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Supplementary Figure 1. PRMTS5 disruption had no effect on tumor growth in
nude mice. (A) PRMTS5 expression and SDMA level in control cells and PRMTS5
knockdown U14 cells (left panel), and the protein expression of PRMTS5 was quantified
by ImageJ (right panel). (B-E) Control cells and PRMTS5 knockdown U14 cells were
subcutaneously injected into 6-week-old female nude mice (n = 5 for each group). (B)
A line graph shows the tumor growth curve of nude mice. Images (C) and weight (D)
of the resected tumor at day 18 after inoculation. (E) Survival curve of tumor-bearing
nude mice. Data are representative of at least two independent experiments. Values are

presented as the mean = SEM. *P < 0.05 and **P < 0.01.
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Supplementary Figure 2. PRMTS deficiency in tumor cells affected the profile of
immune cells in the tumor microenvironment. Control cells and PRMTS5 knockdown
U14 cells were subcutaneously injected into 6-week-old female C57BL/6 mice (n = 5
for each group). Mice were euthanized at day 8 after inoculation. The tumor single cell
suspension was prepared and analyzed by flow cytometry. (A) Effect of PRMTS
knockdown Ul4 cells on the population of immune cells in the tumor
microenvironment. (B) The expression of Ki67 in CD4" T and CD8" T cells. Data are

representative of two independent experiments. Values are presented as the mean +

SEM. *P < 0.05 and *** P < 0.001.
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Supplementary Figure 3. Abnormal expression of PRMTS in cervical cancer cells
affected intracellular cytokine expression of T cells in co-culture system. PRMT5
knockdown U14 cells, PRMT5-overexpressing Ul4 cells or corresponding control
group cells were co-cultured with T cells at ratio of 1:10, stimulated with anti-CD3 (2
png/mL) and anti-CD28 (2 pg/mL) for 48 h. Flow cytometry was used to analyze the
expression of IFN-y, TNF-a and granzyme B in T cells after co-cultured with PRMT5
knockdown Ul4 cells (A) and PRMT5-overexpressing Ul4 cells (B). Data are
representative of two independent experiments. Values are presented as the mean +

SEM. *P <0.05, **P <0.01 and ***P < 0.001.
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Supplementary Figure 4. PRMTS regulated STAT1 and PD-L1 transcription and

increased H3R2, H3R8 and H4R3 dimethylation level. (A-B) Enrichment of PRMT5

or IgG at the STAT1 promoter (A) or at the PD-L1 promoter (B) was assessed by ChIP

PCR. (C) The expression of PRMTS5, H3R2me2s, H3R8me2s and H4R3me2s in Siha
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cells was determined by western blot, and H3 or H4 was served as a loading control.
(D-E) Enrichment of H3R8me2s, H4R3me2s or IgG at the STATI promoter was
assessed by ChIP Q-PCR. (F-G) Enrichment of H3R8me2s, H4R3me2s or IgG at the
PD-L1 promoter was assessed by ChIP Q-PCR. Data are representative of two

independent experiments. Values are presented as the mean + SEM.
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Supplementary Figure 5. A STAT1 inhibitor reduced PD-L1 expression in cervical
cancer cells. Control cells and PRMT5-overexpressing Siha cells were simultaneously
stimulated with IFN-y (40 ng/mL) and treated with or without a STAT1 inhibitor
(Fludarabine, 5 pM) for 24 h. Flow-cytometric analysis of PD-L1 expression on Siha
cells (A), and statistical analysis of the percentage of PD-L1 expression (B). Data are
representative of two independent experiments. Values are presented as the mean +

SEM. **P <0.01 and *** P <0.001.
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Supplementary Figure 6. EPZ015666 promoted the expression of intracellular

cytokines in T cells. C57BL/6 mouse splenocytes were added to the cell culture plate
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coated with anti-CD3 (1 pg/mL), and simultaneously cultured with anti-CD28 (1 pg/mL)
and the indicated concentrations of EPZ015666 for 72 h (n = 3). (A) Effect of
EPZ015666 on the viability (left panel) and proliferation (middle and right panel) of
mouse splenocytes was analyzed by CellTiter-Glo luminescent assay, CCK-8 Cell
Counting assay and CFSE staining, respectively. The percentage of CD4* T and CD8*
T cells in spleen cells (B), the expression of cytokines in CD4" T cells (C) and CD8" T
cells (D) were analyzed by flow cytometry. Values are presented as the mean + SEM.

*P < (0.05 and **P < 0.01.



Supplementary Table 1. Antibodies used in the experiment.

