### Ablation of IncRNA Miat attenuates pathological hypertrophy and heart failure

Liu Yang<sup>1,2,3</sup>, Jianxin Deng<sup>1</sup>, Wenxia Ma<sup>1</sup>, Aijun Qiao<sup>1</sup>, Shiyue Xu<sup>1</sup>, Yang Yu<sup>2</sup>, Chan Boriboun<sup>1</sup>, Xiang Kang<sup>1</sup>, Dunzheng Han<sup>1</sup>, Patrick Ernst<sup>1</sup>, Lufang Zhou<sup>1,4</sup>, Jiawei Shi<sup>1</sup>, Eric Zhang<sup>1</sup>, Tao-Sheng Li<sup>5</sup>, Hongyu Qiu<sup>6</sup>, Shinichi Nakagawa<sup>7</sup>, Seth Blackshaw<sup>8</sup>, Jianyi Zhang<sup>1</sup>, Gangjian Qin<sup>1,2, #</sup>

#### **Supplementary Information**

### **Supplementary Figures**



Figure S1. *Miat* expression is increased in the myocardium after Ang II infusion for 7 days. *Miat* expression was analyzed by qRT-PCR in the LV tissue of WT mice after saline (CNT) or Ang II (2 mg/kg BW/day) infusion via mini-osmotic pump for 7, 14 or 28 days. The expression levels were normalized to 18S, and expressed relative to the levels in the mice with saline treatment for 7 days. n = 5 per group. \*p < 0.05 vs. CNT.



**Figure S2.** *Miat*-KO mice do not exhibit an obvious developmental defect. (A) Schema of genetic deletion of *Miat*. (B) qRT-PCR analysis of *Miat* in the heart of WT and *Miat*-KO mice, n = 4 per group. \*\*\*p < 0.001. (C-D) Gross examination (C) and body weight (D) of WT and *Miat*-KO mice, n = 10 per group. \*\*p < 0.01, \*\*\*p < 0.001 vs. the level at Week 4. (E-F) Representative images for HE staining of hearts (E, scale bar = 1 mm) and other major organs (F, scale bar = 100 µm) in WT and *Miat*-KO mice.



**Figure S3. Ang II-induced hypertension is similar in WT and** *Miat***-KO mice.** Blood pressure of WT and KO mice at the indicated time points of Ang II treatment. SBP, systolic blood pressure. DBP, diastolic blood pressure. n = 11 per group. \*p < 0.05 vs. Day 0.



Figure S4. Ang II-induced LV wall thickening is attenuated in *Miat*-KO mice. *Miat*-KO mice and WT littermates were treated with Ang II (2 mg/Kg BW/day) via a subcutaneously-implanted mini-osmotic pump. The thicknesses of LV anterior wall (LVAW) were measured via echocardiography at the indicated time points after initiation of Ang II infusion. \*p < 0.05, \*\*\*p < 0.001 vs. Day 0. #p < 0.05 vs. WT.



Figure S5. Deletion of *Miat* attenuates Ang II-induced hypertrophy of cardiomyocytes. Cardiomyocytes were isolated from neonatal WT or *Miat*-KO mice and treated with Ang II (200 nM) or PBS (CNT) for 48 h, then stained with anti-cardiac troponin T (cTnT, red) and DAPI (blue). The area per cell was analyzed with NIH Image J and averaged. \*p < 0.05, \*\*p < 0.01. Scale bar = 20  $\mu$ m.



Figure S6. Knockdown (KD) of *Miat* attenuates, and overexpression (OE) of *Miat* aggravates, Ang II-induced hypertrophic gene program in HL-1 cells. HL-1 cells were infected with lentiviral vector coding for *Miat* shRNA (KD +) or control shRNA (KD –) and 72 h later, transfected with a plasmid coding for mouse *Miat* (OE +) or an empty plasmid (OE –). After overnight, the cells were treated with Ang II (200 nM, +) or PBS (–) for 24 h. The mRNA levels of *Miat*, Anf and Bnp were evaluated via qRT-PCR, normalized to 18S, and expressed relative to the values of KD (–) group. \*p < 0.05, \*\*p < 0.01.



Figure S7. The attenuation of Ang II-induced hypertrophic gene program in *Miat*-KD HL-1 cells is reversed by *Miat* overexpression. HL-1 cells were infected with lentiviral vector coding for *Miat* shRNA (KD +) or control shRNA (KD –) and 72 h later, transfected with a plasmid coding for mouse *Miat* (OE +) or an empty plasmid (OE –). After overnight, the cells were treated with Ang II (200 nM) for 24 h. The mRNA levels of *Miat*, Anf, Bnp, Serca2a and RyR2 were evaluated via qRT-PCR, normalized to 18S, and expressed relative to the values of KD (–) group. \*p < 0.05, \*\*p < 0.01, \*\*\*p < 0.001.



