

Supplementary Figure S1. ECRRs promote the production of circGFP. (**A**) The junction sequences of circGFP were validated with Sanger sequencing. (**B-C**) The circGFP reporter vector has single *ApaL* I and *Mlu* I enzyme sites in the plasmid backbone. The circGFP vector was linearized with *ApaL* I, *Mlu* I, or *ApaL* I/*Mlu* I digestion, and the resulting linearized DNA was transiently transfected into 293T cells to examine GFP expression at 36 h after transfection. The GFP protein was detected with western blot assay (B) and flow cytometry assay (C). (**D**) The gray-scale value of straps densities was quantified by Image J to detect linear RNA abundance from circGFP reporter in Fig1E. Three experiments were carried out with mean +/- S D plotted in each group. (**E-F**) The regulatory effects of different ECRRs on the biogenesis of circGFP in the presence of RNase R were determined using RT-PCR assay. The densities of signals were determined by Image J and three experiments were carried out with mean +/- SD of relative fold change of circGFP expression plotted in (E). The representative gel was shown in (F). * indicates p < 0.05, ** indicates p < 0.01.

Supplementary Figure S2. Dimerization domain containing ECRRs stimulate the generation of circGFP. (**A**) The densities of RT-PCR bands were quantified by Image J to detect linear RNA abundance from circGFP reporter in Fig2B. Three experiments were carried out with mean +/- SD plotted in each group. (**B-C**) The regulatory effects of different ECRRs containing GTPase domain of ATL1, BTB domain of ZBTB18, DH domain of ITSN1, 47-178 aa of PKD1, 1-136 aa of PRKAR1A, and RRM domain of HNRNPA1 in the presence of RNase R on the biogenesis of circGFP were determined using RT-PCR assay. The densities of signals were determined by Image J and three experiments were carried out with mean +/- SD of relative fold change of circGFP expression plotted in (B). The representative gel was shown in (C). * indicates p < 0.05, ** indicates p < 0.01. (**D**) The circGFP-NSL reporter was transiently co-transfected with different ECRRs or control vector. The production of circGFP and linear RNA was examined with the northern blot assay in the absence of presence of RNase R treatment. (**E**) The dimerization ability of 47-178 aa of PKD1, 1-136 aa of PRKAR1A were examined with a co-

immunoprecipitation assay. (F) 1 μ g of the linearized plasmids (*ApaL* I or/and *Mlu* I) were transfected into 293T cells in 12-well plates to examine circGFP expression. To determine the circular and linear transfection efficiency, RNAs were isolated from the transfected cells to measure the efficiency by RT-PCR.

Supplementary Figure S3. ECRRs function in another circular RNA reporter. (**A**) The production of circular RNA and linear RNA of circScreen reporter was analyzed with the RT-PCR approach. The representative gels were shown. (**B**) The junction sequence of the circScreen reporter was verified with Sanger sequencing.

Supplementary Figure S4. ECRRs promote the production of endogenous circular RNAs. (A) The ECRRs(PUF₁₀₇₂₀-L, R-GTPase) or ECRRs(PUF₁₀₇₂₀-L, R-BTB) were used to promote the biogenesis of endogenous circ10720. The production of circ10720 and linear Cul2 RNA was examined with a northern blot assay in the absence (left) or presence (right) of RNase R. (B) The junction sequences of the endogenous circ10720 were verified with Sanger sequencing. (C) The protein levels of Cul2 and exogenously expressed ECRRs in 293T cells were determined with a western blot assay. (**D**) The ECRRs(PUF_{BIRC6}-L, R-GTPase) or ECRRs(PUF_{BIRC6}-L, R-BTB) were used to promote the biogenesis of endogenous circBIRC6. The production of circBIRC6 and linear BIRC6 RNA was examined with a northern blot assay in the absence (left) or presence (right) of RNase R. (E) The junction sequences of the endogenous circBIRC6 were verified with Sanger sequencing. (F) The protein levels of BIRC6 and exogenously expressed ECRRs in 293T cells were determined with a western blot assay. (G) The protein levels of Cul2, ECRR(PUF₁₀₇₂₀-GTPase) and ECRR(PUF₁₀₇₂₀-BTB) in HeLa and H1299 cells were examined with a western blot assay. (H) The protein levels of BIRC6, ECRR(PUF_{BIRC6}-GTPase) and ECRR(PUF_{BIRC6}-BTB) in HeLa and H1299 cells were examined with a western blot assay.

