

Figure S1. PPARγ expression attenuated the production of cleaved IL-1β in NLRP3 inflammasome reconstituted HEK293T cells.

5 (A) Immunoblot analysis of mature IL-1 β in the supernatant (SN) and indicated components

6 and PPARγ in whole cell lysates (WCL) of NLRP3 inflammasome-reconstituted HEK293T

7 cells transfected with indicated components. IL-1 β production was significantly decreased in

8 1 μg PPARγ transfection group. (**B**) MTT assay of HEK293T cells transfected with control

9 (Ctrl, pCMV2), 0.1 μ g or 1 μ g PPAR γ expression plasmids (n = 3 in each group). Transfection

10 of 0.1 and 1 µg PPARy did not change the cell viability. (C) Immunoblot analysis of mature

11 IL-1β in the supernatant of NLRP3 inflammasome-reconstituted HEK293T cells expressing

12 wild-type and D62A mutant PPARγ.

2 Figure S2. PPARy interacted with NLRP3 in mouse peritoneal macrophages.

- 3 Immunoprecipitation and immunoblot analysis of the interaction between NLRP3 and PPARy
- 4 in mouse peritoneal macrophages. Reverse co-immunoprecipitation was performed by precip-
- 5 itating PPARγ and detecting NLRP3.
- 6

3 peritoneal macrophages.

- 4 (A) Quantification of PPARy (green) intensity per cell in mouse peritoneal macrophages from
- 5 Figure 3G (n = 6 in each group). (**B** and **C**) Immunoblot analysis of caspase-1 activation and
- 6 IL-1 β maturation in mouse peritoneal macrophages treated with (**B**) chloroquine (CQ) and (**C**)
- 7 MG132 with indicated concentration. **P < 0.01 and ***P < 0.001 by one-way ANOVA with
- 8 Fisher's LSD test.

- 1
- 2 Figure S4. PPARγ expression was decreased in *Pparg^{C/-}* mouse peritoneal macrophages.
- 3 Immunofluorescent staining of PPAR γ (green) in $Pparg^{+/+}$ and $Pparg^{C/-}$ mouse peritoneal mac-
- 4 rophages. The control is no primary antibody followed by incubation with secondary antibodies
- 5 and detection reagents. Scale bar, 50 μ m.
- 6

Figure S5. Rosiglitazone attenuated NLRP3 inflammasome through a PPARγ-independ ent mechanism.

(A) Quantification of PPAR γ protein level in untreated, control wild-type (*Pparg*^{+/+}) and 4 5 *Pparg*^{C/-} mouse peritoneal macrophages from Figure 6G, 7A, and 7B. (B and C) IL-1β levels in the culture medium were detected by ELISA related to Figure 6H and 6I. Culture medium 6 7 was collected from NLRP3 inflammasome-reconstituted HEK293T cells transfected with in-8 dicated components and PPARy (WT and P467L mutant). Rosiglitazone (Rosi, 20 µM) and 9 GW9662 (20 µM) were treated for 24 h after transfection. Three independent experiments were 10 included. (D) Immunoblot analysis of caspase-1 activation and IL-1ß maturation in mouse peritoneal macrophages treated with rosiglitazone (Rosi, 20µM) for indicated time by Signal-2 11 12 exposure protocol. A schematic diagram on the top shows the experimental design of co-treat-13 ment with Rosi by Signal-2 exposure protocol. (E) Immunoblot analysis of caspase-1 activation and IL-1 β maturation in *Pparg*^{+/+} and *Pparg*^{C/-} mouse peritoneal macrophages treated with 14 15d-PGJ2 (2.5 μ M) by Signal-2 exposure protocol. **P < 0.01 by t-test in (A). *P < 0.05, **P15 < 0.01 and ***P < 0.001 by one-way ANOVA with Fisher's LSD test in (C). 16

1

2 Figure S6. PPARy is required to limit NLRP3 inflammasome activation in mice.

3 (A and B) IL-1 β levels in the culture medium were detected by ELISA from Figure 7A and 7B. Culture medium was collected from LPS-primed wild-type (*Pparg*^{+/+}) and *Pparg*^{C/-} mouse per-4 5 itoneal macrophages treated with (A) nigericin (Nig) and ATP, or with (B) palmitic acid (PA). 6 Two independent experiments were included. (C) IL-1 β levels in the culture medium were 7 detected by ELISA from Figure 7C. Culture medium was collected from lean control and *ob/ob* 8 obese mouse peritoneal macrophages treated ex vivo with LPS and nigericin, as well as rosig-9 litazone, by Signal-2 exposure protocol. Three independent experiments were included. (D) 10 Immunoblot analysis of caspase-1 activation and mature IL-1ß in the supernatant and NLRP3 inflammasome components and PPARy in the cell lysates of untreated, basal lean control and 11 12 ob/ob obese mouse peritoneal macrophages. The supernatant was collected after 10 h culture