Antibodies Source Identifier
Monoclonal Antibody CD45 PerCP-Cyanine5.5 eBioscience | 45-0451-82
Rat Anti-Mouse CD45 BV421 BD 563890
Monoclonal Antibody CD3 Alexa Fluor 700 eBioscience | 56-0032-82
Monoclonal Antibody CD4 FITC eBioscience | 11-0041-85
Rat Anti-Mouse CD8a PE-CF594 BD 562283
Hamster Anti-Mouse CD279 (PD-1) BV421 BD 562584
Monoclonal Antibody CD274 (PD-L1) PE eBioscience 12-5982-82
Anti-mouse Antibody CD366 (TIM-3) BV605 Biolegend 119721

Rat Anti-Mouse CD223 (LAG-3) BV711 BD 563179
Monoclonal Antibody IFN-y PE-Cyanine7 eBioscience | 25-7311-82
Monoclonal Antibody TNF-a APC eBioscience | 17-7321-81
Monoclonal Antibody Foxp3 APC eBioscience | 17-5773-82
Monoclonal Antibody granzyme B PE eBioscience | 12-8898-80
Monoclonal Antibody Ki67 FITC eBioscience | 11-5698-82
Fixable Viability Dye eFluor 780 eBioscience | 65-0865-18
LIVE/DEAD™ Fixable Blue Dead Cell Stain Kit Life L34962

Supplementary Table 2. Primer sequences for quantitative real-time PCR.

hGAPDH Forward 5’- GGTGGTCTCCTCTGACTTCAACA -3’
Reverse 5’- GTTGCTGTAGCCAAATTCGTTGT -3’
HPRMTS Forward 5’- CTGTCTTCCATCCGCGTTTCA -3’
Reverse 5’- GCAGTAGGTCTGATCGTGTCTG -3’
mp-actin Forward 5’- TGTCCACCTTCCAGCAGATGT -3’
Reverse 5’- AGCTCAGTAACAGTCCGCCTAG -3’
MPRMTS Forward 5’- CTGAATTGCGTCCCCGAAATA -3’
Reverse 5’- AGGTTCCTGAATGAACTCCCT -3’
MIAK? Forward 5’- TTGTGGTATTACGCCTGTGTATC -3’
Reverse 5’- ATGCCTGGTTGACTCGTCTAT -3’
mSTATI Forward 5’- CGGAGTCGGAGGCCCTAAT -3’
Reverse 5’- ACAGCAGGTGCTTCTTAATGAG -3’
mPD.L1 Forward 5’- GCTCCAAAGGACTTGTACGTG -3’
Reverse 5’- TGATCTGAAGGGCAGCATTTC -3’
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Supplementary Table 3. Primer sequences for ChIP PCR.

) Forward 5’- AGCCAGCGAAGAGTTGGGTGA -3’
STAT]I first site
Reverse  5- GCCTCCTTCTGCAGTAGATTC -3’
| Forward 5’- GAATCTACTGCAGAAGGAGGC -3’
STAT1 second site
Reverse  5- CTTCTCCTAAACGCTGTGCTG -3’
o Forward 5’- CAGCACAGCGTTTAGGAGAAG -3’
STAT]1 third site
Reverse  5’- CTTGGAGGTCTCTGTAGTAG -3’
) Forward 5’- CTACTACAGAGACCTCCAAG -3’
STAT]1 forth site
Reverse  5°- CTCCGCAGACTCTGCGCAGGA -3’
) Forward 5’- AACCAATGCAAGGGCTATCTC -3’
PD-L1 first site
Reverse  5°- GGTCCCTGATATTCTGCCACC -3°
) Forward 5’- GGTGGCAGAATATCAGGGACC -3’
PD-L1 second site
Reverse  5’- CAACAAGCCAACATCTGAACG -3’
PD-L1 third sit Forward 5’- CGTTCAGATGTTGGCTTGTTG -3’
LA peverse 5°- CTCGGGAAGCTGCGCAGAAC -3°

Supplementary Table 4. Primer sequences for ChIP Q-PCR.

STAT]I first site

Forward

5’- CCAGCGAAGAGTTGGGTGAA -3’

Reverse

5’- TATAAAGCCCTGGTTGCCCG -3°

STAT1 second site

Forward

5’- TTGGACAAAGAGATCGGGCAA -3’

Reverse 5’- TGCCTCACTTCAGCCCTTAT -3°
STATI third site | FOT¥ard__5'- AAGTGAGGCAGCCATTCGGG -3
Reverse  5'- TGCAGTGAGCTCTACAAACT -3°
| Forward 5'- CACTGCACATACAAGTGGAG -3’
STATL forthsite /g Cerse 57 CCTGCCTCTGGCATTCTTTC -3°
| Forward 5°- AGGCAGGAAAAAGCAAGAAG -3’
STATHfifthsite  7p = orse 5 CTTGGAGGTCTCTGTAGTAG -3°
DL fitsite | ForWard__5'- AACCAATGCAAGGGCTATCTC -3
Reverse  5’- GTGCCTGTGTGCTCCCTTTTC -3°
DL 1 socond site | FOWard 5= AAGGGAGCACACAGGCACGG -3
Reverse  5’- GGGCCCAAGATGACAGACGATG -3’
Forward 5’- GTCTGTCATCTTGGGCCCATTC -3’

PD-L1 third site

Reverse

5’- CAGGGTCCCTGATATTCTGCC -3°

11




