¹ Supplementary Data

2 Figure S1

3

Figure S1. Experimental design of NR therapy in NAFLD mice model and influence of NR on several
metabolic-related factors plasma concentrations. (A) Experimental design of NR therapy. Mice were fed
with HFD for 4 months to induce NAFLD. NR was given at 400 mg/kg/d for 3 months to treat NAFLD.
(B-G) Plasma concentrations of leptin (B), chemerin (C), vaspin (D), hepcidin (E), IL-6 (F) and CXCL10
(G). NS, no significance.

11

Figure S2. Gene expression of *LDL-R*, *CD36*, *ABCG1*, *ABCG5*, *SREBP-2*, *ACCα*, *PPARa and Acox-1* in liver tissues of WT and *Fndc5^{-/-}* mice fed with HFD and HFD + NR. (A) The expression of lipid uptake genes (*LDL-R* and *CD36*) in liver tissues of WT and *Fndc5^{-/-}* mice. (B) The expression of lipid transport genes (*ABCG1* and *ABCG5*) in liver tissues of WT and *Fndc5^{-/-}* mice. (C) The expression of lipid synthesis genes (*SREBP-2* and *ACCα*) in liver tissues of WT and *Fndc5^{-/-}* mice. (D) The expression of lipid oxidation genes (*PPARα* and *Acox-1*) in liver tissues of WT and *Fndc5^{-/-}* mice. ***P*<0.01 vs chow; [#]*P*<0.05, ^{##}*P*<0.01 vs HFD; [&]*P*<0.01 *Fndc5^{-/-}* vs WT, n = 4-6. NS, no significance.

Figure S3. Confirmation of siRNA-mediated knockdown by qPCR and immunoblotting. (A) In the screening experiment, the siRNA-mediated knockdown of SIRT1 to SIRT7 was confirmed by real-time qPCR. The primers were listed in Supplemental Table 2. **P<0.01 vs si-scramble. n = 3. (B) After discovering SIRT2 might be the linker between NR and Fndc5, the siRNA-mediated knockdown of SIRT2 was further confirmed by immunoblotting. **P<0.01 vs si-scramble. n = 3.

28 Figure S4

Figure S4. Counteractive effects of SIRT2 inhibitor AGK2 on NR-induced liver protection in MCD-induced NAFLD model. (A) Effects of SIRT2 inhibitor AGK2 on serum AST activity. **P<0.01 vs Chow. $^{#}P$ <0.05 vs NAFLD. n = 6. NS, no significance. (B) Sirus Red staining on liver sections in mice. **P<0.01 vs Chow. $^{#}P$ <0.05 vs NAFLD. $^{\&}P$ <0.05 vs NAFLD + NR. n = 6. (C) Immunohistochemistry staining of α -SMA on liver sections in mice. **P<0.01 vs Chow. $^{#}P$ <0.05 vs NAFLD. $^{\&}P$ <0.05 vs NAFLD + NR. (D) Quantitative PCR analysis of Fndc5 mRNA level in liver from mice. NS, no significance. Data analyzed by ONE-WAY ANOVA with a Tukey post-test.

1 adie 51. Antidodies used in this work

Antibody	Source	Catalogue	
Anti-Fndc5	Abcam	ab131390	
Anti-IRS-1	Santa Cruz Biotechnology	E-12	
Anti-p-IRS-1Tyr608	Millipore	09-432	
Anti-p-IRS-1Ser307	Cell Signaling Technology	2381	
Anti-p-IRS-1Ser636	Novus Biologicals	NB100-82003	
Anti-Akt	Cell Signaling Technology	9272	
Anti-p-AktThr308	Cell Signaling Technology	13038	
Anti-GRP78	Santa Cruz Biotechnology	sc-13968	
Anti-CHOP	Santa Cruz Biotechnology	sc-7351	
Anti-eIF2a	Santa Cruz Biotechnology	sc-133132	
Anti-p-eIF2α	Cell Signaling Technology	3398	
Anti-PERK	Santa Cruz Biotechnology	sc-13073	
Anti-p-PERK	Cell Signaling Technology	3179	
Anti-JNK1/2	Santa Cruz Biotechnology	sc-137019	
Anti-p-JNK1/2	Cell Signaling Technology	4668	
Anti-ubiquitin	Cell Signaling Technology	3933	
Anti-Flag	Sigma-Aldrich	F3165	
Anti-Myc	Sigma-Aldrich	SAB1305535	
Anti-acetylated-lysine	Cell Signaling Technology	9441	
Anti-Caspase-8	Cell Signaling Technology	9746	
Anti-HMGB1	Abcam	ab18256	
Anti-PGC-1a	Abcam	ab176328	
Anti-GAPDH	Proteintech	60004-1-Ig	
Anti-Tubulin	Proteintech	66031-1-Ig	