Supplementary Table S1

Primer	Name	Sequence	Notes
1	Gexon1f	AGTGCTTCAGCCGCTACCC	The primer pair used for testing circRNA from GFP reporter The primer pair used for testing linear RNA from GFP reporter
2	Gexon3r	GTTGTACTCCAGCTTGTGCC	
3	Linear-F	ACGTAAACGGCCACAAGTTC	
4	Linear-R	CTGAGGGCATCTTATTTGGG	
5	circScreen-F	TGTGAGTTGGATAGTTGTGGAA	The primer pair used for — testing circRNA from circScreen reporter
6	circScreen-R	GGGTGTTTACCTTACGCTTC	
7	Dendra2-F	CAGAAGAAGACCCTGAAGTGG	The primer pair used for testing linear RNA from circScreen reporter
8	Dendra2-R	TTGTAGTCGCTGTCGTTGC	
9	circ-10720-F	ATGCCAACACTATTTGTGGA	The primer pair used for testing for endogenous circ- 10720
10	circ-10720-R	CCCCATGGATTACTTTCTGGTTTGG	
11	Cul2-F	GGAATACGTCGAAAGAG	The primer pair used for testing cul2 mRNA
12	Cul2-R	AGCAAGGGTGCAGACTAT	
13	si circ-10720	UAUCCAAUGCUAGCAGUUCAGG	siRNA used for circ10720 knockdown
14	circBIRC6-F	TCAAGGAGACCAACTTTGGC	The primer pair used for testing endogenous circBIRC6
15	circBIRC6-R	CTGGAGTTTGCAGAGCAGTG	
16	linBIRC6-F	ATCAGGAGACCCAAGCTCAG	The primer pair used for testing for endogenous circBIRC6
17	linBIRC6-R	ACTTCCATGGCTTCCTTCTG	
19	si circBIRC6	UCAGAUUCUGUGACAGCUAAA	siRNA used for circBIRC6 knockdown
20	QKI-F	CCGACGCGTACCGGCAACGGCTCTC AGATGGTCGGGGGAAATGGAAACG	The primer pair used for cloning Quaking into pCI- neo vector
21	QKI-R	CACGCGGCCGCTTAGTTGCCGGTGG CGGCTC	
22	CASTOR1-F	CCGACGCGTACCGGCAACGGCTCTC AGATGGAGCTGCACATCCTAG	The primer pair used for cloning CASTOR1 into pCI- neo vector
23	CASTOR1-R	CACGCGGCCGCTCAGGAAGCCAGGC CTTCC	
23	PKD1-F	CCGACGCGTACCGGCAACGGCTCTCA	The primer pair used for cloning 47-178 aa of PKD1 into pCI-neo vector
25	PKD1-R	GTGCCGCGTCAACTGCTC CACGCGGCCGCTTACTCACCACAGCC ACTGTC	