1 in FBS-free RPMI medium. Three independent experiments were included in this blot. (E) 2 Quantification of PPARy protein levels in the cell lysates of LPS+nigericin treated (from Fig-3 ure 7C) or untreated (from Figure S6D) lean control and ob/ob obese mouse peritoneal macro-4 phages with Signal-2 exposure protocol. (F) Immunoblot analysis of NLRP3 and ASC in the 5 supernatant of lean control and *ob/ob* obese mouse peritoneal macrophages treated *ex vivo* with 6 LPS and nigericin, as well as rosiglitazone, by Signal-2 exposure protocol from Figure 7C. (G) 7 Quantification of NLRP3 (left panels) and ASC (right panels) protein levels in the whole cell 8 lysate (WCL) and supernatant (SN) of lean control and ob/ob obese mouse peritoneal macro-9 phages treated ex vivo with LPS and nigericin, as well as rosiglitazone, by Signal-2 exposure protocol from Figure 7C and S6F. *P < 0.05 and **P < 0.01 by one-way ANOVA with Fisher's 10 11 LSD test. 12 13 14

Figure S7. BMI and HOMA-IR were changed between obese patients and control subjects.

4 (A) BMI and HOMA-IR of control and obese subjects before weight-loss surgery. (B) BMI

5 and HOMA-IR of obese subjects before (Obese) and 6 or 12 months after (Surgery) weight-

6 loss surgery. ***P < 0.001 by t-test in (**A**), and ***P < 0.001 by paired t-test in (**B**).

- 7
- 8
- 9

2 Figure S8. Cellular distribution of PPARγ is altered during NLRP3 inflammasome acti-

3 vation.

4 (A) Immunofluorescent staining of PPARy (green) and DAPI (red) in mouse peritoneal mac-

5 rophages of control, LPS, and LPS+nigericin groups. Scale bar, 10 μm. (**B**) Quantification of

6 PPAR γ intensity in the cytosol by the TissueFAXS fluorescence analysis module. **P < 0.01

7 and ***P < 0.001 by one-way ANOVA with Fisher's LSD test.

- 8
- 9
- 10

Figure S9. Long-term treatment, but not short-term treatment, of IL-4 suppressed
NLRP3 inflammasome activation and modestly increased PPARy protein level.

4 (A and B) Immunoblot analysis of caspase-1 activation and IL-1β maturation in mouse perito-

5 neal macrophages treated with IL-4 for (A) 6.5 h and (B) 48 and 72 h by Signal-2 exposure

6 protocol. Schematic diagrams on the top show the experimental design of co-treatment with

- 7 IL-4 in the (A) short-term and (B) long-term protocol of NLRP3 inflammasome activation.
- 8

2 Figure S11. Repeated data of the immunoblotting related to Figure 2.

- 2 Figure S13. Repeated data of the immunoblotting related to Figure 4.

2 Figure S14. Repeated data of the immunoblotting related to Figure 5.

2 Figure S15. Repeated data of the immunoblotting related to Figure 6.

2 Figure S16. Repeated data of the immunoblotting related to Figure 7.

Supplementary Tables

_	Plasmid	Vector	Source		
	HA-NLRP3				
	ASC		Dr. Ming-Zong Lai, Academia		
	Pro-caspase-1	pcDNA4	Sinica, Taiwan		
_	Pro-IL-1β				
	PPARγ				
	ΡΡΑRγ-ΔΑF-2		Dr. Yau-Sheng Tsai, Institute of		
	PPARγ-ΔHe3				
	PPARγ-ΔLBD	pCMV2	Clinical Medicine, National Cheng Kung		
	ΡΡΑRγ-ΔΑF-1		University, Tainan, Taiwan		
	ΡΡΑRγ-ΔΑ/Β				
	PPARγ-ΔDBD				
	NLRP3-APYD				
	NLRP3-ANBD				
	NLRP3-ALRR				
	NLRP3- Δ LRR ^{LXXLL}		Dr. Yau-Sheng Tsai, Institute of		
	NLRP3-mLRR	pcDNA4	Clinical Medicine, National Cheng Kung		
	NLRP3-mNBD		University, Tainan, Taiwan		
	NLRP3-PYD				
	NLRP3-NBD				
	NLRP3-LRR				

