Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function

Supplementary materials

Table S1. A list of all DEGs. (XLSX)

Table S2. A list of significantly enriched GO terms. (XLSX)

Table S3. Clinical data on AD patients and non-AD control subjects.

Table S4. Summary of mitochondrial dysfunction observed in H4^{PS1} cell lines.

Figure S1. H4^{PS1Δexon9} cell line exhibits mitochondria aggregation upon induction.

Figure S2. Intracellular ROS production is elevated in H4^{PS1} cell lines.

Figure S3. Tetracycline does not affect mitochondrial function in H4^{PS1} cell lines.

Figure S4. PS1 mutant induction has little effect on mitochondrial bioenergetics.

Figure S5. Cell-type proportions in the brains of PS1M146V knock-in mice are not altered.

Supplementary Tables and Figures

Table S3. Clinical data on AD patients and non-AD control subjects. The number of neuritic plaques per 2.35 mm² microscopic field were counted in A β antibody-stained sections of inferior parietal lobule. The value for each subject is the mean of 5 most involved fields in each section. PMI = post-mortem interval.

Patients	Age (years)	Gender	PMI (h)	Neuritic plaques	Cause of Death	Braak stage		
Control								
1	86	Female	2.25	7.6	Unknown	2		
2	91	Female	4.00	10.4	Unknown	1		
3	86	Female	3.75	7.8	Cardiovascular disease	1		
$Mean \pm S.D.$	87.7 ± 2.9		3.33 ± 0.95	8.6 ± 1.6				
Alzheimer's disease								
1	86	Female	4.25	23.4	Bowel obstruction	6		
2	75	Female	2.33	19.0	Congestive heart failure	6		
3	84	Male	4.50	34.8	Unknown	6		
$Mean \pm S.D$	81.7 ± 5.9		3.69 ± 1.19	25.7 ± 8.2				

Mutation	Fragmentation	Formation of MAM	O₂ ^{.–} production	Complex I activity	Peroxidase activity	Mitochondrial membrane potential	ATP Level
A413E	-	↑	↑	¥	¥	¥	¥
E280A	-	↑	↑	-	-	¥	-
H163R	-	↑	-	-	↑	¥	-
M146V	-	↑	↑	-	¥	¥	¥
∆exon9	↑	-	↑	-	-	¥	↓

Table S4. Summary of mitochondrial dysfunction observed in H4^{PS1} cell lines.

Figure S1. H4^{PS1Aexon9} cell line exhibits mitochondria aggregation upon induction. (A) Mitochondrial distribution observed using confocal microscopy z-stack imaging (z-axis:5 μ m, 100 slices). (B) Western blot of mitochondrial dynamics related proteins in H4^{PS1} cell lines. (C-E) Quantification of OPA1, MFN2, DRP1 expression levels in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment. n =3; **P* < 0.05, ***P* < 0.01; Student's *t*-test (two-tailed). The values shown indicate the means ± SEM.

Figure S2. Intracellular ROS production is elevated in H4^{PS1} cell lines. Quantification of ROS production measured in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment. n = 4; ***P < 0.001, ****P < 0.0001; Student's *t*-test (two-tailed). The values shown indicate the means \pm SEM.

Figure S3. Tetracycline does not affect mitochondrial function in H4^{PS1} cell lines. (A) Quantification of mitochondrial superoxide production in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment using MitoSOX. n = 3; Student's *t*-test (two-tailed). (B) Quantification of mitochondrial membrane potential in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment using TMRM. n = 4; Student's *t*-test (two-tailed). (C) Quantification of ROS production in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment using CM-H₂DCFDA. n = 4; Student's *t*-test (two-tailed). (D) Quantification of peroxidase activity in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment using the peroxidase assay. n = 4; Student's *t*-test (two-tailed). The values shown indicate the means \pm SEM.

Figure S4. PS1 mutant induction has little effect on mitochondrial bioenergetics. Representative Seahorse oxygen consumption assay in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment. Basal respiration, ATP-linked respiration, and proton leak measured in H4^{PS1} cell lines before and after tetracycline (100 ng/ml) treatment. n = 4; *P < 0.05; Student's *t*-test (two-tailed). The values shown indicate the means ± SEM.

Neuron			Microglia			Astrocyte		
Gene	z-ratio	P value	Gene	z-ratio	P value	Gene	z-ratio	P value
Calb1 Tubb3	0.11 -0.55	0.33 0.33	HexB Lgals3	-1.29 -0.40	0.12 0.64	Slc1a3 Gja1	0.59 0.19	0.26 0.71
Mapt Nefl	0.17 0.18	0.90 0.59	Csf1r	0.13	0.64	Aldo3	0.35	0.62

Figure S5. Cell-type proportions in the brains of PS1M146V knock-in mice are not altered. (A) A principal component analysis score plots from hippocampi of WT and PS1M146V knock-in mice. (B) Analysis of genes encoding specific markers for neurons, microglia, and astrocytes.