Supplementary Information

An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment

Chih-Hsiung Hsieh, Hung-Chia Hsieh, Fu-Hsuan Shih, Pei-Wen Wang, Li-Xing Yang,

Dar-Bin Shieh, and Yi-Ching Wang

Inventory of supplementary information

Supplementary Figures and Tables

Figure S1 is related to Figure 1.

Figure S2 is related to Figure 2.

Figure S3 is related to Figure 3.

Figure S4 is related to Figure 4.

Figure S5 is related to Figure 5.

Figure S6 is related to Figure 6.

Table S1 is related to Materials and Methods.

Table S2 is related to Materials and Methods.

Figure S1. The properties of ZVI-NPs. **A**, Schematic of ZVI-NP application in each experiment. **B-D**, The characterization analysis of ZVI@Ag. (B) Ultrastructure of ZVI@Ag observed under TEM at 40000X magnification. (C) The histogram of particle size quantized from TEM observation. (D) The number distribution was determined by dynamic light scattering analysis. **E-G**, The characterization analysis of ZVI@CMC. (E) Ultrastructure of ZVI@CMC observed under TEM at 40000X magnification. (F) The histogram of particle size quantized from TEM observation. (G) The number distribution was determined by dynamic light scattering analysis. **H**, FTIR spectra of the

carboxymethyl cellulose (CMC) and ZVI@CMC showed successful coating of the polymer to the nanoparticles. I and J, The zeta potential of ZVI@Ag (I) and ZVI@CMC (J). K and L, Haemolysis effects determined according to ISO10993-4. (K) Image of samples after centrifugation at 3000 rpm for 5 min. (L) Haemolytic activities of ZVI@Ag and ZVI@CMC incubated with human RBCs for 1 h. Data were mean \pm s.e.m. ns: non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure S2. The effects of ZVI-NPs on migration and invasion abilities of cancer cells and viability of HUVECs. **A** and **B**, The wound healing migration ability of A549 (A) and H460 (B) cells treated with or without ZVI-NPs. **C**, The transwell migration ability of A549 and H460 cells treated with or without ZVI-NPs for 16 h. **D**, The effect of ZVI@Ag on HUVECs viability determined by MTT assay after treatment for 8 h. Data were mean \pm s.e.m. ns: non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure S3. ZVI-NPs caused oxidative stress and lipid peroxidation *in vitro*. **A**, Mitochondrial membrane potential was analyzed by flow cytometry analysis of Rhodamine 123 after ZVI-NPs treatment. **B**, Intracellular ROS level was measured by flow cytometry after ZVI@CMC NPs (5 μ g/mL) treatment with or without Vitamin E (100 μ M). **C**, Analysis of lipid peroxidation was measured by flow cytometry. Cells were treated with ZVI@CMC NPs (5 μ g/mL) with or without Ferrostatin (10 μ M) pre-treatment. **D**, Cell viability was determined after co-treatment with ZVI@CMC NPs (10 μ g/mL) and Vitamin C (100 μ M) for 24 h, Vitamin E (100 μ M) for 24 h, Ferrostatin (10 μ M) for 48 h, or Liproxstatin (10 μ M) for 48 h. Data were mean \pm s.e.m. ns: non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure S4. ZVI-NPs inhibited NRF2-regulated antioxidant activity *via* enhancement of GSK3 β / β -TrCP degradation pathway. **A**, Immunoblotting for NRF2 and GPX4 in cells treated with ZVI@Ag NPs at the indicated doses for 24 h. GAPDH was used as internal control. **B**, mRNA expression of NRF2 downstream genes was measured by RT-qPCR after ZVI@CMC NPs treatment in A549 and H460 cells. Heat map colors reflect the downregulation of the mRNA levels of these genes compared to untreated control. **C**, The intracellular level of lipid peroxidation by analysis of 4-HNE in ZVI-NP-treated cells with or without NRF2 overexpression. Data were mean ± s.e.m. ns: non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure S5. ZVI-NPs inhibited NRF2-regulated antioxidant transcription program *in vivo*. **A-C**, The changes in tumor volume over 15 days of observation period (A), the representative tumor images in the endpoint (B), and the endpoint tumor weight (C) of BALB/c nude mice bearing H460 xenografts treated with 50 mg/kg ZVI@Ag NPs or