Figure S8. The original Western blots in Fig 5C.







Figure S9. Ang II-induced alternative splicing of cardiac genes is markedly attenuated in *Miat*-KO mice. Both WT and KO mice were treated with Ang II (WTA, KOA) or saline (WTC,

KOC) via mini-pump for 7 days. Then RNAs were isolated from left ventricles and sequenced. (**A**) Total number of splicing events. SE, skipped exon; MXE, mutually exclusive exons; A5SS, alternative 5' splice site; A3SS, alternative 3' splice site; RI, retained intron. (**B**) Top 15 biological processes in GO analyses of genes with significant alternative splicing events. (**C**) Phospholamban isoform constitution. (**D-E**) Semiquantitative RT-PCR analysis showing splicing alterations of Cav 1.2 (**D**) and Camk2b (**E**).



Figure S10. Deletion of *Miat* does not change resting calcium concentration in cardiomyocytes. Cardiomyocytes were isolated from adult WT and *Miat*-KO mice, and resting intracellular Ca<sup>2+</sup> levels (F0), n = 140 for WT, n = 114 for KO. N.S., not significant vs. WT.

# **Supplementary Tables**

| Table S1. List of p | rimers |
|---------------------|--------|
|---------------------|--------|

|                | Forward primer                                                      | Reverse primer                |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| For assessme   | nt of gene expression with qRT-PCR                                  |                               |  |  |  |  |  |  |
| Miat           | 5'-GGGAGGTGTATAAAGTGAGAAGCT-3'                                      | 5'-GTATCCCAAGGAATGAAGTCTGTCT- |  |  |  |  |  |  |
| Bnp            | 5'-TGGGAGGTCACTCCTATCCT-3'                                          | 5'-GGCCATTTCCTCCGACTT-3'      |  |  |  |  |  |  |
| Anf            | 5'-TCTTCCTCTTGGCCTTT-3'                                             | 5'-CCAGGTGGTCTAGCAGGTTC-3'    |  |  |  |  |  |  |
| 18S            | 5'- CACGGCCGGTACAGTGAAA-3'                                          | 5'- AGAGGAGCGAGCGACCAA-3'     |  |  |  |  |  |  |
| β-actin        | 5'-ATGTGGATCAGCAAGCAGGA-3'                                          | 5'-AAGGGTGTAAAACGCAGCTCA-3'   |  |  |  |  |  |  |
| For validation | For validation of splicing alterations with semiquantitative RT-PCR |                               |  |  |  |  |  |  |
| Cav 1.2        | 5'-CCTCATCGTCATTGGGAGCAT-3'                                         | 5'- TGATGAAGGTCCACAGCAGG-3'   |  |  |  |  |  |  |
| Camk2b         | 5'-AGCCATCCTCACCACTATGC-3'                                          | 5'-ACTCCATCTGCTTTCTTGTTGAG-3' |  |  |  |  |  |  |

Table S2. Echocardiographic analyses in Ang II infusion model

|                | V                | VT                            | ŀ                                  | <0                      |
|----------------|------------------|-------------------------------|------------------------------------|-------------------------|
| Treatment      | CNT              | Angll                         | CNT                                | Angll                   |
| LVAW (mm)      | $0.80\pm0.06$    | $1.05 \pm 0.10^{**}$          | $0.80\pm0.02$                      | $0.93 \pm 0.13^{*\#}$   |
| LVPW (mm)      | $0.79\pm0.08$    | $1.13 \pm 0.13^{**}$          | $0.81\pm0.04$                      | $0.92\pm0.19^{\star\#}$ |
| LVID; d (mm)   | $3.74\pm0.29$    | $3.21 \pm 0.27^{*}$           | $3.68\pm0.32$                      | $3.63\pm0.54^{\#}$      |
| LVID; s (mm)   | $2.31\pm0.27$    | $1.76 \pm 0.23^{*}$           | $2.31\pm0.20$                      | $2.18\pm0.55^{\#}$      |
| LV Vol; d (µL) | $51.37\pm5.45$   | $39.46 \pm \mathbf{4.89^{*}}$ | $49.66\pm4.15$                     | $50.98 \pm 8.51^{\#}$   |
| LV Vol; s (µL) | $17.72\pm4.77$   | $11.43\pm3.08^{\star}$        | $16.28\pm3.33$                     | $17.12\pm4.72^{\#}$     |
| EF (%)         | $67.94 \pm 3.48$ | $74.42\pm3.19^{\star}$        | $67.70\pm1.76$                     | $69.70\pm2.98^{\#}$     |
| FS (%)         | $37.04\pm2.73$   | $43.39\pm6.07^{\star}$        | $36.96 \pm 1.39$                   | $38.67 \pm 3.12^{\#}$   |
| E/E'           | $34.12\pm2.42$   | $46.18\pm5.25^{\star}$        | $35.74 \pm 1.59$                   | $40.05 \pm 4.48^{*\#}$  |
| IVRT (ms)      | $15.88\pm2.96$   | $21.86 \pm 2.87^{*}$          | $16.80\pm1.47$                     | $19.59 \pm 1.79^{*\#}$  |
| SV (µL)        | $38.51 \pm 2.98$ | $30.61 \pm 3.85^{*}$          | $\textbf{37.28} \pm \textbf{6.23}$ | $36.67 \pm 6.87^{\#}$   |
| CO (mL/min)    | $22.39\pm3.12$   | $16.62\pm2.38^{\star}$        | $\textbf{22.21} \pm \textbf{1.56}$ | $21.14\pm3.98^{\#}$     |

