Table S1. Lipid-metabolism gene list (147, GO Biological Process) in datasets

	TCGA		Grasso		Lapoint	е	Tomils		Taylor	
gene-list	FC	p vaule	FC	p vaule	FC	p vaule	FC	p vaule	FC	p vaule
AACS	0.30852	0.00033	1.21	0.0001	1.22	4E-04	-1.06	0.382	1.06	0.03
AASDH	-0.1224	0.18276	-1.03	0.407	NA	NA	NA	NA	1.04	0.254
ABCA2	0 56436	28F-08	1 14	0.023	NA	NA	NA	NA	1 05	0 041
ABCB4	-0.164	0 22939	_1 14	0.228	NA	NA	1 44	0.005	1 01	0.352
	0.104	0.22303	1 7/	55 05	1 16		1 1 1	0.000	1 22	
	0.10430	0.22703	1.74			0.097			1.00	
ACOTZ	-0.2102	0.03009	-1.55	9E-05	1 00		NA 1 1 7	NA 0.100	-1.21	2E-07
ACO14	-0.2929	0.01409	1.02	0.0	-1.09	0.022	-1.17	0.189		0.408
ACOT7	0.19452	0.01/14	-1.18	0.018	-1.41	2E-06	1.09	0.636	-1.04	0.108
ACO18	0.43015	1.2E-10	1.26	2E-05	NA	NA	-1.36	0.024	-1	0.491
ACOT9	-0.2423	0.00076	-1.06	0.144	NA	NA	NA	NA	-1.17	0.0003
ACOX1	0.01908	0.80042	1.1	0.914	1.13	0.025	1.33	0.116	1.04	0.094
ACSBG2	0.2482	0.15375	1.33	0.021	NA	NA	NA	NA	1.04	0.069
ACSF2	-1.5662	6.4E-20	-1.83	3E-09	-2.01	1E-17	-2.37	7E-07	-1.57	6E-16
ACSF3	0.14459	0.04041	-1.09	0.143	NA	NA	NA	NA	-1.02	0.1
ACSL3	0.38547	0.00762	NA	NA	1.5	2E-06	-1.42	0.175	1.42	0.0006
ACSI 4	-1 2238	4 5F-16	-1 49	2F-05	-1 28	3E-05	NA	NA	-145	7F-07
	_1 5158	1.0E 10	_1 10	0 1/13	ΝΔ		1 47	0.065	1.10	0.088
	2 67180	1 3E 16	1.1.5	35 00	NΙΛ		2.01	1E 0/	2.00	2E 10
ACSINE	0.7561	1 65 06	1 60	0.276			0.91 NIA		1 00	2L-19 0.015
ACSIVIS	-0.7501	1.0E-00	-1.09		1 70				1.00	0.010
ACSS3	-1.5041	5.2E-18	-1.57	2E-00	-1./3	3E-14	-4.93	7E-08	-1.52	2E-10
ADIPORI	0.25528	0.00038	1.38	3E-09	1.23	6E-06	1.9	9E-05	1.14	0.002
ADIPOR2	-0.1899	0.00608	-1.06	0.062	1.04	0.273	1.07	0.659	-1.06	0.088
AGPS	-0.9131	3.4E-12	-1.67	0.0001	-1.51	2E-08	1.18	0.118	-1.17	0.003
AKR1C2	-1.3336	4.5E-11	NA	NA	NA	NA	NA	NA	-1.2	0.002
AKR1C3	-0.1532	0.42054	1.04	0.63	NA	NA	1.85	0.016		
ALDH1A3	1.06698	5.3E-11	1.85	6E-05	1.35	0.006	2.14	0.026	1.52	2E-07
ALDH3A2	-0.4567	5.4E-06	-1.6	2E-07	-1.52	3E-08	-1.43	0.083	-1.23	0.0002
ALDH3B1	-0.715	5E-09	-1.02	0.618	-1.06	0.275	1.31	0.048	1.05	0.013
ALDH3B2	1 05018	92F-06	1 43	5F-05	NA	NA	-1 68	0.052	1 31	2F-12
	0.4525	0.04235	1 05	0.661	NA	NA	NA	NA		0 4 4 9
	1 81854	1 5F_05	1 /1	0.0013	ΝΔ	ΝΔ	ΝΔ	ΝΔ	1 1 2	2F_07
	0 2257	0.60716	1 02	0.010	1 5/				1.12	
	1 1 7 1 6	6.00710	1.02	0.002	-1.J4 0.10	2E 10			1.04	0.011
	-1.1/10	0.46-13	-1.00	0.009	-2.13		-10.2	10-10	-1.29	0.014
	-0.113	0.50813	-1.03	0.407			-1.00	0.004		0.049
APOA4	1.04/56	0.12089	-1.01	0.476	NA	NA	NA	NA	1.04	0.157
APOB48R	#N/A	#N/A	1.2	0.051	NA	NA	NA	NA	1.04	0.188
APOBEC1	0.69774	0.12756	1.45	0.738	NA	NA	NA	NA	1.07	0.032
APOC1	2.07012	1.1E-23	2.87	2E-06	1.89	5E-06	2.34	9E-05	1.24	0.0001
APOC4	0.48042	0.03226	1.68	4E-09	NA	NA	-1.48	0.012	1.04	0.069
APOD	0.63833	0.00056	1.38	0.007	NA	NA	2.37	0.001	1.22	0.019
APOF	2.52724	7.9E-18	2.12	0.0001	NA	NA	NA	NA	1.38	2E-12
APOL1	-0.7622	4.3E-07	-1.39	0.002	NA	NA	NA	NA	1.02	0.244
APOL2	0.21944	0.00292	-1.33	0.0005	NA	NA	NA	NA	1.03	0.079
APOL5	-01462	0 46117	-1.08	0.308	NA	NA	NA	NA	1 07	0.037
ATP8B1	-0.3894	0.00222	1	0.514	1 02	0 405	1 04	0.552	-1.04	0.323
RAAT	0/11377	0.00222	1/3	0.019	1.02	0.160	1 23	0.002	1.04	0.020
	0.41077	1 QE 10	1.40		1.07	5E 07	1.20	0.110 0.222	1 16	3E 00
	0.3107		1 20	0.000	1 20		2 10		-1.10	0.40
	-0.3201	0.00032	-1.30	0.009	-1.20	0.002	-2.19		1 0 2	0.40
BTINL3	0.00298	0.75045	-1.01	0.489					1.03	0.244
CIUOITI29			INA			INA NIA	INA 4 40	NA 0.000	T.08	0.002
CD36	-1.0597	5E-07	-1.4	0.256	NA	NA	-1.49	0.002	1.02	0.321
CDS1	0.22717	0.02099	1.25	0.926	1.25	0.002	1.72	0.01	1.17	0.002
CEPT1	-0.216	0.04854	1.11	0.917	1.06	0.147	1.59	0.001	1.03	0.251
CETP	0.63069	4.9E-05	1.23	0.84	NA	NA	1.08	0.29	1.07	0.016
CH25H	-0.7746	0.00073	1	0.504	-1.02	0.412	NA	NA	1.19	0.007