Table S2. Sequences of primers for qPCR analysis

Gene	Forward Primer	Reverse Primer
TNF-α	GGAACACGTCGTGGGATAATG	GGCAGACTTTGGATGCTTCTT
IL-6	ATGAAGTTCCTCTCTGCAAGAGAC	CACTAGGTTTGCCGAGTAGATCTC
IL-1β	GAAATGCCACCTTTTGACAGTG	TGGATGCTCTCATCAGGACAG
TFAM	CAAAGGATGATTCGGCTCAG	AAGCTGAATATATGCCTGCTTTTC
PGC-1a	GAAAGGGCCAAACAGAGAGA	GTAAATCACACGGCGCTCTT
NRF1	TGGAGTCCAAGATGCTAATGG	GCGAGGCTGGTTACCACA
Mfn2	CCGATGTGAACCCGTTTCT	AGGCGGAGTCCTCTTCAGC
Mst1	TTGGCAAACTGCATAGCATCC	TCAAATTGGGACTCTCCTTTAGC
NR4A1	GGAAGGCTTAATTGCAGCCA	TTCAGCCTTGTCCATCTGCAT
Bnip3	ATTAATGGCACAGACGCAGC	CCGAACACAGCGTAGATAGACC
ABCA1	GCTGCAGGAATCCAGAGAAT	CATGCACAAGGTCCTGAGAA
ABCG5	AGGGCCTCACATCAACAGAG	GCTGACGCTGTAGGACACAT
CD36	TGTGGGCTCATTGCTGG	TTGATTTTGCTGCTGTTCTTT
LDL-R	AGTGGCCCCGAATCATTGAC	CTAACTAAACACCAGACAGAGGC
SREBP-2	GCAGCAACGGGACCATTCT	CCCCATGACTAAGTCCTTCAACT
ACCa	GAGCCTGAGGAACAGCATCT	CACGAGCCATTCATTATCACTAC
TIMP-1	AGGTGGTCTCGTTGATTCGT	GTAAGGCCTGTAGCTGTGCC
TGFβ-1	TTGCCCTCTACAACCAACACAA	GGCTTGCGACCCACGTAGTA
SIRT1	CGCCTTGCGGTGGACTT	ATGGCTCTATGAAACTGTTCTGGT
SIRT2	CTCAGGATTCAGACTCGGACAC	GCAAGGGCAAAGAAGGGTT
SIRT3	GCCTCTACAGCAACCTTCAGC	CACCCTGTCCGCCATCAC
SIRT4	CGCCCAGCCCTCCTTT	TCCCACCTTTTCTGACCTGTAGT
SIRT5	CCAAGCACATAGCCATCATCTC	CTGCCCTGGTCACGAAGC
SIRT6	ACACCATTCTGGACTGGGAGG	GGCTGTTGGGCTTGGACTTA
SIRT7	TGACGAAGCCTCCAAGCC	CACAACCCCTGCCAAACC
GAPDH	GTATGACTCCACTCACGGCAAA	GGTCTCGCTCCTGGAAGATG

<u></u>	WT (n = 8)			$Fndc5^{-/-}$ (n = 8)		
Serum parameters	Chow	HFD	HFD + NR	Chow	HFD	HFD + NR
TC (mg/dL)	154.2±8.2	312.4±11.4**	237.9±3.6** ^{##}	140.3±7.1	345.5±21.7**	275.1±12.4** ^{##&}
LDL-Cho (mg/dL)	74.3±6.1	115.3±8.9**	87.9±3.6** ^{##}	60.6±5.2	124.5±9.3**	105.1±8.2** ^{#&&}
HDL-Cho (mg/dL)	66.1±4.5	75.3±5.9**	72.9±7.3	70.5±6.4	$84.5 \pm 8.4^{**}$	75.1±6.9
TG (mg/dL)	54.6±4.2	115.3±8.9**	87.9±3.6** ^{##}	60.6±5.2	124.5±9.3**	105.1±8.2** ^{#&&}
NEFA (mM)	0.16±0.03	$0.64 \pm 0.12^{**}$	$0.34 \pm 0.06^{*^{\#\#}}$	0.14 ± 0.02	$0.88 \pm 0.09^{**}$	0.67±0.07** ^{#&&}

Table S3. Serum parameters of mice fed HFD or HFD+NR after fasting overnight in WT and *Fndc5^{-/-}* mice

45 TC, total cholesterol; TG, triglyceride; NEFA, non-esterified fatty acid. *P < 0.05, **P < 0.01 vs Chow; *P < 0.05, **P < 0.05, **

46 $^{\&\&}P < 0.01 \text{ vs } Fndc5^{-/-} \text{ vs WT.}$

47 Supplemental Methods

48 Hepatic cholesterol and triglycerides determination

Liver tissues were homogenized in ice-cold 20 mM Tris buffer (pH 7.4). The cholesterol and
triglycerides in liver tissues were measured using commercial kits (No. 10007640 and No.
10010303, Cayman Chemical, Ann Arbor, MI) respectively.