\*p < 0.05, \*\*p < 0.01 vs. CNT. <sup>#</sup>p < 0.05 vs. WT.

 Table S3.
 Echocardiographic analyses in TAC model

|                | l I              | NT                              | ł                                  | <0                           |
|----------------|------------------|---------------------------------|------------------------------------|------------------------------|
| Treatment      | Sham             | TAC                             | Sham                               | TAC                          |
| LVAW (mm)      | $0.78\pm0.04$    | $0.98\pm0.07^{\boldsymbol{**}}$ | $0.76\pm0.06$                      | $0.85 \pm 0.03^{*\#}$        |
| LVPW (mm)      | $0.83\pm0.07$    | $1.03 \pm 0.12^{**}$            | $0.79\pm0.06$                      | $0.82 \pm 0.03^{\#\!\#}$     |
| LVID; d (mm)   | $3.45\pm0.32$    | $3.95\pm0.44^{\ast}$            | $3.41\pm0.31$                      | $3.30 \pm 0.14^{\#\!\!\!/}$  |
| LVID; s (mm)   | $2.26\pm0.32$    | $3.04 \pm 0.45^{**}$            | $\textbf{2.19} \pm \textbf{0.42}$  | $2.19\pm0.35^{\#}$           |
| LV Vol; d (µL) | $47.35\pm6.82$   | $56.48 \pm 2.36^{**}$           | $46.78 \pm 4.56$                   | $44.27 \pm 4.64^{\#\!\!\!/}$ |
| LV Vol; s (µL) | $17.71\pm5.95$   | $24.08 \pm 3.51^{**}$           | $16.29\pm3.52$                     | $14.85 \pm 3.67^{\#\!\!\!/}$ |
| EF (%)         | $68.72 \pm 4.41$ | $49.74 \pm 7.77^{**}$           | $69.25\pm4.32$                     | $69.45 \pm 3.91^{\#}$        |
| FS (%)         | $39.09 \pm 2.08$ | $25.63\pm4.60^{\star}$          | $\textbf{38.14} \pm \textbf{3.47}$ | $38.22 \pm 2.95^{\#}$        |

\*p < 0.05, \*\*p < 0.01 vs. Sham. p < 0.05, p < 0.01 vs. WT.

| KOC vs. WTC            |                           | KOA vs. WTA      |                         |       |          |
|------------------------|---------------------------|------------------|-------------------------|-------|----------|
| Name                   | Count                     | p value          | Name                    | Count | p value  |
| regulation of          | 283                       | 1.95E-08         | regulation of           | 720   | 1.54E-04 |
| transcription          |                           |                  | transcription           |       |          |
| cell cycle             | 84                        | 1.80E-04         | cell cycle              | 275   | 7.57E-19 |
| protein                | 73                        | 3.85E-03         | protein transport       | 262   | 3.26E-17 |
| phosphorylation        |                           |                  |                         |       |          |
| cellular response to   | 68                        | 4.41E-06         | protein phosphorylation | 244   | 3.07E-13 |
| DNA damage             |                           |                  |                         |       |          |
| stimulus               |                           |                  |                         |       |          |
| intracellular signal   | 55                        | 2.34E-03         | apoptotic process       | 214   | 1.25E-06 |
| transduction           |                           |                  |                         |       |          |
| covalent chromatin     | 54                        | 4.15E-08         | cell adhesion           | 186   | 1.34E-06 |
| modification           | = 0                       | 00               |                         | 470   | 0.055.45 |
| regulation of gene     | 53                        | 5.75E-03         | cell division           | 178   | 2.65E-15 |
| expression             | = 1                       |                  |                         |       |          |
| cell division          | 51                        | 4.04E-03         | cellular response to    | 1//   | 1.09E-09 |
|                        | 40                        | 0.705.04         | DNA damage stimulus     | 457   | 5 005 00 |
| mRNA processing        | 48                        | 8.78E-04         | metabolic process       | 157   | 5.92E-03 |
| protein ubiquitination | biquitination 47 1.38E-02 |                  | intracellular signal    | 155   | 5.54E-06 |
|                        | 10                        | 5 00 <b>5</b> 00 | transduction            | 450   | 4.075.00 |
| regulation of cell     | 46                        | 5.00E-02         | lipid metabolic process | 153   | 1.27E-02 |
| proliferation          | 40                        | 0.005.00         |                         | 454   | 4.055.00 |
| regulation of          | 43                        | 2.20E-02         | protein ubiquitination  | 151   | 4.35E-08 |
| apoptotic process      | 4.4                       | 0.475.00         |                         | 440   | 0.445.00 |
| mitotic nuclear        | 41                        | 2.47E-03         | DNA repair              | 140   | 2.44E-09 |
|                        | 20                        |                  | the male tien           | 404   | 4 775 00 |
|                        | 39                        | 6.14E-04         | translation             | 134   | 1.77E-02 |
| small G i Pase         | 38                        | 8.02E-04         | positive regulation of  | 131   | 3.28E-02 |
| mediated signal        |                           |                  | gene expression         |       |          |
| transduction           |                           |                  |                         |       |          |