26	PRKAR1A-F	CCGACGCGTACCGGCAACGGCTCTCA	The primer pair used for cloning PRKAR1A into pCI- neo vector
		GATGGAGTCTGGCAGTACC	
27	PRKAR1A-R	CACGCGGCCGCTCAGACAGACAGTGA	
		CAC	
28	DH-F	CCGACGCGTACCGGCAACGGCTCTCA	The primer pair used for
		GAAGCGACAAGGATACATCC	cloning DH domain of
29	DH-R	CACGCGGCCGCTTACCCTTCGTTCACC	ITSN1 into pCI-neo vector
		TGG	
30	ZBTB18-F	CCGACGCGTACCGGCAACGGCTCTCAG	The primer pair used for
		ATGTGTCCTAAAGGTTATGAAG	cloning ZBTB18 into pCl- neo vector
31	ZBTB18-R	CACGCGGCCGCTTATTTCCAAAGTTCTTG	
32	BTB-F	CCGACGCGTACCGGCAACGGCTCTCAGT	The primer pair used for
		GTGACTGCACTGTTCTG	cloning the BTB domain of
33	BTB-R	CACGCGGCCGCTTAGTCTTTGAACTGGA	ZBTB18 into pCI-neo vector
		GTTTC	
34	HNRNPA1-F	CCGACGCGTACCGGCAACGGCTCTCAGA	The primer pair used for
		TGTCTAAGTCAGAGTCTCC	cloning HNRNPA1 into pCI-
35	HNRNPA1-R	CACGCGGCCGCTTAAAATCTTCTGCCACT	neo vector
		GCC	
36	UP1-R	CACGCGGCCGCTTACTCTTGCTTTGACA	The primer with HNRNPA1-
		GGGCTTTTC	F used for cloning the UP1
			domain of HNRNPA1
37	GTPase-F	CCGACGCGTACCGGCAACGGCTCTCAG	The primer pair used for
		ACATATGAATGGAGCTCAGAAG	cloning the GTPase domain
38	GTPase-R	CACGCGGCCGCTTAGGTACGAGCTGCA	of ATL1 into pCI-neo vector
		TGGAAG	
39	flagnIs-F	CCGCTCGAGCCATGGACTACAAGGACGA	The primer pair used for
		CGATGACAAGCCCAAGAAAAAGAGGAAG	cloning FLAG-NLS-PUF
40	EcoPUF-F	CCCAAGAAAAAGAGGAAGGTAGAATTCG	into pCI-neo vector
		GCCGCAGCCGCCTTTTGGAAG	
41	PUF-Mlu-R	CCGACGCGTCCCTAAGTCAACACCGTTC	-
		ТТ	
42	pLVX -F	CCGCCCGGGCCATGGACTACAAGGACGA	The primer pair with
		CG	GTPase-R or BTB-R used
			for clone ECRR10720/ BIRC6
			into pLVX-Puro vector.
43	HAnls-F	ccgCTCGAGccatgTACCCATACGACGTCCC	The primer with reverse
		AGACTACGCTCCCAAGAAAAAGAGGAAG	primers of different
			dimerized protein or
			domains used for cloning
			HA-tag ECRRs into pCI-
			neo vector.
			100 100101

44	T7-circGFP-R	TAATACGACTCACTATAGGGTTACTTGTAC	Northern probes
		AGCTCGTCC	
45	GFP-probe-F	ATGGTGAGCAAGGGCGAGG	Northern probes
46	T7-linear-R	TAATACGACTCACTATAGGG	Northern probes
		GCTGTCCCAGTCCTCTATCC	
47	linear-probe-F	ATCACATCTTTAAGCCTTCCAT	Northern probes
48	T7- circBIRC6-R	TAATACGACTCACTATAGGGCT	Northern probes
	CICDINCO-N	GGAGTTTGCAGAGCAGTG	
49	BIRC6-probe- F	TCAAGGAGACCAACTTTGGC	Northern probes
	Г		
50	T7-preBIRC6- R	TAATACGACTCACTATAGGGAC	Northern probes
	ĸ	CAAGCCTGGCCTAATTCT	
51	T7-cul2-R	TAATACGACTCACTATAGGGGTGGACACA	Northern probes
		GCACGGAGTAAG	
52	cul2-probe-F	CGTGGTGGAGAAGACCCAAACC	Northern probes
53	T7-circ10720-	TAATACGACTCACTATAGGGTGTTTCAGT	Northern probes
	R	CAGAAAGGGAGA	
54	circ10720-	GCCAACACTATTTGTGGAGTC	Northern probes
	probe-F		