СНКА	0.23426	0.00466	1.5	6E-05	1.37	2E-06	1.21	0.139	1.09	0.047
CLU	-2.0822	2.1E-32	-2.09	6E-07	-2.44	2E-19	-2.27	4E-04	-1.9	3E-11
CORIN	-0.6438	0.00209	-1.18	0.21	-1.1	0.076	-1.2	0.18	-1.09	0.031
CPNE1	0.04914	0.53947	1.05	0.758	1.4	5E-09	-1.01	0.463	-1.15	0.0009
CPNE3	0.06382	0.54573	1.33	5E-07	1.12	0.057	-1.14	0.211	1.13	0.027
CPNE6	-2.9879	4E-18	-2.43	2E-11	NA	NA	1.04	0.662	-1.22	5E-06
CPNE7	1.91866	1.4E-15	2.51	1E-12	NA	NA	NA	NA	1.19	4E-06
CYP27B1	0 73144	28F-07	1 41	0.002	NA	NA	NA	NA	1 09	0.034
DAGLA	-0.4866	0.00092	-1 97	0.072	NA	NA	-1.82	3F-04	-1.03	0 1 3 7
	0.24235	1.4F-05	-1.08	0.072	NA	NA	-1.64	5E-04	1.00	0.243
	0.24200		1 27	5E_06	1 21	3E_08	2 55	2E_07	1 15	0.240
	2 0017/	0.000000 0.1E 12	2 88	1E 00	1.51		2.55	2E-07 2E 10	1 5 3	5E 08
	0.207/1	0.10710	2.00	U 0 3 0	1.03	0 200			1.00	0 033
	0.30741 0.1074	0.19719		0.000	1.04	0.009			1.03	0.052
GDEI CCDS1	-0.1074	0.00014	-1.09	1 = 00	-1.09	0.019	1.04	0.000	-1.01	0.551
GGP31	0.14/0/	0.02203	1.20 1.11	1E-09			-1.UI	U.407	1.07	0.1
GPA5	-0.10	0.04109		0.128	NA 1 1 1	NA 0.010	INA 1 0		1.03	0.201
HACLI	0.1939	0.01393	1.23	2E-00		0.010	1.3	0.064	1.02	0.302
HMGCR	-0.1994	0.10355	-1.09	0.193	NA	NA	NA	NA	1.03	0.372
HMGCSI	-0.6/96	8.2E-07	-1.38	0.007	-1.54	3E-06	-2.92	3E-04	-1.31	0.003
HNF4A	0.11446	0.65965	1.59	0.002	NA	NA	NA	NA	1.1	0.0007
HSD17B1(0.40213	8.1E-08	1.16	0.0005	NA	NA	NA	NA	-1.03	0.2
INPP5E	0.13011	0.10478	-1.17	0.002	-1.98	1E-13	-1.74	0.006	-1.01	0.287
INS	0.81902	0.44607	1.16	0.034	NA	NA	NA	NA	1.06	0.09
LCAT	-0.4329	0.00031	-1.45	8E-07	NA	NA	-2.37	1E-06	-1.2	7E-08
LDLR	-0.3953	0.01638	-1.45	0.001	-1.22	0.011	-2.72	0.001	-1	0.476
LIPT1	0.08244	0.36068	1.15	0.018	NA	NA	NA	NA	1.06	0.009
LPA	-1.088	4.4E-07	-1.36	0.003	NA	NA	NA	NA	-1.15	2E-05
LRP1	-0.0458	0.76085	-1.08	0.16	1.12	0.09	1.78	0.009	-1.22	0.003
LRP2	-0.8848	0.00022	-1.34	0.137	1.01	0.462	-1.55	0.012	-1.01	0.376
LRP5	-0.0765	0.42904	1.06	0.822	1.23	4E-04	NA	NA	-1.05	0.032
LRP8	0.06425	0.57888	-1.09	0.23	1.11	0.165	-1	0.498	1.1	0.0001
LYPLA1	0.62805	2E-07	1.72	5E-06	1.47	9E-09	3.37	5E-06	1.47	1E-06
LYPLA2	0.40619	9.1E-08	1.28	0.026	1.2	0.009	NA	NA	1.07	0.006
MBTPS1	-0.1997	0.01571	-1.13	0.0008	1.01	0.451	-1.69	0.002	-1.16	0.0009
MBTPS2	-0.0736	0.47056	-1.01	0.446	-1.04	0.202	1.74	0.003	1.04	0.243
MGLL	-0.5752	3.2E-05	-1.4	0.0004	1.08	0.153	-1	0.49	-1.15	0.003
MGST3	-0.5179	1.6E-08	-1.58	2E-08	-1.87	8E-15	-1.57	0.031	-1.29	7E-06
MTTP	-0.9654	1.9E-06	-1.16	0.217	NA	NA	1.03	0.557	1.01	0.411
NR2F2	-0.3142	0.00076	-1.44	9E-05	-1.24	8E-04	1.5	0.02	-1.2	5E-06
OCRL	-0.165	0.09617	-1.03	0.302	1.31	0.002	2.94	1E-08	-1.01	0.447
PAFAH1B1	-0.3708	2.9E-06	-1.37	3E-05	-1.43	6E-10	-1.27	0.024	-1.18	0.004
PCSK9	-1.5693	4.3E-10	-1.3	0.238	-1.04	0.225	-2.04	7E-05	1.05	0.07
PDE3A	-0.4847	0.00919	-1.01	0.478	NA	NA	NA	NA	-1.34	0.003
PEMT	0.13171	0.08795	1.26	0.003	1.64	2E-12	1.35	0.052	-1.01	0.408
РНҮН	0.00622	0.93929	-1.01	0.427	1.14	0.027	1.71	0.011	-1.06	0.071
PITPNA	-0.0134	0.8624	-1.06	0.144	-1	0.503	-1.33	0.029	-1.01	0.437
PITPNB	-0.2623	1.7E-05	-1.17	0.005	-1.02	0.369	NA	NA	-1.09	0.04
PITPNM1	-0.4834	1.1E-05	1.07	0.727	NA	NA	-1.24	0.035	-1.04	0.062
PI A2G15	0 26779	0.00101	-1	0.478	1 23	0.001	NA	NA	1 04	0.083
PLCB2	0 12206	0 34428	24	0.002	-1.02	0.374	-1.03	0 435	1 01	0.353
PLCB4	0.51189	4F-05	1.52	0.0002	1 44	2F-08	-2.49	2F-05	1.34	6F-05
PLCD3	-1.0438	3 2E-17	-1.86	4F-06	NA	NA	NA	NA	-1	0 471
PLCE1	-0.6922	2.6E-09	-1 44		NA	NA	1 11	0.283	-1 58	2F-06
PLCG1	0 17184	0.05591	1.77	0.862	12	0.002	1 3 <u>/</u>	0.038	-1.00	0 034
	-0 5447	7 7F_N5	-1 15	0.002	NA 1.2	NA	_1 27	0 117	1.07	0.004 0 500
	/ 2/2		_1 5/	0.001	_1 12	∩ 17	<i>1</i> ے.بـ 1	0.117	_1 05	0.009
	_1 7022	5.50010 5.5F_17		7F_06	_1 51	3F_07	_1 57	0.002	_1 30	6F_05
	-1 3222	1 0F_00	-∠ 2 2		NA		NA	NA	1.00	0122
	T.0000	T.JC 0J	2.0	0.0000	1 1/ 1	1 1/ 1	1.87.3	1 1/ 1	1.02	0.100