Table S4. Top 15 biological processes in the GO analyses

Gene ontology (GO) analyses showing top 15 biological processes with differences of gene expression levels > 2 folds between WT and *Miat*-KO mice after Saline (WTC, KOC) or Ang II (WTA, KOA) treatment for 7 days.

| KOC vs. WTC                       |       |          | KOA vs. WTA                                    |       |          |  |
|-----------------------------------|-------|----------|------------------------------------------------|-------|----------|--|
| Name                              | Count | p value  | Name                                           | Count | p value  |  |
| MAPK signaling<br>pathway         | 36    | 2.80E-03 | Metabolic pathways                             | 387   | 2.94E-02 |  |
| Ras signaling<br>pathway          | 30    | 2.19E-02 | PI3K-Akt signaling<br>pathway                  | 123   | 3.47E-03 |  |
| Focal adhesion                    | 28    | 1.87E-02 | Endocytosis                                    | 107   | 7.39E-06 |  |
| Regulation of actin cytoskeleton  | 28    | 2.61E-02 | MAPK signaling<br>pathway                      | 97    | 2.88E-04 |  |
| Rap1 signaling<br>pathway         | 28    | 2.75E-02 | Focal adhesion                                 | 94    | 1.41E-07 |  |
| Chemokine signaling<br>pathway    | 25    | 4.88E-02 | Regulation of actin<br>cytoskeleton            | 86    | 1.22E-04 |  |
| Cell cycle                        | 23    | 8.01E-04 | Rap1 signaling<br>pathway                      | 86    | 1.47E-04 |  |
| Wnt signaling<br>pathway          | 23    | 4.33E-03 | Ras signaling pathway                          | 83    | 6.49E-03 |  |
| Thyroid hormone signaling pathway | 21    | 1.57E-03 | Insulin signaling<br>pathway                   | 77    | 5.27E-11 |  |
| Ubiquitin mediated proteolysis    | 21    | 1.89E-02 | Protein processing in<br>endoplasmic reticulum | 73    | 2.69E-05 |  |

**Table S5.** Top 10 KEGG pathways in the GO analyses

Gene ontology (GO) analyses showing top 10 KEGG pathways with differences of gene expression levels > 2 folds between WT and *Miat*-KO mice after Saline (WTC, KOC) or Ang II (WTA, KOA) treatment for 7 days.