52

53 Immunohistochemistry and apoptosis assay

For immunohistochemistry experiments, frozen 8-µm-thick sections were fixed in 4% 54 paraformaldehyde and dried in 37oC for 24 hours. Then, the sections were blocked by 5% 55 BSA solution for 1 hour and incubated in primary antibodies dissolved in 1% Tris buffered 56 57 saline with Tween 20 (TBST) overnight at 4 oC. The sections were then washed in TBST three times and incubated with horseradish peroxidase-conjugated secondary antibodies. 58 Staining is visualized using substrate diaminobenzidine. Images were obtained in Olympus 59 BX51 microscope (Tokyo, Japan, Leica). The following antibodies were used: F4/80 60 (LS-C96373-100, Lifespan, 1:500 dilution), CD11b (ab6672, Abcam, 1: 1000 dilution) and 61 -SMA (ab7817, Abcam, 1: 500 dilution). Immunofluorescence TUNEL assay was used to 62 assess apoptosis. Tissue sections were placed and fixed in 4% paraformaldehyde, and 63 incubated with immunofluorescent TUNEL reaction mixture for 1 h in box. DAPI was used 64 to stain nuclei. Immunofluorescence images were obtained in Olympus IX71 microscope 65 (Tokyo, Japan, Leica). 66

67

68 *Immunoblotting*

Tissues were homogenized with the RIPA buffer (Beyotime, Haimen, China) supplemented with a protease/phosphatase inhibitor cocktail (Pierce Technology, Rockford, IL). The samples were boiled, separated by SDS–PAGE, transferred to a polyvinylidene difluoride membrane (Millipore) and blotted with specific primary antibodies. The membranes were washed by phosphate buffered saline with Tween 20 for three times and then incubated with Infrared-Dyes-conjugated secondary antibodies (Li-Cor, Lincoln, NE). The images were obtained with Odyssey Infrared Fluorescence Imaging System (Li-Cor). All immunoblotting repeated at least three times.

77

78 *Immunoprecipitation*

Cells were lysed in radioimmunoprecipitation assay buffer (50 mM Tris-HCl [pH 7.4], 50 79 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1%-1% SDS) supplemented with 80 protease inhibitor cocktail tablets (G6521, Promega) to minimize protein degradation. 81 Stringent RIPA buffer (1% SDS) was used in IP experiments to ensure clean protein 82 immunoprecipitation, while mild RIPA buffer (0.1% SDS) was used in co-IP experiments for 83 protein-protein interaction assays. Cell lysates were centrifuged at 13,000 rpm for 20 min. 84 The supernatant was subjected to immunoprecipitation with protein A/G-agarose beads 85 antibodies. followed indicated 86 (Santa Cruz Biotechnology) and For a clean immunoprecipitation, the beads rinsed in NP-40 buffer with vortexing (25 mM Tris-HCl [pH 87 7.4], 150 mM NaCl, 1 mM EDTA, and 1% NP-40) for three times. Then, the agarose beads 88 were boiled with loading buffer and proteins were separated by electrophoresis on 12% SDS-89 PAGE and followed by immunoblotting analysis with specific antibodies or control IgG. 90

91

92 *Mitochondrial Complex I, II and IV activity and NAD⁺/NADH ratio*

Liver tissues were homogenized with distilled water. Mitochondrion was isolated using a
commercial kit from Beyotime Institute of Biotechnology (Haimen, China). The
mitochondrial complex I, II and IV activity were analyzed using commercial kits (№ 700930,
700940 and 700990 respectively) from Cayman Chemical (Ann Arbor, MI) according the
instructions from the manufacturer. NAD⁺/NADH ratio was determined with EZScreenTM
NAD⁺/NADH Colorimetric Assay Kit (#K958, BioVision).

99

100 Blood and plasma parameters

At the endpoint of the experiment, mice were anesthetized with an intraperitoneal injection of sodium pentobarbital (50 mg/kg). Blood was obtained from the right atrium and allowed to clot in an upright position for at least 30 minutes and then centrifuged at 500 rpm for 10 minutes to obtain plasma. Blood glucose values were determined using an automatic glucose monitor (One Touch® Ultra, Johnson & Johnson, Milpitas, CA). Plasma insulin level was
determined using a commercial sandwich ELISA kit (LINCO research, MI) as described. The
plasma ALT, AST and ALP levels were used to gauge hepatic dysfunction and determined
with an automatic biochemistry analyzer (Beckman Coulter, Miami, FL) according to the
manufacturer's instructions.