PBS by i.p. injection on every other day as indicated by arrows (n = 6 for control group, n = 7 for ZVI@Ag NPs treated group). **D-F**, The body weight (D), the H&E staining of major organs (E), and the blood biochemistry analysis (F) of BALB/c nude mice bearing H460 xenografts treated with 50 mg/kg ZVI@Ag NPs or PBS by i.p. injection on every other day as indicated by arrows. **G-I**, The body weight (G), the H&E staining of major organs (H), and the blood biochemistry analysis (I) of NOD/SCID mice bearing A549 xenografts treated with 25 mg/kg ZVI@Ag NPs or PBS by i.v. injection once a week as indicated by arrows. **J**, The expression of 4-HNE, NRF2, and GPX4 was measured by immunohistochemistry staining in ZVI@CMC NPs treated H460 xenografts (*left*) and LLC allografts (*right*). **K**, Expression of NRF2 targeting genes was measured by RT-qPCR in H460 xenografts treated with 25 mg/kg ZVI@CMC.

Figure S6. Analysis of body weight, H&E staining of major organs, and circulation blood of mice treated with ZVI@CMC NPs or PBS. **A-C**, The body weight (A), the H&E staining of major organs (B), and the blood biochemistry analysis (C) of C57BL/6 mice bearing LLC allografts treated with i.v. injection of ZVI@CMC NPs (25 mg/kg) or PBS. **D-H**, Flow cytometry analysis of the macrophages (D and E) and T cells (F-H) in circulating blood on day 20. **I** and **J**, The H&E staining of major organs (I) and the blood biochemistry analysis (J) of hPBMC mice bearing subcutaneous H460 tumor xenografts treated with i.v. injection of ZVI@CMC NPs (25 mg/kg) or PBS. Data were mean \pm s.e.m. ns: non-significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Supplementary Table S1. The primer sets used in this study.

Gene	species	Primer	Sequences (5'→ 3')	Application ^a	PCR size (bp)	Tm (°C)
β -actin mRNA	1	Forward	GGC GGC ACC ACC ATG TAC CCT	DT aDCD	202	60
	numan	Reverse	AGG GGC CGG ACT CGT CAT ACT	RI-qPCK		
	human	Forward	ATG CAG TGG CAG TGA CCT TT		71	60
SLC/AII MKINA		Reverse	GGC AAC AAA GAT CGG AAC TG	RI-qPCK		
	1	Forward	CAG TGA GGC AAG ACC GAA GTA AA		110	60
GPX4 IIIKINA	numan	Reverse	TGC TTC CCG AAC TGG TTA CAC	RI-qPCK		
NDE2 mDNA	human	Forward	ACA CGG TCC ACA GCT CAT C		83	60
NKF2 MRINA	numan	Reverse	TGT CAA TCA AAT CCA TGT CCT G	KI-qPCK		
AKR1B1 mRNA	h	Forward	TAC CAT GAG AAG GGC CTG GTG AAA		173	60
	numan	Reverse	TCC AGA ATG TTG GTG TCA CTG GGA	KI-qPCK		
AKR1C1 mRNA	human	Forward	ATT TGC CAG CCA GGC TAG TG		179	60
		Reverse	AGA ATC AAT ATG GCG GAA GCC	KI-qFCK		
	human	Forward	AAG TAA AGC TCT AGA GGC CGT		86	60
AKATC2 IIIKINA		Reverse	GCT CCT CAT TAT TGT AAA CAT GT	KI-qFCK		
AVD1C2 mDNA	humon	Forward	GGG ATC AAC GAG AGA CAA ACG		68	60
AKAICJ IIIKINA	numan	Reverse	AAA GGA CTG GGT CCT CCA AGA	RI-qPCR		
SLC4041 mDNA	humon	Forward	GCA TGG GTC TTG CTT TCC TTT		102	(0)
SLC40A1 MKNA	numan	Reverse	AAA ATA CTG AGG ATG GAA CCA CTC A	RI-qPCK	105	00
Oct4 mRNA	human	Forward	CGA AAG AGA AAG CGA ACC AG		157	60
		Reverse	GCC GGT TAC AGA ACC ACA CT	RI-qPCK		
Cov2 mDNA	human	Forward	ACA ACT CGG AGA TCA GCA		183	60
Sox2 mRNA	numan	Reverse	GCA GCG TGT ACT TAT CCT TC	KI-YPCK		00