# Table S6 List of genes with altered constitution of isoforms

| Category                          | Ensemble Gene ID    | Gene Symbol      | Full Name                                                                                   | Ensemble Isoform ID | WTAvsWTB | KOAvsWTA | KOAvsKOB | KOBvsWTB |
|-----------------------------------|---------------------|------------------|---------------------------------------------------------------------------------------------|---------------------|----------|----------|----------|----------|
| Desculation of the force of board |                     | Atn2a2           | ATDess Court transporting particle grupple along with 2                                     |                     | 0.29     | 0.26     | 0.01     | 0.02     |
| Regulation of the force of heart  | ENSINUSG00000029407 | Alpzaz<br>Din    | A Frase, Ca++ Iransporting, Cardiac muscle, slow (witch 2                                   | ENSMUST000001/7974  | -0.20    | 0.20     | 0.01     | -0.03    |
|                                   | ENSWUSG00000030303  | Ato1o2           | ATPasa Na+/K+ transporting alpha 2 polypoptide                                              | ENSMUST00000103319  | -0.10    | 0.23     | -0.01    | 0.12     |
|                                   | ENSWU3G0000007097   | Alpiaz<br>Atn1a2 | ATPase Na+/K+ transporting alpha 2 polypepide                                               | ENSMUST0000003913   | -0.5     | -0.32    | -0.07    | -0.22    |
| contraction (calcium channel      | ENSWU3G0000007097   | Apriaz           | aspartate-bate-budroxylase                                                                  | ENSMUST0000097404   | 0.4      | -0.32    | -0.07    | 0.13     |
| contraction (calcium channel,     | ENSWU3G0000020207   | Lmf1             | linase maturation factor 1                                                                  | ENSMUST00000103004  | 0.27     | -0.30    | -0.12    | 0.03     |
|                                   | ENSMUSC0000002273   | Linin<br>Linnan1 | low density linenratein recentor-related protein associated protein 1                       | ENSMUST00000137201  | -0./1    | 0.42     | 0.02     | _0.32    |
|                                   | ENSMUSC0000023103   | Clu              | olustarin                                                                                   | ENSMUST0000030300   | 0.36     | -0.06    | 0.27     | 0.02     |
| sarcoplasmic reticulum related)   | ENSMUSG0000022037   | Plod3            | procollagen lysine 2-pypolutarate 5-diovygenase 3                                           | ENSMUST0000022010   | 0.30     | -0.00    | -0.04    | 0.05     |
| careoplacinic relication relatedy | ENSMUSG0000004040   | Chebd3           | coiled-coil.belix-coiled-coil.belix domain containing 3                                     | ENSMUST00000144784  | 0.35     | -0.30    | 0.04     | 0.00     |
|                                   | ENSMUSG0000053768   | Chehd3           | coiled-coil-helix-coiled-coil-helix domain containing 3                                     | ENSMUST00000145200  | -0.24    | 0.00     | -0.08    | 0.05     |
|                                   | ENSMUSG0000003700   | Pdk2             |                                                                                             | ENSMUST00000123204  | 0.24     | -0.06    | -0.00    | 0.00     |
|                                   | ENSMUSC0000038967   | Pdk2             | pyruvate dehydrogenase kinase, isoenzyme 2                                                  | ENSMUST0000030431   | -0.35    | 0.00     | -0.01    | _0.20    |
|                                   | ENSMUSC00000000776  | Hibadh           | 3-hudroxvisohutvrate dehudrogenase                                                          | ENSMUST00000141712  | -0.55    | 0.64     | -0.03    | 0.23     |
|                                   | ENSWUSG0000029770   | Hibadh           | 3 hydroxylsobutyrate dehydrogenase                                                          | ENSMUST00000155048  | -0.02    | 0.04     | -0.01    | 0.03     |
|                                   | ENSWUSG0000029770   | Laor11           | ubiquinal autochroma a raductasa, complex III subunit XI                                    | ENSMUST00000155940  | 0.01     | -0.00    | -0.01    | -0.04    |
|                                   | ENSINUSG00000020163 | Uquili           | ubiquinol-cytochrome c reductase, complex III subunit XI                                    | ENSMUS10000020372   | -0.30    | 0.10     | -0.06    | -0.1     |
|                                   | ENSMUSG0000020103   | Vedee            | ubiquinoi-cytochionie o reductase, complex in subunit Ar                                    | ENSMUS100000141003  | 0.59     | -0.19    | 0.07     | 0.14     |
|                                   | ENSM05G0000020849   | Ywnae            | tyrosine 3-monooxygenase/tryptopnan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUS10000007604   | -0.56    | 0.59     | 0.06     | -0.03    |
