Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis

Yan Jiang, Chan Xiang, Fan Zhong, Yang Zhang, Liyan Wang, Yuanyuan Zhao, Jiucun Wang, Chen Ding, Li Jin, Fuchu He, Haijian Wang

Supplementary Data

Supplementary Figure 1 EZH2 and JMJD3 expression in hepatic cell lines and functional role of EZH2 on cellular phenotypes of HSCs

EZH2 and JMJD3 expression in various hepatic cell lines were measured by Western blot (A). The effect of stable silencing (B) or stable overexpression (C) of EZH2 in mouse JS1 cells, which was based on retrovirally-expressed shRNA or *Ezh2* gene respectively, on the expression of EZH2, COL1A, α -SMA, β -ACTIN and H3K27me3 were determined by Western blot.

Human LX-2 cells were treated with DMSO, DZNep or GSK126 and then subjected to cell growth, cell cycle and apoptosis analysis. (D) The cellular growth curve was drawn according to cellular OD₄₅₀ value measured by CCK-8 kit. (E) The cells in G1, S or G2/M phase were stained with PI and counted separately using flow cytometry. Cell cycle arrest was evaluated by calculating the percent of cells in each phase. (F) The apoptotic cells were determined by Annexin V -PI double staining. The early apoptotic cells stained with high Annexin V and low PI (in yellow frame) were counted using flow cytometry. Statistical significance was evaluated with Student's *t*-test in independent-samples, and P < 0.05 was considered as significant difference, * P < 0.05, ** P < 0.01.

Supplementary Figure 2 The differential expression genes associated with DZNep treatment in rat primary HSCs were screened with RNA-seq and some of them were validated with RT-qPCR

(A) Volcano plot shows the significantly upregulated (red dots) and downregulated (green dots) genes associated with DZNep treatment in HSCs. (B) The heatmap shows the transcriptional value change of differential expression genes induced by DZNep. Hierarchical clustering analysis of the results of three treatment and three control experiments verified the biological replication. (C) The transcriptional values of 43 candidate differential expression genes that are related with fibrosis were also measured by RT-qPCR. We validated consistent transcriptional expression changes between the readouts of RNA-seq and RT-qPCR for 95% detected DEGs. Fold change was calculated as the ratio of the gene expression value in DNZeP-treatment cells to that in DMSO-treatment cells. The scatter diagram and trend line analyzed the consistency of the gene expression trend measured by RNA-seq and by RT-qPCR. Y-axis value denotes the log2^(fold change); X-axis presents the key differential expression genes involved in ECM components, cell cycle, DNA damage and response pathway and TGF β signaling pathway.

Name	The target sequence (5'-3')		
Rat Ezh2-si-RNA1	TAGAGTCCTCATTGGTACT		
Rat Ezh2-si-RNA2	ACGGCTCCTCTAACCATGT		
Ezh2-si-NC	TTCTCCGAACGTGTCACGT		
Mouse Ezh2-sh-RNA1	GCTGAAGCCTCCATGTTTAGA		
Mouse Ezh2-sh-RNA2	GCACAAGTCATCCCGTTAAAG		
Mouse Ezh2-sh-NC1	CCTAAGGTTAAGTCGCCCTCG		
Mouse Ezh2-sh-NC2	TTCTCCGAACGTGTCACGT		
amiRNA-Ezh2	CTCGAGGTCGACTAGGGATAACAGGGTAATTGTTTGAAT		
	GAGGCTTCAGTACTTTACAGAATCGTTGCTGAAGCCTCC		
	ATGTTTAGAGTGAAGCCACAGATGTATCTAAACATGGAG		
	GCTTCAGCGCCTGCACATCTTGGAAACAGCTGGGATTAC		
	TTCTTCAGGTTAACCCAACAGAAGGCTCGAAAAGGTAT		
	ATTGCTGTTGACAGTGAGCGCCGCACAAGTCATCCCGTT		
	AAAGGTGAAGCCACAGATGTACTTTAACGGGATGACTT		
	GTGCTGCCTACTGCCTCGTCTAGAAAGGGGCTACTTTAG		
	GAGCAATTATCTTGTTTACTAAAACTGAATACCTTGCTAT		
	CTCTTTGAT ACA TTTTTTGGATCC		
amiRNA-NC	CTCGAGGTCGACTAGGGATAACAGGGTAATTGTTTGAAT		
	GAGGCTTCAGTACTTTACAGAATCGTTCCTAAGGTTAAG		
	TCGCCCTCGGTGAAGCCACAGATGTACGAGGGCGACTT		
	AACCTTAGGGCCTGCACATCTTGGAAACAGCTGGGATT		
	ACTTCTTCAGGTTAACCCAACAGAAGGCTCGAAAAGGT		
	ATATTGCTGTTGACAGTGAGCGCCTTCTCCGAACGTGTC		
	ACGTGTGAAGCCACAGATGTAACGTGACACGTTCGGAG		
	AATGCCTACTGCCTCGTCTAGAAAGGGGGCTACTTTAGGA		
	GCAATTATCTTGTTTACTAAAACTGAATACCTTGCTATCT		
	L CTTTGATACA TTTTTTGGATCC		