Nanog mRNA	human	Forward	CTG TGA TTT GTG GGC CTG AA		100	60
		Reverse	TCT TCC TTT TTT GCG ACA CTC TT	RI-qPCR	190	
Sonic hedgehog mRNA	human	Forward	CCC AAT TAC AAC CCC GAC ATC		142	60
		Reverse	TCA CCC GCA GTT TCA CTC CT	- RI-qPCR		
$TGF\beta$ mRNA	human	Forward	AAA GCC AGA GTG CCT GAA CAA		150	60
		Reverse	AAC AGC ATC AGT TAC ATC GAA GGA	- RI-qPCR		
	h	Forward	TAC CTC CAC CAT GCC AAG TG		100	60
VEGFA IIIKNA	numan	Reverse	TGC GCT GAT AGA CAT CCA TGA	RI-qPCR		
AIEM2 mDNA	humon	Forward	AGG GTT CGC CAA AAA GAC ATT		100	60
AIFM2 IIKNA	numan	Reverse	CAC CAT CTG GTT CTT CAG GTC TAT C	- RI-qPCR		00
	human	Forward	TAA GAG CAT TCC CAA AGG CAA A		100	60
<i>NDUFF4</i> mRNA		Reverse	CAT TAT TTT CTC AGC AGT CCA GGT T	- RI-qPCR		00
<i>IDH1</i> mRNA	human	Forward	GTC GTC ATG CTT ATG GGG AT		101	(0
		Reverse	CTT TTG GGT TCC GTC ACT TG	- RI-qPCR		00
	human	Forward	TCT TCA TGT TCA TGG GCA AA	- RT-qPCR	157	60
MEI IIKNA		Reverse	GGA TTG CAC ACC TGA TTG TG			
ADCD DNA	1	Forward	GTC AGT GGT GGA GAG GAA GG		96	60
0PGD IIIKINA	numan	Reverse	GCC TTG GAA GAT GGT CTT GA	- RI-qPCR		60
	1	Forward	CCC AGG GAC CTC TCT CTA ATC A		116	60
$INF \alpha$ mRINA	numan	Reverse	AGC TGC CCC TCA GCT TGA G	- RI-qPCR		
		Forward	GCA GTC TTC CAG AAG TAA CCGC	- RT-qPCR	128	60
DC-SIGN mRNA	numan	Reverse	GCT CTC CTC TGT TCC AAT ACT GC			
PD-L1 mRNA	human	Forward	GCC AGA AAA GCC TCA TTC GT		100	60
		Reverse	TGA ATC TCG AAA CCT CCA GGA A	- RI-qPCR		
0 matin mDNA		Forward	GGC TCT TTT CCA GCC TTC CT		100	60
β -actin mRNA	mouse	Reverse	GTC TTT ACG GAT GTC AAC GTC ACA	- RT-qPCR		60

iNOS mRNA	mouse	Forward	TGA CGC TCG GAA CTG TAG CAC		98	60
		Reverse	TGA TGG CCG ACC TGA TGT T	RI-qPCK		
Arg1 mRNA	mouse	Forward	CAT GGG CAA CCT GTG TCC TT		103	60
		Reverse	CGA TGT CTT TGG CAG ATA TGC A	KI-qPCK		
<i>SLC7A11</i> promoter-ChIP	human	Forward	TTA CTA CTT CTG GAT TGG CTA	ChID aDCD	221	60
		Reverse	CTT GTA TTT AAG CGC CTG CC	Chip-qPCK		
AKR1C1 promoter-ChIP	human	Forward	GAA TCC ACC ATC TTG TTG AAA	ChID aDCD	150	60
		Reverse	ACA ACT TGC AGT GCC CTG AT	Chip-qPCK	150	00
AIFM2	human	Forward	AGA TGG CTT ATC TTT CGC TGA	ChID aDCD	1.5.1	60
promoter-ChIP		Reverse	TCT CCA AGG ATG AGA AAG AGG	CIIIF-qPCK	131	00

^{a.} RT-qPCR: Quantitative reverse-transcriptase polymerase chain reaction; ChIP-qPCR: Chromatin-immunoprecipitation qPCR

Supplementary Table S2. The antibodies and their reaction conditions used in this study.