2 Table S1. List of plasmids used in experiments.

Antigen	Host	Host Cat. Source		Applications			
Primary antibodies							
NI DD2	Mouse	AG-20B-0014	Adipogen	WB, IP			
NLRP3	Goat	ab4207	Abcam	IF			
	Rabbit	#2443	Cell signaling	WB, IP			
ΡΡΑRγ	Rabbit	sc-7196	Santa Cruz	WB			
	Mouse	ab41928	Abcam	IF			
ASC	Rabbit	AG-25B-0006	Adipogen	WB, IP, IF			
Caspase-1	Rabbit	ab179515	Abcam	WB			
IL-1β	Goat	AF-401-NA	R&D systems	WB			
c-Myc tag	Mouse	Mouse sc-40 Santa Cruz		WB			
HA tag	Mouse	MMS-101R	Covance	WB, IP			
β-actin	Mouse	A5441	Sigma	WB			
Mouse IgG	Mouse	12-371	Millipore	IP			
Rabbit IgG	Rabbit	abbit 12-370 Millipore		IP			
Secondary antibod	lies						
anti-Mouse IgG- HRP	Goat	20102	Leadgene	WB			
anti-Rabbit IgG- HRP	Goat	20202	Leadgene	WB			
Anti-Goat IgG	Rabbit	5220-0362	Seracare	WB			

1 Table S2. List of antibodies used in experiments.

*WB, western blotting; IP, Immunoprecipitation; IF, Immunofluorescence

1 Table S3. List of human samples.

		Age	Procedure type	DMI	BMI	BMI	Involved
C/NI	Candan		(Mini-gastric bypass,	(Before Surgery)	(6mth	(12mth	in panel
3 /1 N	Gender		Sleeve gastrectomy,		after	after	of
			or Gastric banding)		Surgery)	Surgery)	Figure 7
1	F	23	Sleeve gastrectomy	43.2	-	30.8	Н
2	F	27	Sleeve gastrectomy	41.6	33.5	-	Н
3	F	29	Sleeve gastrectomy	42.6	31.4	-	D, F, G
4	F	44	Mini-gastric bypass	48.2	35.5	34.0	D, F, G
5	F	22	Sleeve gastrectomy	41.6	-	-	Н
6	F	35	Sleeve gastrectomy	44.1	31.8	-	D
7	F	29	Gastric banding	38.9	32.4	32.0	D, F, G
8	Μ	39	Sleeve gastrectomy	38.5	27.2	-	D, F, G
9	F	37	Sleeve gastrectomy	48.1	34.5	34.5	D, F, G
10	F	56	Sleeve gastrectomy	34.3	-	-	D
11	F	34	Sleeve gastrectomy	45.6	-	-	D
12	М	27	Sleeve gastrectomy	33.7	-	-	D
13	F	23	Sleeve gastrectomy	37.2	-	-	D
14	F	47	Sleeve gastrectomy	40.5	-	-	Н
15	F	57	Sleeve gastrectomy	40.4	-	29.0	Н
16	М	28	Sleeve gastrectomy	49.6	-	26.6	Н
17	М	40	Sleeve gastrectomy	41.5	29.0	27.9	Н
18	М	46	Sleeve gastrectomy	44.1	35	-	Н
19	М	32	Mini-gastric bypass	34.2	27	-	Н
20	М	25		29.7	-	-	Е
21	М	24		34.4	-	-	Е
22	М	25		23.3	-	-	Е
23	М	24		19.3	-	-	Е
24	F	28	Control subjects	25.3	-	-	Е
25	F	25		22.0	-	-	Е
26	М	35		19.6	-	-	Е
27	F	29		27.5	-	-	Е
28	F	26		23.3	-	-	E

29	F	25		25.5	-	-	E
30	F	26	Control subjects	18.8	-	-	Ε
31	F	33		31.2	-	-	E

-: N/A

The subject (S/N: 4) was analyzed in both 6 and 12 months after surgery.

Figure 7G used same subjects with Figure 7F.

1 Table S4. Summary of NBD and LRR sequence analysis between NLRC4 and NLRP3 by

Organism Domain Total score Query coverage Identity (%) e-value 46% 1e-05 135.0 LRR 27.44% Human NBD 21.34% 2e-09 62.0 63% LRR 148.0 57% 27.57% 6e-08 Mouse NBD 69.7 65% 24.50% 5e-12

2 BLAST results.