Supplementary Table 1 : The target sequence of si-RNAs, sh-RNAs and amiRNAs for *Ezh2* silencing

Supplementary Table 2: Primers for RT-qPCR

Genes	Forward (5'-3')	Reverse (5'-3')
Rat Genes		
Actb	AGAGGGAAATCGTGCGTGACA	ACATCTGCTGGAAGGTGGACA
Bambi	CTGCTCACCAAAGGCGAGAT	GATGTCTGCTGTGCTTGCGA
Bgn	TCCCCAGGAACATTGACCAT	TGAGCAGCCCATCATCCAAG
Ccna2	CACGTACCTTAGGGAAATGG	CCAAATGCAGGGTCTCATTC
Ccnb1	TGAGCC TGAACCTGTTATGG	CCACCATCGTCTGCATCTAC
Ccnb2	GCTGGGCCAAGGAAAATGGA	TGCCTAGGGTCTGCCCATCA
Ccnd1	TCAAGTGTGACCCGGACTG	CACTACTTGGTGACTCCCGC
Ccnel	ATGTCCAAGTGGCCTACGTC	CTTTCTTTGCTTGGGCTTTG
Cdc25b	TCCCTGTGTCACGAGATTGAG	TCAACAGGGCCACCATAGTTTCT
Cdc25c	TGGTGATTTCTCAAAGGCGTG	GGGCTGATATACTTCAGATCCTGG
Cdc6	ACCACTCTCCGAATGTAAATCAC	ACGACAGACACTACTGTAGGC
Cdk1	TGGCCAGTTCATGGATTC	GCCGAAATCTGCCAGTTTG
Cdk2	CACTTAACCCGACTTCCAG	TTCCCTCAACACGGTAAC
Cdk9	GAATGCCCGTTTTGCGATGA	TGATGGGGAACCCCTCCTTC
Cdkn1a	AGACCAGCCTAACAGATTTCTATC	GACACACTGAATGAAGGCTAAGG
Cdkn2a	TCGTACCCCGATACAGGTGAT	TGTCTAGGAAGCCCTCCCG
Clo1a1	TTCACCTACAGCACGCTTGTG	GATGACTGTCTTGCCCCAAGTT
E2f1	AGCGCCTGGCCTATGTGACCTG	TCGATGGGGCCTTGTTTGCTCTTA
E2f4	ATTGCAGTGAGTGGTAGCCC	TTTGGGGAGATCCAGAACGC
E2f7	GCCTTCAAATGGATCGGGC	GGAATAGGCTGGCCCTTGTTTTC
E2f8	CTCCCCAATTGCAGGTGTGA	AGACGTCGGGGGAGACCATAA
Fga	GGCCTATAAAACAGAACAGTGTC	GGGCATTTGTGGTTCCAGTC
Fgb	GCTCAGACGGAATACTGCCA	TATGACCGTCCATCCTCCGT
Fgg	CCAAACAGGTTGGAGACATGTAA	ATCGCCAGCATAAAACTGCT
Gadd45a	TGCTCAGCAAGGCTCGGAGT	GTTGCTGACCCGCAGGATGT
Gadd45b	ACTGATGAATGTGGACCCCG	CATGCCTGATACCCTGACGA
Gadd45g	AACTTGCTGTTCGTGGATCG	ACATTGTCAGGGTCCACATTC
Has2	TCAGACACCATGCTTGACCC	AGAGGACCGCTTATGCACTG
<i>Il10</i>	AAGGGTTACTTGGGTTGCCA	AAATCGATGACAGCGTCGCA
Il10rb	TGGTACTTCCAAGACCGCTG	CGATAATGGTGTCTTCCACGG
<i>Il11</i>	CAGCTCTTGATGTCTCGCCT	TTTAACAACAGCAGGCCCCG
Illa	CCTGTGTTGCTGAAGGAGATTC	CTATCATGGAGGGCAGTCCC
Itgal	TGATGACGCTCTGCCAAACT	CACCACTGTCCTGGTGTTGT
Lefl	GGGACACTTCCATGTCCAGG	AGGCTTCACGTGCATTAGGT
Mki67	GCAGCTTCTACCAAGAGGCA	GGGGCTTGGCTGTTTTTCAG
Pail	CGTCTTCCTCCACAGCCATT	GCTGGCCCATGAAGAGGATT
Pdgfb	GACTCCGTAGACGAAGATGGG	CAGGAAGTTGGCATTGGTGC
Pdgfbr1	AATGACCACGGCGATGAGAAAG	AGGACAGAGGGGCGTCGGATAA
Plk1	TTGAGGACAGCGACTTTGTG	GCGCCTTCCTCCTTTTGT
Plk2	CACCACCATCATCACCATTC	TCGTAACACTTTGCAAATCCA
Plk4	GCCAATGAGGGTCACCGTA	CGCACTATTCGCGCTCAATC
Tgfb3	TACCTCCGCAGCTCAGACAC	TTCTGCCAACATAGTACAAG