PLIN1	0.77234	7.5E-06	1.23	0.843	NA	NA	1.81	0.002	1.05	0.064
PLTP	-0.5075	0.00144	-1.17	0.083	-1.14	0.08	2.02	0.005	-1.06	0.155
PMVK	0.3044	0.00027	-1.08	0.041	1.02	0.363	-1.11	0.256	-1.03	0.079
PNLIPRP1	0.27928	0.32725	1.34	0.739	NA	NA	1.21	0.6	1.07	0.016
PPAP2B	-0.9868	5.1E-12	-1.53	0.0002	-1.88	2E-10	1.42	0.052	-1.35	3E-05
PPARA	-0.3698	0.001	-1.22	1E-05	-1.38	4E-04	-1.39	0.009	-1.15	3E-05
PPARD	-0.2357	0.0003	-1.16	0.0001	1.35	1E-08	-1.04	0.457	-1.03	0.105
PPARG	-0.79	4.4E-05	-1.81	0.0004	-1.17	0.065	-1.11	0.225	-1.25	0.002
PSAP	-0.1349	0.09346	-1.01	0.473	NA	NA	1.26	0.073	-1.09	0.006
PTGIS	-1.3496	1.4E-11	-2.47	7E-07	-1.94	7E-10	1.04	0.636	1.02	0.18
PTGS1	-2.1137	4.3E-24	-2.8	0.0003	1.14	0.026	-1.21	0.143	-1.53	0.0005
RBP3	-0.2364	0.1699	NA	NA	-1	0.53	-1.88	0.025	1.1	0.005
RDH16	-0.4942	0.03922	1.22	0.052	NA	NA	NA	NA	1.01	0.391
SC5DL	NA	NA	1.03	0.595	1.1	0.094	-1.05	0.38	1.03	0.177
SCAP	0.21481	0.00156	-1.14	0.006	NA	NA	-1.18	0.324	-1.01	0.713
SFTPB	-1.2069	7.2E-05	1.01	0.542	-1.13	0.132	NA	NA	1.02	0.271
SGPL1	0.13728	0.12613	1.07	0.808	1.09	0.141	-1.33	0.036	1.05	0.024
SLC27A3	-0.5729	7E-09	-1.33	3E-06	-1.18	0.008	-1.69	0.003	-1.1	5E-06
SLC27A4	0.79612	9E-20	1.23	0.019	NA	NA	NA	NA	1.16	2E-06
SLC27A5	0.63218	2.6E-11	1.34	5E-07	1.31	2E-06	-3.59	0.073	1.04	0.126
SLC27A6	-0.6208	0.01964	-1.26	0.116	-1.19	9E-04	-1.08	0.38	-1.01	0.437
SREBF1	0.45748	0.00036	1.23	0.002	-1.24	4E-04	1.11	0.605	1.08	0.023
SREBF2	-0.182	0.07631	-1.25	6E-05	1.02	0.36	-2.45	1E-04	-1.12	0.017
STARD3	-0.0993	0.18741	-1.06	0.304	NA	NA	-1.01	0.482	-1.06	0.007
SULT1A1	0.28004	0.02178	1.23	0.0004	1.19	7E-04	NA	NA	-1	0.497
SULT1A3	0.63453	8.6E-05	1.16	0.843	1.13	0.016	NA	NA	-1.07	0.013
THRSP	-1.1672	7.3E-06	-1.36	0.043	NA	NA	NA	NA	1.07	0.076
TPP1	0.00523	0.95303	1.03	0.752	NA	NA	NA	NA	1.01	0.427
TPRA1	0.24258	3.3E-05	1.04	0.711	1.12	0.057	NA	NA	-1.03	0.045
TTPA	-0.3246	0.06715	-1.41	0.037	NA	NA	NA	NA	1.01	0.247
UCP3	0.38613	0.00053	1.07	0.816	NA	NA	NA	NA	1.05	0.103
UGT2B10	-0.5	0.41044	2.75	0.001	NA	NA	NA	NA	1.06	0.036
UGT2B7	-2.1845	2.3E-12	-1.83	0.027	1.11	0.115	NA	NA	1.07	0.016
ZNF202	0.01352	0.8422	-1.2	0.068	1.13	0.036	-1.13	0.22	1.01	0.201

