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Supplementary Figure 1. Smad3 deficiency prevents the development of obesity in db/db mice. (A)
Representative photograph showing mice appearance at 20 weeks of age. (B) Representative photographs
showing inguinal (I) and gonadal (G) white adipose tissue (WAT) of mice at 20 weeks of age. (C) The
percentage of inguinal and gonadal WAT weight of overall body weight. (D) The average food intake
amount per day was normalized to mouse body weight. Data are presented as mean + s.e.m. from groups
of 8 mice. **p<0.01, ***p<0.001 compared between groups as indicated, two-way ANOVA following

Newman-Keuls multiple comparisons.
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Supplementary Figure 2. Quantitative analysis of islet sizes in db/m and db/db mice.

The islet sizes were significantly enlarged in the db/db mice compared to the nondiabetic db/m controls,
where no significant changes were detected among db/db mice with indicated Smad3 genotypes (n=6 per
group). Five non-consecutive sections of each pancreas by Image J. Data are mean + S.E.M. **p<0.005
vs S3WT-db/m, two-way ANOVA following Newman-Keuls multiple comparisons.
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Supplementary Figure 3. Quantitative analysis of islet beta cell numbers in mice.

The average beta cell numbers per islet were significantly increased in Smad3 KO-db/db mice compared
to the nondiabetic db/m controls and diabetic db/db controls (n>3 per group). Three non-consecutive
sections of each mouse were analyzed. Data are mean + S.E.M. Each dot represents one islet.
**p<0.005 , ***p<0.001, two-way ANOVA following Newman-Keuls multiple comparisons.
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Supplementary Figure 4. Chromatin states of SMAD3 from T2D knowledge.
Upper panel: DIAMANTE (European) T2D GWAS ; Lower panel: The active transcription start site

(Red) was especially inncreased in the Smad3 genome sequence (Blue square highlighted) in the diabetic
pancreatic islets rather than adipose tissue, liver, and skeletal muscle.
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Supplementary Figure 5. The mRNA expression levels of islet development genes in mice.

Real-time PCR analysis showing the mRNA levels of individual genes related islet differentiation and
function in the isolated islets from db/m and db/db mice (n>5 per group). Data are mean £ S.E.M. *p<0.05,
**p<0.005, ***p<0.001 vs S3SWT-db/m; #p<0.05, ###p<0.001 vs S3WT-db/db; two-way ANOVA following

Newman-Keuls multiple comparisons.
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Supplementary Figure 6. AGE and TGF-B impaired cell proliferation and insulin secretion in
Min6 cells.

Min 6 cells were pre-treated with or without SIS3 and stimulated with AGE or TGF-B. (A—B) Cell
proliferation was detected by Brdu incorporation. Scale bar, 50 um. (C) Glucose stimulated insulin
secretion was detected by ELISA. Data are mean = S.E.M. *p<0.05, **p<0.01, ****p<(0.0001. One-
way ANOVA following multiple comparisons.
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Supplementary Figure 7. Knockdown of Smad3 increased Pax6 expression on Miné6 cells in vitro.
Real-time PCR detected that Smad3 and Pax6 were successfully knockdown in the Min6 cells, where

Smad3 knockdown significantly increased the Pax6 expression (n=3). Data are mean =+ s.d. **p<0.005,
*#%p<0.001 vs scramble; ##p<0.005, ###p<0.001 vs shSmad3; two-way ANOVA following Newman-
Keuls multiple comparisons.



Function

Supplementary Table 1. Genes directly and indirectly regulated by Pax6

Type of regulation

Pdxl Pancreas development Direct binding (Samaras et al., 2002)
B cell differentiation and function
Insulin secretion

MafA B cell differentiation and function Direct binding (Raum et al., 2010)
Insulin secretion

Nkx6.1 B cell differentiation and function Direct binding (Gosmain et al., 2012)
Insulin secretion

NeuroD B cell function Direct binding (Swisa et al., 2017)
Insulin transactivation

Scl2a2 B cell function Direct binding (Swisa et al., 2017)
Glucose transport and metabolism

Goépc2 B cell function Indirect regulation (Mitchell et al.,
Glucose sensing 2017; Swisa et al., 2017)

Insi Insulin synthesis Direct binding (Swisa et al., 2017)

Ins2 Insulin synthesis Direct binding (Swisa et al., 2017)

Pcskl Proinsulin processing Direct binding (Gosmain et al., 2012)

Pcsk2 Proinsulin processing Indirect regulation (Gosmain et al.,

2010)
Gipr Glucose-stimulated insulin secretion Direct binding (Gosmain et al., 2012)
Giplr Glucose-stimulated insulin secretion Direct binding (Gosmain et al., 2012)
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Supplementary Table 2. Real-time PCR primers

Gene Forward Reverse
P-Actin AGAGGGAAATCGTGCGTGAC CAATAGTGATGACCTGGCCGT
Paxé6 CCCATGCAGATGCAAAAGTC GCCAGTCTCGTAATACCTGC
PdxI TTCAACATCACTGCCAGCTC GAAATCCACCAAAGCTCACG
Nkx6.1 TCAGGTCAAGGTCTGGTTCC CGATTTGTGCTTTTTCAGCA
NeruoD CAAAGCCACGGATCAATCIT CCCGGGAATAGTGAAACTGA
Sic2a2 CCACATACATCAGGAATCTTGC TGAGACGGTAGACCAGGAAAG
Ins2 GAGCAGGTGACCTTCAGACC TTCATTGCAGAGGGGTAGGC
Pcskl GCTCCATCTTTGTCTGGGCT TCGCTGGTCTGTGTAATCACC
Giplr TTTGTGATGGACGAACACGC CACTTGAGGGGCTTCATGCT




