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Supplementary Figures and Figure legends
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Figure S1. The procedure flowchart for tumor slices sectioning and 3D-TSCs.
Tumor tissue is transported from the operating room to the laboratory and cut into 300
um slices in D-PBS solution using a vibratome. The slices are transferred to culture
medium and then carefully placed on membrane inserts in 24-well plates to create an

air-liquid interface.
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Figure S2. Histological analysis of biomarkers in 3D-TSCs derived from
genetically engineered mouse tumor. A, B Histological analysis of biomarkers in 3D-
TSCs derived from genetically engineered Brcal”°;MMTV-Cre mouse. Blue is
nuclear counterstain by Hematoxylin, and brown staining is positive protein by DAB.
YH2AX, marker for DNA double-strand breaks; Desmin regulates sarcomere
architecture; E-cadherin, a calcium-dependent cell-cell adhesion molecule; Vimentin,
maintain cellular integrity and anchor the position of the organelles in the cytosol; CK7,
tumor parenchyma. Scale bar: 100 um; C Quantitation of biomarkers in 3D-TSCs for
panels A,B. Caspase-3 is not activated, therefore, there is no counting for it. 5 digital
images of antibody-stained tissue slides were captured for calculating the mean in each

sample.



A

CD3/CD4/DAPI

L -

DUTTA_APOPTOSIS_VIA NFKB
HOLLMAN_APOPTOSIS. ViA_CO40_ON
REAGTOME_APOPTOSIS
HAMALAPOPTOSIS_VIA_TRAIL_UP

HAMAL APOPTOSIS_VIA_TRAIL DN

N I N ) v arorosss va oo ve
N O I sccnn arcerosss
-

BROCKE_APOPTOSIS_REVERSED_BY_IL6

Apoptosis

wu APOPTOSIS_BY_COKN1A_VIA_TPS3

I O O . s
REACTOME_CELL_CYCLE_MITOTIC SSGSEA
o
° REACTOME_CELL_CYCLE_CHECKPOINTS 0.2
° KEGG_CELL_CYCLE o
> -0.2
&) I I o nrmnsic._eaniway_Fon aporTosis Pyt

M .
L ——.
B —

KYNG_DNA_DAMAGE_BY_4NQO_OR_UV.

e ——

KYNG_DNA_DAMAGE_BY_4NQO

---—- YNGON DAUAGE . oA FADTON

KYNG_DNA_DAMAGE_BY_GAMMA_AND_UV_RADIATION

DNA Damage

KIM_MYC_AMPUIFICATION_TARGETS_UP.

KIM_MYC_AMPUIFICATION_TARGETS_DN

I oo sron o
[ [—

D8

Proliferation

AN I B —

D1 D2 D4 D6

Autophagy

NFKB

P38IINK

KEGG_REGULATION_OF_AUTOPHAGY

ST_TUMOR_NECROSIS_FACTOR_PATHWAY

T 1 | ] [—"

GILMORE_CORE_NFKB_PATHWAY
DUTTA_APOPTOSIS_VIA_NFKB
JAIN_NFKB_SIGNALING
HINATA_NFKB_TARGETS_KERATINOCYTE_UP
TIAN_TNF_SIGNALING_NOT_VIA_NFKB
BIOCARTA_EPONFKB_PATHWAY
BIOCARTA_NFKB_PATHWAY
REACTOME_P75NTR_SIGNALS_VIA_NFKB
HINATA_NFKB_TARGETS_FIBROBLAST_UP

TIAN_TNF_SIGNALING_VIA_NFKB

ST_P38_MAPK_PATHWAY
ST_INK_MAPK_PATHWAY

BIOCARTA_P38MAPK_PATHWAY
REACTOME_ACTIVATED_TAK1_MEDIATES_P38_MAPK_ACTIVATION
REACTOME_NRAGE_SIGNALS_DEATH_THROUGH_JNK

REACTOME_SIGNALLING_TO_P38_VIA_RIT_AND_RIN

...-.. FIEACTOME.PIBMAPK_EVENTS

D2 D4 D6 D8

DO Dt

Neutrophils
6

L .
DO Di D2 D4 D6 D8

NK cells

I I Pk
| [OE
[  Tnfrsfob
Sh2dtbt TPM
6
4
.2
0

I
|
|
L |
DO

Macrophages

< ; 04 D6 08

g 1.00- o

£075 T

z 0.50

E 0.25:

000

8 pvalue 4.26e-07 4.98e-06 7.77e-08 2.35e-04 2.95e-05
Neutrophils

D1 D2 D4 D6 D8

2
8100 W
o7 ‘

050
§

502

o000

Cpvalve 321611 364004 321600 5.17e.05 872606
Monocytes

=) o1 D2 D4 D6 D8

S 1.00

3 W

H

5 050]

go2s{

2 0.00

3

Opvalue 351e-19 6.360-04 2.71e-08 2.360-05 1.586-03
NK cells

2 o1 D2 D4 D6 D8

2100 — —

; 0.75

5050

go2s

20.00

1

© pvalue 234e-07 3.30e-05 1.68e-05 1.36e-04 1.41e-05

Figure S3. Histological and RNA seq analysis of marker gene expression in 3D-
TSCs derived from genetically engineered mouse model. A, B Expression of
pathway genes by RNA sequence analysis in 3D-TSCs derived from genetically

engineered mouse. Single sample GSEA (ssGSEA) sore represents the level of the gene



set is up- or down-regulated within a sample; transcripts per million (TPM) is used to
estimate transcript or gene expression levels; and expression of several pathways
(including cell cycle, mismatch repair, ECM receptor interaction, Ubiquitin mediated
proteolysis, and regulation of actin cytoskeleton) were analyzed by Pearson correlation
coefficient for calculating the correlation. C Analysis of immune marker gene
expression of 3D-TSCs derived from Brcal©”°;MMTV-Cre mice. CD3/CD4: T
lymphocytes; Scale bar: 100 pm. D-G RNA sequence analysis of immune marker gene
expression for macrophages, neutrophils, monocytes, and NK cells. Transcripts per
million (TPM) is used to estimate transcript or gene expression levels. H Comparison
of the gene expression level by calculating the Pearson correlation coefficient for

macrophages, neutrophils, monocytes, and NK cells from D1 to D8 with DO.
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Figure S4. FRET-based biosensor for the detection of drug induced cancer cell

apoptosis in vitro. A Principle of caspase-3 reporter Sensor C3. B Images of established



cancer cells expressing caspase 3 reporter Sensor C3. GFP images were captured with
fluorescent microscopy using an EVOS® FL Cell Imaging System (Thermo Fisher
Scientific). Scale bar: 50 pm.
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Figure S5. Validation of drug induced cell death in fluogenetic 3D-TSCs based on
FRET-based biosensor C3. A Observation of tumor growth in 3D cultured MDA-MB-
231-C3 tumor slices. Scale bar: 1 mm. B Imaging of tumor growth and CIS induced
apoptosis; xenograft MDA-MB-231-C3 slices were treated with 100 uM CIS for 6d. C
Trypan blue staining of cell death in MDA-MB-231-C3 tumor slices induced by 100
uM CIS or 10 uM DOX for five days. Scale bar: I mm. D Imaging of DOX induced
cell death in MDA-MB-231-C3 slices by Propidium Iodide (PI) staining. Scale bar: 1

mm.
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Figure S6. Drug response of non fluogenetic 3D-TSCs derived from genetically

engineered mouse tumor to chemotherapy. A Imaging of CIS/DOX induced cell
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death in 3D-TSCs derived from genetically engineered mouse model treated with
CIS/DOX for 6 days by Propidium Iodide (PI) and Hoechst staining. B, C Detection of
drug induced cell death in 3D-TSCs derived from genetically engineered mouse model
treated with CIS/DOX for six days by LIVE/DEAD ® Viability/Cytotoxicity Kit. D-G
Detection of drug induced cell death in 3D-TSCs derived from genetically engineered
mouse model treated with CIS/DOX for four days by LIVE/DEAD ®
Viability/Cytotoxicity Kit, Caspase-3/7 Green Detection Reagent and MTT; Scale bar:
Imm. n=3. H Imaging of PDX-Colon tumor slices treated with cisplatin for five days
by PI staining. Scale bar: Imm. n =3, error bars + SEM, *p<0.05; **p<0.01 (control
versus CIS/DOX).
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Figure S7. Detection of drug induced cell death in non fluogenetic 3D-TSCs
derived from genetically engineered mouse model. A Detection of drug induced cell
death in 3D-TSCs treated with CIS for six days by PI/Hoechst staining/Caspase-3/7
Green Reagent/LIVE/DEAD ® Viability/Cytotoxicity Kit and MTT; Scale bar: Imm.
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B MTT analysis of cell viability of 3D-TSCs treated with CIS for six days. n=7. C, D