Risk factors		Univariate	analysis	Multivariate analysis					
	HR	P-value	95% CI	HR	P-value	95% CI			
ACSS expression low $(n = 175)$ High $(n = 174)$	0.563	0.013	0.36-0.89	0.575	0.018	0.36-0.91			
Age (years) $\leq 60 (n = 148)$ > 60 (n = 201)	1.56	0.06	0.98-2.47						
Gleason score $\leq 7 (n = 186)$ > 7 (n = 163)	4.72	0.000	2.79-8.00	2.57	0.001	1.50-4.54			
$ PSA \leq 4 (n = 325) > 4 (n = 24) $	2.90	0.007	1.33-6.33						
M = M = M = M = M = M = M = M = M = M =	0.049	0.72	0.00-7.30						
N N0 (n = 282) N1 (n = 67)	1.65	0.05	0.99-2.73						
T T2 (n = 114) T3 or T4 (n = 235)	3.83	0.000	1.97-7.47						
Recurrence NO $(n = 296)$ YES $(n = 53)$	7.51	0.000	4.82-11.70	5.32	0.000	3.30-8.58			

Table S2. Univariate and multivariate analyses of clinic pathological factors for disease free.

Table S3: IRS for IHC

PR1921b	Т	Grade	Gleason	IRS_ACSS3	IRS_PLIN3	M821601	Т	Grade	Gleason	IRS_ACSS3 I	RS_PLIN3
A1	T2	1	2+2	3	10	A1	T2	12	3+3	4	10
A3	T2	1	2+3	2	5	A2	T2	12	3+2	4	8
A5	T2	2	3+3	6	6	A3	T2	2	3+2	3	5
A8	0	1	2+2	2	10	A4	T2	23	4+4	4	7
A10	T2	1	2+2	3	6	A5	T2	2	3+3	7	7
A12	T2	1	2+3	5	8	A6	T2	2	3+4	4	8
A14	T3	1	2+3	6	7	A7	T2	23	4+4	6	8
A16	T3	2	3+3	4	5	A8	T3	2	4+3	4	11
B1	Т2	3	3+4	5	8	Α9	T3	12	3+2	5	9
B3	T3	3	4+4	2	9	A10	T2	3	4+4	6	10
B6	T2	3	3+5	8	5	B1	T2	2	4+3	4	10
B7	T3	3	5+4	6	7	B2	T2	2	4+3	4	12
B10	T2	3	4+4	6	5	B3	T2	1	2+3	6	8
B12	T4	2	3+3	7	7	B4	T3	2	3+3	8	4
B13	T3	3	4+5	4	7	B5	T3	2	3+3	7	5
B16	T2	3	3+4	5	8	B6	T2	2	3+3	4	8
C1	T2	3	3+4	3	4	B7	T2	23	4+5	6	9
C3	T2	3	3+4	6	6	B8	T2	12	3+2	9	5
C5	T2	3	3+5	6	4	B9	T2	23	4+4	4	8
C7	T2	3	3+4	4	9	B10	T2	23	4+4	3	4
C9	T2	0	0	3	7	C1	T3	23	4+4	6	7
C11	T2	0	0	4	7	C2	T2	3	5+5	7	7
C13	T2	2	3+4	8	5	C3	T2	3	5+5	4	8
C16	T3	2	3+4	5	11	C4	T3	2	4+4	5	8
D1	T3	2	3+4	8	5	C5	T2	2	3+4	3	8
D3	0	3	3+5	4	8	C6	T2	3	5+4	6	6
D5	0	2	3+4	3	9	C7	T3	3	4+5	4	6
D7	T1	2	3+3	4	8	C8	Т3	3	4+5	5	6
D9	T2	3	4+4	2	9	C9	T3	23	4+4	5	8
D11	Т3	3	3+4	3	9	C10	T2	23	4+4	5	10
D13	T3	3	4+5	6	5	D1	Т3	12	3+2	6	8
D15	T2	3	4+5	4	6	D2	T3	23	4+4	4	12
E1	T2	2	4+3	7	6	D3	T2	23	5+4	4	7
E3	T2	2	4+3	6	7	D4	T3	23	5+4	6	9
E5	T2	2	4+3	7	6	D5	T2	23	4+4	8	10
E7	T2	2	4+3	4	9	D6	T2	23	4+5	5	8
E10	T4	3	4+5	4	6	D7	T2	23	4+4	5	9
E12	T2	2	4+3	4	3	D8	T3	23	4+5	7	10
E13	T2	2	4+3	5	8	D10	T2	23	4+5	4	10
E16	T2	2	4+4	4	11	E1	Τ4	3	5+4	5	6
F1	Т3	3	4+4	6	6	E2	T2	3	5+5	4	9
F3	Т3	3	4+4	3	4	E3	Т3	23	4+5	5	8
F5	Т3	3	4+4	7	6	E4	Т2	23	5+4	6	5
F7	0	3	4+4	3	9	E5	Т3	3	5+5	6	8
F10	0	3	4+4	3	10	E6	T2	3	5+4	7	6
F12	0	2	4+3	4	9	E7	Т3	3	5+5	4	8
F14	0	3	4+4	3	11	E8	Т3	23	4+5	5	9
F15	0	3	4+4	3	10	E9	Т3	23	5+4	4	4
G1	0	3	4+4	2	8	E10	Т3	3	5+5	4	5
G3	0	2	4+3	2	9	F1	T2	3	5+4	8	5
G4	0	2	4+3	3	8	F2	T3	23	5+4	7	7
G6	13	3	4+4	4	10	F4	13	2	4+4	9	4
G9	0	0	0	4	12	F5	14	23	4+5	8	5
G11	12	2	4+3	8	8	F6	13	3	5+5	4	9
G13	12	3	5+5	5	6	F/	13	2	4+4	6	6
G15	13	3	5+5	3	10	+8	12	1	3+2	(5