Target	KD	Raised in	Application ^a	Dilution	Source	Catalog no.
		Rabbit	Western blot	1:500		GTX103322
	110		Immunofluorescence	1:1000	Genetex	
NRF2	110		Immunohistochemistry	1:250		
			ChIP	2 µg		
CDV4	22	Dabbit	Western blot 1:500	A 1	ab 11797	
GPA4	22	Kaddil	Immunohistochemistry	1:500	Abcam	a041/8/
CD31	_ ^b	Rabbit	Immunohistochemistry	1:250	Abcam	ab28364
4-HNE	_ ^b	Rabbit	Immunohistochemistry	1:200	Abcam	ab46545
ΑΜΡΚα	62	Rabbit	Western blot	1:1000	Cell Signaling	5832S
p-AMPKa1/2(T183/T172)	62	Rabbit	Western blot	1:1000	Genetex	GTX63165
mTOR	289	Rabbit	Western blot	1:1000	Cell Signaling	2972S
p-mTOR (S2448)	289	Rabbit	Western blot	1:1000	Genetex	GTX79009
GSK3β	46	Rabbit	Western blot	1:1000	Cell Signaling	9315S
p-GSK3β (Y216)	47	Rabbit	Western blot	1:1000	Abcam	ab75745
β-TrCP	_ ^b	Rabbit	Immunofluorescence	1:3000	Cell Signaling	4394s

AKT	60	Rabbit	Western blot	1:1000	Cell Signaling	9272s
p-AKT	60	Rabbit	Western blot	1:500	Cell Signaling	4060s
GAPDH	37	Mouse	Western blot	1:1000	Santa Cruz	Sc-32233
CD9	_ ^b	Rabbit	Immunofluorescence	1:1000	Abcam	ab217344
CD8	_ ^b	Rat	Flow cytometry	1:200	BD Bioscience	553030
	_ ^b	Rabbit	Immunofluorescence	1:1000	Abcam	ab183685
CD4	_ ^b	Rat	Flow cytometry	1:200	BD Bioscience	553046
	_ ^b	Mouse	Flow cytometry	1:200	BD Bioscience	561843
CD86	_ ^b	Mouse	Immunofluorescence	1:1000	Genetex	GTX34569
	_ ^b	Rat	Flow cytometry	1:200	BD Bioscience	742120
CD20C	_ ^b	Rabbit	Immunofluorescence	1:1000	Abcam	ab64693
CD206	_b	Rat	Flow cytometry	1:200	BD Bioscience	565250
CD11b	_ ^b	Rat	Flow cytometry	1:200	BD Bioscience	564454
Foxp3	_b	Rat	Flow cytometry	1:200	Invitrogen	12-5773-82
CD25	_b	Rat	Flow cytometry	1:200	BD Bioscience	562695
	_ ^b	Mouse	Flow cytometry	1:200	BD Bioscience	565106
PD-1	_ ^b	Hamster	Flow cytometry	1:200	BD Bioscience	562671
CTLA4	_b	Hamster	Flow cytometry	1:200	BD Bioscience	553720

CD3	_ ^b	Mouse	Flow cytometry	1:200	BD Bioscience	563798
CD45	_ ^b	Mouse	Flow cytometry	1:200	BD Bioscience	563204
PD-L1	_ ^b	Rabbit	Immunohistochemistry	1:200	Cell Signaling	13684T

^a ChIP: chromatin immunoprecipitation

^b Molecular weight is not applicable to immunohistochemistry, immunofluorescence, or flow cytometry analysis of this antibody.