Detection of drug induced cell death in 3D-TSCs treated with CIS for six days by

Propidium lodide (PT)/NucRed Live 647/LysoTracker® Deep Red/Caspase-3/7 Green

Reagent and and MTT assay; Scale bar: Imm. n=12. E, F Detection of drug induced

cell death in 3D-TSCs treated with CIS for six days by Caspase-3/7 Green Detection

Reagent, LysoTracker probes, Live 647 ReadyProbes and MTT assay. Scale bar: 0.8mm.

n =7, error bars = SEM, *p<0.05; ***p<0.001; ****p<(0.0001 (control versus cisplatin).
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Figure S8. High throughput drug screening in vitro. A Summary of in vitro drug
screening result in MDA-MB-231-C3, Hct116-C3, HepG2-C3, A549-C3 and PANC-1-
C3 cell lines. B Venn diagram of drugs with high efficacy. C Heatmap of drug response
with high efficacy, C3 cells were treated with indicated drugs at 5-20 pM for 0-48 hours.
Apoptotic cells % is the percentage of apoptotic cells/cell numbers at each time point.
Cell number % is the percentage of cell numbers (each time point)/cell numbers (0
hours). When cell numbers at the time point is “0”, (i.e. all cells have died as shown in

¢ 9

most cases at 48 hours), “-” indicates no values.
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Figure S9. Quantification of original tumor PD-L1 IHC staining related with
Figure 5. A Area quantitation of original tumor PD-L1 IHC in mouse surgical tumors.
n = 5. B Area quantitation of original tumor PD-L1 IHC in human surgical tumors. n =

5. Error bars + SEM.
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Figure S10. Validation of lipofuscin as a label-free reporter of cell death in mouse
breast 3D-TSCs. A Fluorescence emission spectrum of lipofuscin. B Second harmonic
generation imaging of collagen (green, ex.@740 nm), two-photon fluorescence
imaging of flavin (cyan, ex.@890 nm) and lipofuscin fluorescence (red, ex.@ 1040 nm).
Scale bar: 24 pm. C MTT assay of drug efficacy in 3D-TSCs treated with 25 pM
cisplatin, 2.5 pg/mL aPD-1 or 2.5 pg/mL aPD-L1. Scale bar: 2 mm. D Evaluation of

cell viability in the mouse breast tumor slices treated with cisplatin by MTT assay.

Ch1: Ex 740 Ch1,Ch2: Ex 890
Ch2, Ch4:Ex 1040 Ch4:Ex 1040

Collagen/

Ctrl

25 uM
Cisplatin
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Figure S11. Confirmation of cell death by PI staining in mouse breast 3D-TSCs

used for label-free imaging. (Left column) Combined two-photon fluorescence
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imaging of NADH (blue, ex.@740nm), two-photon fluorescence imaging of propidium
iodide (red, ex.@1040 nm), and second harmonic generation imaging of collagen
(green, ex.@1040 nm). (Right column) Combined second harmonic generation imaging
of collagen (blue, ex.@890 nm), two-photon fluorescence imaging of flavins (green,
ex.@890 nm) and two-photon fluorescence imaging of propidium iodide (red,
ex.@1040 nm). This set of images evaluate the cancer cell death by propidium iodide
(PD) staining in genetically engineered mouse breast 3D-TSCs treated with 25 uM
cisplatin, 2.5 pg/mL aPD-1 or 2.5 pg/mL aPD-L1. Scale bar: 24 pm.
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Figure S12. Validation of lipofuscin as a label-free reporter of cell death in mouse
GFP+ 3D-TSCs. Combined two-photon fluorescence imaging of GFP (green, ex.@
960 nm) and lipofuscin (red, ex.@1040 nm) in mouse GFP+ 3D-TSCs treated with 25
uM cisplatin, 2.5 pg/mL aPD-1 or 2.5 pg/mL aPD-L1. Scale bar: 24 um.
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Supplementary Methods

Generation of C3 labeled cancer cell lines.