H2	T3 T2	3	5+5 5+5	5 7	8	F9	T3	2	4+4	5	4
н4 Ц6	T2	2	5+5	2	6		т т2	П	7	Q	Б
Ц	T2	с 2	5+5	1	Q	Λ7	Τ1	11	6	Q Q	1
но Ц10	T2	3	5+5	4	12		T2		Q	6	4 10
нто Ц12	T2	3	5+5	0	3		T2	11	9 1	Q Q	р 10
	T2	3	5+5	3	12	ΛJ	T2	1	4	6	0 Q
нт 4 Ц15	T2	3	5+5	1	12	Δ11	T2		4 6	6	Q
1113	T2	3	5+5	4	1Z Q	Δ12	T2	111	1	0	9 7
12	T3	3	5+1	5	8	Δ12	T2	н П	4 7	4 5	ģ
14	T2	3	5+5	1	8	R1	T2		à	3	6
10	ΤΛ	3	5+1	5	6	B2	T2	111	8	7	q
19	T3	3	5+5	7	8	B3	T3		10	5	g
10	0	3	5+5	3	g	B4	T2		6	5	8
113	Õ	3	5+5	4	g	B5	T2	Ш	g	4	7
115	0	3	5+5	3	11	B6	T2		9	5	6
J1	0	3	5+5	5	10	B7	T2	~	8	7	5
JЗ	0	3	5+4	3	9	B8	T1	~	8	3	5
J5	0	3	5+4	4	11	B9	T2		8	7	4
J7	0	3	4+5	3	10	B10	T2	I	4	5	8
J9	0	3	5+5	4	10	B11	T2		8	2	8
J11	0	3	5+5	4	11	B12	T2	II	6	3	9
J13	0	3	5+5	4	10	B13	T2	II	5	4	8
J15	0	3	5+5	5	10	C1	T2	~	4	5	8
roA150C	:S01	-			-	C2	T2		8	6	9
A01	12	2	3+4=7	4	8	C3	11		8	4	8
A03	12	2	3+4=7	4	8	C4	12		(3	8
A05		2	3+4=7	4	8	C5			4	6 7	8
AU7 A00		2	3+4-7 2+4-7	3	/ 0				9	Г Л	0
AU9 A11		2	3+4-7	5	0			111	0 7	4 5	9
A11 A12	T2	2	3+4-7 3+1-7	2	9 7	C10	T2		l Q	1	0 Q
A15	T2	2	4+3=7	2	ģ	C11	T1		8	3	g
R01	T2	3	4+3=7	7	10	C12	T1		5	2	10
B03	T2	1	3+3=6	5	8	C13	T1	ü	7	4	12
B05	T2	3	4+3=7	9	8	D1	T2		8	3	3
B07	T4	1	3+3=6	6	10	D2	T2	II	6	4	8
B09	T4	1	3+3=6	8	10	D3	T2	I	4	7	8
B11	Т3	2	3+4=7	4	10	D4	T2	П	7	5	7
B13	Т3	2	3+4=7	3	9	D5	T2		8	4	8
B15	Т3	2	3+4=7	4	10	D6	T2		9	6	10
C01	T4	2	3+4=7	7	9	D7	T2		9	4	10
C03	Т3	2	3+4=7	8	5	D8	T2		8	4	8
C05	Т3	2	3+4=7	6	7	D9	T2	II	6	3	11
C07	T3	2	3+4=7	5	7	D10	T4		4	4	10
C09	14	2	3+4=7	4	10	D11	12		9	6	8
C11 010	13	2	3+4=7	/ 	9	D12	12	111	8	4	11
	3 ⊤₄	3	4+3=7	5	8	DI3			8	5	8
	14 T4	ろ つ	4+3=7	8	4	ET ED			8 o	4	8 o
	14 T2	っ っ	4+3-7	0	O F			111	0 2	4 5	0
D03		3 2	4+3-7	2 Q	5	ES EA	T2	1	3 7	2	9 10
D03	T2	с С	Δ+2=7	5	6	ւ <u>4</u> Բհ	T2		a a	л Л	10
007	T3	3	4+3=7	6	6	F6	T2	11	7	- 6	8
D11	T.3	3	4+3=7	Ř	6	E0 F7	T2		, 8	4	10
D13	T3	4?	3+5=8	8	5	E8	T2		7	5	8
D15	T4	4	4+4=8	5	7	E9	T2	III	8	7	9
E01	Т3	4	4+4=8	5	7	E10	T2	П	7	3	10