|                                   | ENSMUSG0000020849   | Ywhae            | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUST00000134745  | 0.54     | -0.53    | 0        | 0.01     |
|                                   | ENSMUSG0000025825   | lscu             | iron-sulfur cluster assembly enzyme                                                         | ENSMUST0000026937   | -0.39    | 0.35     | 0 11     | -0 15    |
|                                   | ENSMUSG0000022037   | Clu              | clusterin                                                                                   | ENSMUST0000022616   | 0.36     | -0.06    | 0.28     | 0.03     |
|                                   | ENSMUSG0000014606   | Slc25a11         | solute carrier family 25 (mitochondrial carrier oxoglutarate carrier) member 11             | ENSMUST00000139638  | -0.21    | 0.04     | -0.05    | -0.13    |
| Mitochondrion                     | ENSMUSG0000014606   | Slc25a11         | solute carrier family 25 (mitochondrial carrier oxoglutarate carrier), member 11            | ENSMUST00000136383  | 0.34     | -0.26    | -0.14    | 0.22     |
| Intechending                      | ENSMUSG00000014000  | Hsna9            | heat shock protein 9                                                                        | ENSMUST00000025217  | -0.58    | 0.37     | -0.07    | -0.14    |
|                                   | ENSMUSG0000024333   | Ndufb10          | NADH dehvdrogenase (ubiquinone) 1 beta subcomplex, 10                                       | ENSMUST0000023217   | 0.30     | -0.21    | 0.07     | 0.02     |
|                                   | ENSMUSC0000040040   | Mrol33           | mitochondrial ribosomal protain I 33                                                        | ENSMUST00000129431  | 0.53     | -0.21    | 0.10     | 0.02     |
|                                   | ENGMUSC000000000000 | Mrpl3            | mitochondrial ribosomal protein L3                                                          | ENSMUST00000142424  | 0.54     | -0.23    | 0.1      | 0.21     |
|                                   | ENSWUSG00000032505  | Mapd8            | and Coonsymp A debudregeness family member 8                                                | ENSMUST00000142424  | 0.55     | -0.13    | -0.11    | 0.31     |
|                                   | ENGNUCG00000031909  | Din              | aby-coenzyme A denydrogenase family, member o                                               | ENGNUGT00000151075  | 0.07     | -0.00    | -0.12    | 0.13     |
|                                   | ENSINUSG00000030303 | FIII<br>Ofm1     | Colonation feater mitrobandrial 1                                                           | ENSMUS100000103319  | -0.10    | 0.29     | -0.01    | 0.12     |
|                                   | ENSMUSG0000027774   | Gilli I<br>Ofm 1 | Gelengetion factor, mitochondrial 1                                                         | ENSMUS100000077271  | -0.01    | 0.49     | 0.19     | -0.31    |
|                                   | ENSMUSG0000027774   | Gimi             |                                                                                             | ENSMUS100000161009  | 0.59     | -0.0     | -0.16    | 0.15     |
|                                   | ENSMUSG0000028959   | Fasik            | Pas-activated serine/threenine kinase                                                       | ENSMUS100000123144  | 0.33     | -0.36    | -0.07    | 0.04     |
|                                   | ENSMUSG0000046598   | Ban I<br>Dadu C  | 3-nydroxybutyrate denydrogenase, type 1                                                     | ENSMUS100000149039  | 0.43     | -0.39    | 0        | 0.03     |
|                                   | ENSMUSG0000026701   | Praxo            | peroxiredoxin 6                                                                             | ENSMUS100000192639  | -0.32    | 0.14     | 0.02     | -0.19    |
|                                   | ENSMUSG0000026701   | Praxo            | peroxiredoxin 6                                                                             | ENSMUS100000051925  | 0.47     | -0.37    | -0.13    | 0.23     |
|                                   | ENSMUSG0000053898   | Echi             | enovi coenzyme A hydratase 1, peroxisomal                                                   | ENSMUS10000066264   | 0.33     | -0.33    | 0.08     | -0.08    |
|                                   | ENSMUSG0000053898   | Ech1             | enoyl coenzyme A hydratase 1, peroxisomal                                                   | ENSMUST00000143708  | -0.21    | 0.04     | 0        | -0.17    |
|                                   | ENSMUSG0000027406   | Idh3b            | isocitrate dehydrogenase 3 (NAD+) beta                                                      | ENSMUST00000149843  | 0.24     | -0.22    | 0.01     | 0        |