Plasmid containing a caspase reporter C3 [1], a recombinant DNA unit that
encodes a fusion protein CFP-DEVD-YFP, was purified using NucleoBond® Xtra kit.
After linearization with Stul, the C3 plasmid DNA was mixed with transfection reagent
in a reagents/plasmid ratio of 2:1 (v/w). Adherent cells were seeded into a 12-well
culture plate at 0.5-2 x 103/mL in 500 pl of growth medium per well without antibiotics.
Transfection reagent Lipofectamine LTX was used to transfer into cancer cells and
generated MDA-MB-231-C3, HepG2-C3, HCT116-C3, PANC-1-C3 and A549-C3
cells. Complexes were prepared as guided by the manufacturer’s instructions. Reaction
solutions were incubated for 20 min to form complexes. Cells were incubated at 37 °C
in a CO; incubator for 6 h followed by replacing to normal medium. Fluorescence-
activated cell sorting (FACS) of C3 labeled cells was performed to purify the stable

cells.

Drug screening using FRET microscopy

For time lapse imaging, cultured cell dishes were placed in a humidified cell-
culture incubator and continuously supplied with 5% CO. at 37 °C on a Nikon Eclipse
Ti-E fluorescent microscope. Widefield imaging of live cancer cells expressing C3 was
observed by a Nikon Eclipse Ti-E fluorescent microscope equipped with 10 x 0.3 NA
objective lens. The emission images of YFP (525 nm) and CFP (480 nm) were recorded.
In the merged FRET images, live cells appeared in cyan color while apoptotic cells
appeared in blue color. The merged FRET images were analyzed to calculate the
percentage of apoptotic cells using the following formula: % of apoptotic cells = Total
number of blue cells/ Total number of green cells. Drug efficacy was quantified by
measuring both apoptotic cells and number of survived cells using R Studio software.
We used a cut off line for drugs that kill 50% cells and also trigger at least 10% apoptotic

cells during this time-course. Because 20 uM is a relative high dose, if any drug that
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does not meet these criteria, we concluded that the drug is not effective in inducing

apoptosis for these cells and excluded them for further study.

Histochemical analysis

In addition to PI and MTT assay, we also tried other reagents to detect cell apoptosis in
3D-CTS. Hoechst 33342 is a cell-permeable chemical for staining DNA and nucleus,
which can be used for specifically staining the nuclei of living or fixed cells, and
reviewed by fluorescence microscopy. The LIVE/DEAD® Viability/Cytotoxicity
Assay Kit is a two-color fluorescence cell viability assay that is based on the
simultaneous determination of live and dead cells with two probes that measure
recognized parameters of cell viability based on plasma membrane integrity and
esterase activity [2]. The LysoTracker® Red DND-99 is fluorescent acidotropic probes
for labeling and tracking acidic organelles in live cells [3]. CellEvent™ Caspase-3/7
Green Detection Reagent is a novel fluorogenic substrate for monitoring caspase-3 or -
7 activation with live-cell fluorescence imaging [4]. NucRed Live 647 ReadyProbes
reagent is a bright far-red cell-permeant nuclear stain for live or fixed cells [5]. We used
above all reagents to detect cell death in 3D-CTS with non-fluogenetic signal. After
drug treatments, the 3D-CTS were washed twice with cold PBS followed by the
addition of above reagents and incubated for 3h at room temperature in the dark. The
3D-CTS were washed with 1xPBS buffer. Images were obtained using a fluorescence

stereomicroscope (Leica, M165FC, Germany).

Measurement of fluorescence emission spectrum of lipofuscin

After drug treatment, obvious two-photon red autofluorescence (Aex = 1040 nm) appear
in the sectioning image of 3D tumor slices. To measure the fluorescence spectra, we
zoom in the scanning range to a 6 x 6 pum region within cells carrying red
autofluorescence. The emitted signals were epi-collected by the same objective and
then reflected by an 865-nm edged dichroic beam splitter to an Andor Kymera 193i
spectrograph equipped with an iDus 401 CCD. This spectrometer set is attached on the

back-side port of the Nikon A1MP+ multiphoton microscope. In this integrated micro-
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spectroscopy system, we could measure the spectra of certain imaging region on-
demand. The spectra demonstrated an emission peak around 605 nm, which is

characteristic features of lipofuscin in aging cells.
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