E03	Т3	4?	5+3=8	3	8	E11	T2		6	5	9
E05	Т3	5	4+5=9	6	8	E13	T2		5	5	10
EU7		5	4+5=9	4	1			11	/	/	9
EU9 E11		5 5	4+5=9	2	9			111	8 2	5	9 10
EII F13	Т3	5	4+3-9 5+1-0	9	0 11	F3 FA	T2		G G	1	0 10
F15	T3	5	5+4=9	4	10	F5	T2	11	7	3	11
F01	T3	5	5+4=9	6	10	F6	T2	ii ii	6	3	11
F03	T3	5	5+5=10	11	3	F7	T2	ï	4	3	12
F05	T4	5	5+5=10	6	8	F8	T1	I	7	5	9
F07		1	3+3=6	8	6	F9	T2	Ι	4	3	12
F09		2	3+4=7	8	9	F10	T1	Ш	6	4	8
F11	Т3	2	3+4=7	6	9	F11	T4	II	5	5	11
F13	Т3	3	4+3=7	9	5	F12	T2	I	3	5	10
F15	T3	3	4+3=7	5	9	F13	T4		8	6	9
G01	14	4?	3+5=8	3	12	G1	12	11	/	8	8
GU3	13	5 1	5+4=9	5	8	G2			/	6 F	/
GU5 C06		⊥ 2	3+3=0 2+4-7	0	9 5	G3 C4		111	8 F	5 5	8 o
G00 G07	T2	2	3+4-7	9 5	9 8	64 G5	12 T2		9 8	5 1	0 11
G08	T3	1	3+3=6	7	g	G7	T2		8	4 1	11
G09	T3	2	3+4=7	6	8	G8	T2		8	5	9
G10	T3	2	3+4=7	4	9	G9	T1	III	9	5	9
G11	Т3	2	3+4=7	4	9	G10	T4		9	5	10
G12	Т3	2	3+4=7	6	6	G12	T4		9	4	11
G13	Т3	2	3+4=7	5	9	H1	T2		9	4	7
G14	T3	2	3+4=7	4	10	H2	T2		6	4	9
G15	13	3	4+3=7	4	10	H3	12		3	5	8
GT0	13 T2	ろ つ	4+3=7	4	10 10	H4		111	8	ර ර	12
	T3	с С	4+3-7	2	10	пр Не	14 T2	11	5	0	10
H02	T3	3 4?	3+5=8	8	g	H7	T2	11	7	З 4	11
H04	T4	4	4+4=8	5	8	H8	T2	- III	10	4	10
H05	T4	4	4+4=8	7	10	H9	T2	III	9	4	7
H06	Т3	4	4+4=8	6	11	H10	T2		7	3	8
H07	Т3	4	4+4=8	5	5	H11	T2		8	3	12
H08	Т3	4?	5+3=8	4	8	H12	T2	Ι	4	4	10
H09	T4	4?	5+3=8	6	12	0190522F	80				10
H10	13	4?	5+3=8	4	9	A1	13a		y o	3	10
	13 T2	4 : 5	5+3=8	5		AZ A 2	138		9	4	TO E
П12 H13	13 T3	5 5	4+5-9 1+5-0	4	10	Α3 Δ/	T20 T2		6	9	2 8
H14	T3	5	4+5=9	5	8	A4 A5	T2		g	3	11
H15	T3	5	4+5=9	5	10	A6	T3a		7 7	5	9
H16	Т3	5	4+5=9	4	12	A7	T3a		9	5	11
101	Т3	5	5+4=9	4	6	A8	ТЗа		7	6	11
102	T4	5	5+4=9	7	9	A10	ТЗа		7	3	12
103	Т3	5	5+4=9	6	9	C1	Т3		7	5	11
104	T2	5	5+4=9	8	11	C2	T2c		6	5	9
105	14	5	5+4=9	4	8	C3	12a		9	6	8
106	13 TO	5	5+4=9	4	8	C4	12C		/ 7	6 6	9 7
107 108	IJ T∕I	ろ つ	4+3=1 1+2-7	C A	9 Q	6J 62	139 732		/ Q	0 A	/ 0
100	14	с С	4 + 3 = 7 4 + 3 = 7	5	0 Q	C0 C7	T3a		7	4	9 8
110	T3	3	4+3=7	5	8	C8	T3a		10	3	11
111	T3	3	4+3=7	7	9	C9	T3a		6	6	6
I12	T4	4?	3+5=8	7	9	C10	T2c		7	6	5
I13	Т3	4	4+4=8	7	8	E1	T3a		9	2	10

114	T4	4	4+4=8	6	9	E2	T2c	7	5	10
115	Т3	4	4+4=8	6	9	E3	T2b	7	5	9
116	Т3	4	4+4=8	4	9	E4	T2a	6	6	9
J01	Т3	5	4+5=9	4	11	E5	ТЗа	7	2	6
J02	Т3	5	4+5=9	4	9	E6	ТЗа	7	4	8
J03	Т3	5	4+5=9	4	11	E7	T2c	7	5	8
J04	Т3	5	4+5=9	4	8	E8	T2c	7	6	8
J05	Т3	5	5+4=9	5	9	E9	ТЗа	7	6	7
J06	Т3	5	5+4=9	5	9	E10	ТЗа	7	2	12
						G1	T3b	9	4	10
						G2	ТЗа	9	3	10
						G3	T2c	6	5	9
						G4	ТЗа	7	3	11
						G5	ТЗа	7	4	5
						G6	T3b	7	2	12
						G7	T2	7	6	9
						G8	T2	7	5	9
						G9	T2c	9	6	8
						G10	Т3а	7	3	9

