no biomarkers have been 
developed to monitor the chemotherapy response in 
advanced LUSC. Our previous studies reported that 
the dynamic changes of TP53 mutational burden 
might have monitoring value for the efficacy of 
first-line chemotherapy in advanced NSCLC. To 

improve its reliability, we optimized a small panel 
that included 29 frequent tumor related driver genes 
with an ultra-deep sequencing to increase the 
sensitivity of mutation detection. The result showed 
that change of VAF could effectively monitor the 
treatment response. Interestingly, Diehn et al. 
reported that cancer personalized profiling by deep 
sequencing (CAPP-seq) circulating tumor DNA 
(ctDNA) analysis could assess a response earlier than 
radiographic approaches and identify molecular 
residual disease after definitive therapy in patients 
with lung cancer [36, 37]. These findings suggested 
that the application of customized panel of cfDNA 
sequencing could monitor the clinical benefits of 
chemotherapy. 

There are several limitations that should be 
acknowledged. First, although the number of patients 
in the phase IV trial is large enough (n = 536), only 155 
cases were included in this biomarker research, which 
may lead to the potential selection bias. However, 
when we compared the baseline features of two 
cohorts, we did not observe the obvious differences 
regarding to the baseline features including age, 
gender and ECOG PS. Second, we have utilized an 
external cohort to investigate the universal 
significance of RS for predicting first-line chemo-
therapy outcomes in advanced NSCLC regardless of 
histology. Due to the accessibility of sequencing data 
and clinical information for previous publication, only 
42 cases were included, which is relatively small. A 
large prospective study is warranted in the future to 
validate the predictive efficacy of RS. Third, we only 
identified the CNV profile from cfDNA, whether it 
could well represent the CNV features in primary 
tumor cohort of LUSC remains future investigation. 
Last but not least, immunotherapy based combination 
therapy is the standard of care for advanced LUSC. 
Only to investigate the biomarkers to predict 
chemotherapy is less clinical significant nowadays in 
the era of immunotherapy. Nevertheless, 
platinum-based chemotherapy still plays an 
important role in the treatment for patients with 
LUSC considering the accessibility and price of 
immunotherapy in some areas of China. A substantial 
number of patients still need chemotherapy and are 
the potential population who benefit this biomarker 
analysis. 

In summary, the current study indicated that 
cfDNA profiling is correlated with therapeutic 
response to first-line chemotherapy in patients with 
advanced LUSC. CNV-based RS showed potential 
value in predicting therapeutic effects, and change of 
VAF is valuable to monitor treatment response. These 
findings support the feasibility for utilization of 
cfDNA profiling to guide first-line chemotherapy in 
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patients with advanced LUSC, and worth further 
validation in large scale population. 
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