|                                   | ENSMUSG0000025006   | Sorbs1           | sorbin and SH3 domain containing 1                                                          | ENSMUST0000099467   | 0.6      | -0.54    | 0.02     | 0.04     |
|                                   | ENSMUSG0000030870   | Ubfd1            | ubiquitin family domain containing 1                                                        | ENSMUST0000033158   | -0.37    | 0.31     | 0.1      | -0.15    |
|                                   | ENSMUSG0000030870   | Ubtd1            | ubiquitin family domain containing 1                                                        | ENSMUST00000124733  | 0.57     | -0.55    | -0.03    | 0.04     |
|                                   | ENSMUSG0000028273   | Pdlim5           | PDZ and LIM domain 5                                                                        | ENSMUST0000029941   | 0.26     | -0.27    | -0.02    | 0.01     |
|                                   | ENSMUSG0000071644   | Eet1g            | eukaryotic translation elongation factor 1 gamma                                            | ENSMUST00000128626  | 0.32     | -0.11    | 0.03     | 0.18     |
| Cell junction                     | ENSMUSG0000015656   | Hspa8            | heat shock protein 8                                                                        | ENSMUST00000153847  | -0.39    | 0.28     | 0.29     | -0.4     |
|                                   | ENSMUSG0000015656   | Hspa8            | heat shock protein 8                                                                        | ENSMUST00000117557  | 0.31     | -0.24    | 0.07     | -0.01    |
|                                   | ENSMUSG0000020849   | Ywhae            | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUST0000067664   | -0.56    | 0.59     | 0.06     | -0.03    |
|                                   | ENSMUSG0000020849   | Ywhae            | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUST00000134745  | 0.54     | -0.53    | 0        | 0.01     |
|                                   | ENSMUSG0000026701   | Prdx6            | peroxiredoxin 6                                                                             | ENSMUST00000192639  | -0.32    | 0.14     | 0.02     | -0.19    |
|                                   | ENSMUSG0000026701   | Prdx6            | peroxiredoxin 6                                                                             | ENSMUST0000051925   | 0.47     | -0.37    | -0.13    | 0.23     |
|                                   | ENSMUSG0000029776   | Hibadh           | 3-hydroxyisobutyrate dehydrogenase                                                          | ENSMUST0000031788   | -0.62    | 0.64     | -0.01    | 0.03     |
|                                   | ENSMUSG0000029776   | Hibadh           | 3-hydroxyisobutyrate dehydrogenase                                                          | ENSMUST00000155948  | 0.61     | -0.66    | -0.01    | -0.04    |
|                                   | ENSMUSG0000020163   | Uqcr11           | ubiquinol-cytochrome c reductase, complex III subunit XI                                    | ENSMUST0000020372   | -0.36    | 0.18     | -0.08    | -0.1     |
|                                   | ENSMUSG0000020163   | Uqcr11           | ubiquinol-cytochrome c reductase, complex III subunit XI                                    | ENSMUST00000141683  | 0.39     | -0.19    | 0.07     | 0.14     |
|                                   | ENSMUSG0000004846   | Plod3            | procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3                                          | ENSMUST00000144784  | 0.39     | -0.36    | -0.04    | 0.06     |
|                                   | ENSMUSG0000028207   | Asph             | aspartate-beta-hydroxylase                                                                  | ENSMUST00000103004  | 0.27     | -0.36    | -0.12    | 0.03     |
|                                   | ENSMUSG0000040048   | Ndufb10          | NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 10                                       | ENSMUST00000129451  | 0.39     | -0.21    | 0.16     | 0.02     |
| Ovidation-reduction process       | ENSMUSG0000026701   | Prdx6            | peroxiredoxin 6                                                                             | ENSMUST00000192639  | -0.32    | 0.14     | 0.02     | -0.19    |
| Chidalion-reduction process       | ENSMUSG0000026701   | Prdx6            | peroxiredoxin 6 11                                                                          | ENSMUST0000051925   | 0.47     | -0.37    | -0.13    | 0.23     |
|                                   | ENSMUSG0000046598   | Bdh1             | 3-hydroxybutyrate dehydrogenase, type 1                                                     | ENSMUST00000149039  | 0.43     | -0.39    | 0        | 0.03     |