G

F

TG (Triglyceride) PE (Phosphatidylethanolamine) PI (Phosphatidylinositol)

PC (Phosphatidylcholine)

С

Α

+

+

+

+

+

D

sgPLIN3

ACSS3+sgPLIN3

В

C4-2-ENZR tumors

D

Α

В

Figure S5A

Supplementary Figure legends

Figure S1. ACSS3 effectively distinguished PCa tissues from normal tissues. (A) Kaplan-Meier analysis in the TCGA and Taylor databases was conducted to determine whether the OS, DFS and BRFS of patients were associated with ACSF2, CLU and FABP5 gene expression in tumors. Gene expression was used to assign patients to the high (above the 50th percentile) or low (below the 50th percentile) expression group. (B) The ROC (receiver operating characteristic) curves of ACSS3 in PCa.

Figure S2. Loss of ACSS3 expression was due to gene promoter methylation. (A) Genomic DNA sequences within the 3-kilobase promoter regions of the ACSS3 gene were analyzed. The results showed that the ACSS3 gene contained CpG-rich regions (CpG islands) within the promoter regions. (B) The publicly available database Cancer Cell Line Encyclopedia (CCLE) was used in bioinformatic analyses to evaluate the methylation status of the ACSS3 promoter in different prostate cancer cell lines. (C) Bisulfite sequencing PCR (BSP) analysis was performed to compare the methylation status of the ACSS3 promoter in prostate cancer cells and in normal prostate epithelial cells. The results represent the mean \pm SEM from 3 independent experiments. Student's t test; ***, p < 0.001. (D) A methylation-specific PCR (MSP) assay was conducted to verify the methylation sites of the ACSS3 promoter in different prostate cancer cell lines and the normal prostate epithelial cell line. One representative experiment of 3 independent experiments is shown. (E) Western blot was performed to compare the protein levels of the ACSS3 in prostate cancer cells and in normal prostate epithelial cells. The results represent the mean \pm SEM from 3 independent experiments is shown. (E) Western blot was performed to compare the protein levels of the ACSS3 in prostate cancer cells and in normal prostate epithelial cells. The results represent the mean \pm SEM from 3 independent experiments is shown. (E) Western blot was performed to compare the protein levels of the ACSS3 in prostate cancer cells and in normal prostate epithelial cells. The results represent the mean \pm SEM from 3 independent experiments is shown. (E) Western blot was performed to compare the protein levels of the ACSS3 in prostate cancer cells and in normal prostate epithelial cells. The results represent the mean \pm SEM from 3 independent experiments. Student's t test; ***, p < 0.001. (F)22RV1, PC3 and C4-2 cells were

treated with 5-aza-dC for 5 days. A methylation-specific PCR (MSP) assay was conducted to verify de-methylation after 5-aza-dC. Real-time PCR was profermed to detect the mRNA levels of ACSS3 after 5-aza-dC treatment. ACSS3 protein levels were determined by Western blot analysis in cells. One representative experiment of 3 independent experiments is shown. Student's t test; *, p < 0.05; **, p < 0.01; ***, p < 0.001. (G) BSP analysis was performed to analyze the ACSS3 promoter methylation status in prostate cancer samples.

Figure S3. ACSS3 inhibited tumor cell growth and metastasis. (A) GSEA of ACSS3 mRNA and PCa signaling pathways. FDR < 25% and p < 0.05 were considered significant. (B) ACSS3overexpressing or ACSS3-knockdown PCa cell lines were generated by transfecting cells with lentiviral overexpression plasmids or sgRNA (CRISPR-Cas9), respectively. ACSS3 protein levels were determined by Western blot analysis. (C) CCK-8 assays were performed to detect PCa cell proliferation. The graphs show the mean \pm SEM (n = 6 per group). (D-E) Migration and invasion assays were conducted to evaluate cell migration and invasion. The results represent the mean \pm SEM from 3 independent experiments. (F) An LC/MS lipidomic assay was conducted to detect intracellular lipids in C4-2 cells with or without stable overexpression of ACSS3 (n = 6). Only statistically significant changes (p < 0.05, VIP > 1) are presented, indicated by the red and green colors in the heat map.(G) CCK-8 assays were performed to detect the ACSS3 proliferation function in PC3 cells. The graphs show the mean \pm SEM (n = 6 per group).

Figure S4. ACSS3 promoted ER stress-mediated cell apoptosis in PCa cells. (A) The microarray assays was conducted in C4-2 cells stably overexpressing ACSS3 (n = 3, p < 0.05, F > 1.5). GO analysis showed that ACSS3 overexpression significantly downregulated the calcium channel-related signaling pathway. (B) Densitometry and statistical analysis of Figure 3D. (C)Real-time PCR analysis was performed to detect the mRNA expression of ER stress

markers. ACSS3 knockout in C4-2 and 22RV1 cells resulted in decreasing mRNA expression of ER stress markers. (D)Western blot analysis was performed to detect the protein expression of ER stress markers. ACSS3 knockout in C4-2 and 22RV1 cells resulted in decreased expression of ER stress markers. One representative experiment of 3 independent experiments is shown. (E) TUNEL assays were performed to detect cell apoptosis. The percentage of apoptotic cells was decreased in ACSS3-knockdown C4-2 and 22RV1 cells. The results represent the mean \pm SEM from 3 independent experiments. Student's t test; *, *p* < 0.05; ***, *p* < 0.01; ***, *p* < 0.01.

Figure S5. PLIN3 increased abnormal lipid accumulation and was associated with the clinical features of prostate cancer. And AIP4 was involved in ACSS3 depletion-induced PLIN3 degradation. (A) PLIN3 overexpressing or PLIN3-knockout PCa cell lines were generated by transfecting overexpressing lentivirus or sgRNA (CRISPR-Cas9), respectively. PLIN3 protein levels were determined by Western blot analysis. One representative experiment of 3 independent experiments is shown. (B) GSEA of PLIN3 mRNA in the PCa TCGA dataset. Lipid storage-, fatty acid metabolism-, PPAR- and ER Golgi intermediate compartment membrane-related signaling pathways were highly associated with high PLIN3 expression (above the 50th percentile). FDR < 25% and p < 0.05 were considered significant. (C) PLIN3 protein expression was analyzed using PCa tissue arrays from 107 normal tissues and 371 tumor tissues. PLIN3 protein levels were significantly higher in PCa tissues than in normal tissues. High PLIN3 expression was negatively correlated with ACSS3 expression and positively correlated with tumor stage and Gleason score. (D) Densitometry analysis of Figure 4B. (E) Densitometry analysis of Figure 4D. (F) Densitometry analysis of Figure 4E and 4F. (G) 293T cells were transfected with PLIN3 with or without Flag-ACSS3, AIP4, and MYC-Ub for 2 days, and total cell lysates were immunoprecipitated with PLIN3 antibody and blotted with the

indicated antibodies. Student's t test; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance.

Figure S6. PLIN3 was required for ACSS3-mediated functions of tumor suppression. (A) C4-2 and 22RV1 cells with stable overexpression of ACSS3 and PLIN3 knockout. ACSS3 and PLIN3 protein levels were determined by Western blot analysis. (B) CCK-8 assays were performed to detect PCa cell proliferation. The graphs show the mean \pm SEM (n = 6 per group).(C-E) Migration, oil red staining, measurement the TG and TCHO contents in cells and ER Track were performed to detect PCa cell migration, lipid accumulation, ER stress respectively. The results represent the mean \pm SEM from 3 independent experiments. (G-F) Western blot analysis was performed to detect the protein levels of ER stress markers. The results represent the mean \pm SEM from 3 independent experiments.

Figure S7. ACSS3 inhibited prostate tumor growth *in vivo* by downregulating PLIN3 expression. (A) C4-2 cells with stable overexpression of ACSS3 and/or knockout of PLIN3 were implanted subcutaneously into immunodeficient mice to monitor tumor growth. Tumor size was measured every 3 days. The data are shown as the mean \pm SEM for n = 6 separate tumors for each group. Images of tumors dissected from the mice. Tumors were weighed after resection at the end of the experiment. The tumor size (mm3) was plotted against days post tumor cell implantation. One representative experiment of 3 independent experiments is shown. One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance. (B) The protein levels of ACSS3, PLIN3, BIP, PERK and Ki67 in tumor tissues were determined by IHC staining. TUNEL assays were performed to detect cell apoptosis. Bar graphs show the mean \pm SEM (n = 6 mice per group). (C) Oil red staining was conducted as a visual indicator of intracellular lipids in tumor tissues. Bar graphs show the mean

± SEM (n = 6 mice per group). One-way ANOVA followed by Tukey's multiple comparison test; $\alpha = 0.05$; ***, p < 0.001; ns, no significance.

Figure S8. ACSS3 inhibited prostate tumor metastasis *in vivo* by downregulating PLIN3 expression. (A) C4-2 cells with stable overexpression of ACSS3 and/or knockout of PLIN3 were implanted into the tail veins of immunodeficient mice. In vivo live imaging of the mouse lungs was conducted to determine tumor metastasis. HE staining of nude mouse lungs was conducted to determine tumor metastasis. The graphs show the mean \pm SEM (n = 6 mice per group). One representative experiment of 3 independent experiments is shown. One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, no significance. Bar graphs show the mean \pm SEM (n = 6 mice per group). (B) The protein levels of ACSS3 and PLIN3 in tumor tissues were determined by IHC staining. Bar graphs show the mean \pm SEM (n = 6 mice per group). One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; **, p < 0.01; ***, p < 0.001; ns, no significance.

Figure S9. Palmitate could rescue the inhibitory effect of overexpression of ACSS3, and restoration of ACSS3 expression reverted endocrine therapy-resistant CRPC progression *in vivo*. (A) Treatment the cells with palmitate (100 μ M), and CCK8 was preformed to test the proliferation of the cells. (B) NCG mice bearing C4-2-ENZR xenografts with stable ACSS3 overexpression were treated with vector control or enzalutamide (10 mg/kg p.o.) for approximately 7 weeks. Tumors were weighed after resection at the end of the experiment. Bar graphs show the mean \pm SEM (n = 6 mice per group). One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; ***, p < 0.001; ns, no significance. (B) The protein levels of ACSS3, PLIN3 and Ki67 in tumor tissues were determined by IHC staining. TUNEL assays were performed to detect cell apoptosis. Bar graphs show the mean \pm SEM (n = 6 mice per

group). One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; **, p < 0.01. (C) Oil red staining was conducted as a visual indicator of intracellular lipids in tumor tissues. Bar graphs show the mean \pm SEM (n = 6 mice per group). One-way ANOVA followed by Tukey's multiple comparison test, $\alpha = 0.05$; ***, p < 0.001; ns, no significance.

Figure S10. TG and cholesterol contents were increased in the *Acss3*^{-/-} prostate tissues. (A-B) TG contents and cholesterol contents were measured as a quantitative indicator of lipid accumulation in Acss3-/- prostate tissues. (C) The weight of Acss3-/- and control mouse was measured. The graphs show the mean \pm SEM (n = 10 mice per group), Student's t test; *, *p* < 0.05; **, *p* < 0.01; ***, *p* < 0.001; NS, no significance.

Figure S11. The original WB band. (A) The original WB band of Figure 6E. (B) The original WB band of Figure S3B. (C) The original WB band of Figure S5A.