|                 | ENSMUSG0000031969 | Acad8    | acyl-Coenzyme A dehydrogenase family, member 8                                              | ENSMUST00000151075 | 0.67  | -0.66 | -0.12 | 0.13  |
|-----------------|-------------------|----------|---------------------------------------------------------------------------------------------|--------------------|-------|-------|-------|-------|
|                 | ENSMUSG0000020849 | Ywhae    | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUST0000067664  | -0.56 | 0.59  | 0.06  | -0.03 |
|                 | ENSMUSG0000020849 | Ywhae    | tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide | ENSMUST00000134745 | 0.54  | -0.53 | 0     | 0.01  |
|                 | ENSMUSG0000027406 | ldh3b    | isocitrate dehydrogenase 3 (NAD+) beta                                                      | ENSMUST00000149843 | 0.24  | -0.22 | 0.01  | 0     |
|                 | ENSMUSG0000060675 | Pla2g16  | phospholipase A2, group XVI                                                                 | ENSMUST0000025925  | -0.54 | 0.27  | 0.17  | -0.43 |
|                 | ENSMUSG0000060675 | Pla2g16  | phospholipase A2, group XVI                                                                 | ENSMUST00000141887 | 0.79  | -0.74 | -0.21 | 0.26  |
|                 | ENSMUSG0000029713 | Gnb2     | guanine nucleotide binding protein (G protein), beta 2                                      | ENSMUST00000167225 | 0.46  | -0.32 | 0.07  | 0.07  |
|                 | ENSMUSG0000031748 | Gnao1    | guanine nucleotide binding protein, alpha C                                                 | ENSMUST00000144451 | 0.36  | -0.34 | 0     | 0.01  |
| GTPase activity | ENSMUSG0000026202 | Tuba4a   | tubulin, alpha 4A                                                                           | ENSMUST00000187103 | -0.28 | 0.26  | -0.06 | 0.04  |
|                 | ENSMUSG0000027774 | Gfm1     | G elongation factor, mitochondrial 1                                                        | ENSMUST0000077271  | -0.61 | 0.49  | 0.19  | -0.31 |
|                 | ENSMUSG0000027774 | Gfm1     | G elongation factor, mitochondrial 1                                                        | ENSMUST00000161009 | 0.59  | -0.6  | -0.16 | 0.15  |
|                 | ENSMUSG0000020483 | Dynll2   | dynein light chain LC8-type 2                                                               | ENSMUST00000178105 | 0.57  | -0.46 | 0.16  | -0.05 |
|                 | ENSMUSG0000020483 | Dynll2   | dynein light chain LC8-type 2                                                               | ENSMUST0000020775  | -0.58 | 0.46  | -0.22 | 0.1   |
|                 | ENSMUSG0000031813 | Mvb12a   | multivesicular body subunit 12A                                                             | ENSMUST00000212326 | 0.46  | -0.48 | -0.01 | -0.01 |
|                 | ENSMUSG0000023150 | lvns1abp | influenza virus NS1A binding protein                                                        | ENSMUST0000023918  | -0.51 | 0.4   | 0.21  | -0.31 |
| Cytoskeleton    | ENSMUSG0000023150 | lvns1abp | influenza virus NS1A binding protein                                                        | ENSMUST00000111887 | 0.44  | -0.5  | -0.1  | 0.04  |
|                 | ENSMUSG0000027238 | Frmd5    | FERM domain containing 5                                                                    | ENSMUST00000121219 | 0.42  | -0.39 | 0.02  | 0.01  |
|                 | ENSMUSG0000030782 | Tgfb1i1  | transforming growth factor beta 1 induced transcript 1                                      | ENSMUST00000166755 | 0.29  | -0.25 | 0.02  | 0.03  |
|                 | ENSMUSG0000025006 | Sorbs1   | sorbin and SH3 domain containing 1                                                          | ENSMUST0000099467  | 0.6   | -0.54 | 0.02  | 0.04  |
|                 | ENSMUSG0000026202 | Tuba4a   | tubulin, alpha 4A                                                                           | ENSMUST00000187103 | -0.28 | 0.26  | -0.06 | 0.04  |
|                 | ENSMUSG0000029467 | Atp2a2   | ATPase, Ca++ transporting, cardiac muscle, slow twitch 2                                    | ENSMUST00000177974 | -0.28 | 0.26  | 0.01  | -0.03 |
|                 | ENSMUSG0000028273 | Pdlim5   | PDZ and LIM domain 5                                                                        | ENSMUST0000029941  | 0.26  | -0.27 | -0.02 | 0.01  |
|                 | ENSMUSG0000031748 | Gnao1    | guanine nucleotide binding protein, alpha C                                                 | ENSMUST00000144451 | 0.36  | -0.34 | 0     | 0.01  |
|                 | ENSMUSG0000025825 | Iscu     | iron-sulfur cluster assembly enzyme                                                         | ENSMUST0000026937  | -0.39 | 0.35  | 0.11  | -0.15 |
|                 | ENSMUSG0000004846 | Plod3    | procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3                                          | ENSMUST00000144784 | 0.39  | -0.36 | -0.04 | 0.06  |
| Motol binding   | ENSMUSG0000028207 | Asph     | aspartate-beta-hydroxylase                                                                  | ENSMUST00000103004 | 0.27  | -0.36 | -0.12 | 0.03  |
| Metal-binding   | ENSMUSG0000027406 | ldh3b    | isocitrate dehydrogenase 3 (NAD+) beta                                                      | ENSMUST00000149843 | 0.24  | -0.22 | 0.01  | 0     |
|                 | ENSMUSG0000007097 | Atp1a2   | ATPase, Na+/K+ transporting, alpha 2 polypeptide                                            | ENSMUST0000085913  | -0.5  | 0.41  | 0.13  | -0.22 |
|                 | ENSMUSG0000007097 | Atp1a2   | ATPase, Na+/K+ transporting, alpha 2 polypeptide                                            | ENSMUST0000097464  | 0.4   | -0.32 | -0.07 | 0.15  |
|                 | ENSMUSG0000030782 | Tgfb1i1  | transforming growth factor beta 1 induced transcript 1                                      | ENSMUST00000166755 | 0.29  | -0.25 | 0.02  | 0.03  |
|                 | ENSMUSG0000090733 | Rps27    | ribosomal protein S27                                                                       | ENSMUST00000170122 | 0.37  | -0.08 | -0.02 | 0.31  |
|                 | ENSMUSG0000032870 | Smap2    | small ArfGAP 2                                                                              | ENSMUST0000043200  | -0.62 | 0.37  | -0.1  | -0.15 |