Tgfbr3	CGGCTTTGGAAAAGAGAGTG	CAGGAGGAATGGTGTGGACT
Tnc	CAGCTACCGACGGGATCTTC	TTCCGGTTCAGCTTCTGTGG
Wee1	CTACTTTCTGGGCAGCTCGT	GGAAAGCAAACTCTTGGGAGTG
Mouse Genes		
Acta2	CGGGAGAAAATGACCCAGATT	AGGGACAGCACAGCCTGAATAG
Actb	GGCTCCTAGCACCATGAAGA	AGGGTGTAAAACGCAGCTCAG
Bambi	CGAAGCCTCAGGACAAGGAAA	GCATTCGCAAGGCCAACATA
Cdkn1a	GAATAAAAGGTGCCACAGGC	CAAAGTTCCACCGTTCTCGG
Collal	GGAGAGTACTGGATCGACCCTAAC	ACACAGGTCTGACCTGTCTCCAT
Mki67	TTGGTGGACATCTAAGACCTGA	GGGCCGTTCCTTGATGATTGT
Mmp2	GTTCAACGGTCGGGAATACA	GCCATACTTGCCATCCTTCT
Human Gene		
MKI67	TTACCGGGCGGAGGTATGAA	GCTGGCTCCTGTTCACGTAT

Primary antibody	Catalog No.	Company (country)
Anti-β-ACTIN (Mouse)	A00702	Gen Script (USA)
Anti-EZH2 (Rabbit)	21800-1-AP	Proteintech (USA)
Anti-JMJD3 (Rabbit)	AP1022a	Abgent (USA)
Anti-α-SMA (Rabbit)	Ab5694	Abcam (China)
Anti-COL1A (Mouse)	Ab6308	Abcam (China)
Anti-BAMBI (Rabbit)	Ab203070	Abcam (China)
Anti-CDKN1A (Rabbit)	Ab109199	Abcam (China)
Anti-GADD45B (Rabbit)	Ab205252	Abcam (China)
Anti-IL10 (Rat)	Ab33471	Abcam (China)
Anti-IL11(Rat)	sc-133084	Santa cruz (China)
Anti-H3K27me2 (Rabbit)	Ab24684	Abcam (China)
Anti-H3K27me3 (Rabbit)	07-449	Millipore (Germany)
Anti-H3K27me2/me3 (Mouse)	39535	Active Motif (China)
Anit-Histone3 (Mouse)	61475	Active Motif (China)
Secondary antibody		
Mouse anti-rabbit	211-032-171	Jackson Immuno Reseach
Goat anti-mouse	115-005-205	Jackson Immuno Reseach
Goat anti-rat	112-225-143	Jackson Immuno Reseach

Supplementary Table 3: Antibodies used in this study

Rat Genes ^{<i>a</i>}	Forward (5'-3')	Reverse (5'-3')
Bambi (-1258)	GTGTGTTTGCCTGCGATTGT	TTCTCCTGGGTAGACTGGGG
Bambi (-347)	CAGCCAATCGGAGAGTGGAG	CCGGAGTTAGACGTATCCG
Bambi (+2951)	GCTTTTGGAGCACTTCCGTC	CAGTGAGCGGCATCACAGTA
Cdkn1a (-465)	CACTTCCTCTCCCCTCCTGA	AGAGAAGGACAGCCAGGGAT
Cdkn1a (-221)	AGCCAGCTTTCTGGCTTTCA	GTTAGCAGGAACTCGGGCTT
Cdkn1a (+494)	TTGGACATCCTGTGCTGGTC	TCGACAGCCTGGTTCTGTTC
Gadd45a (-707)	ACCAGCTTACAAGGAGTGGG	TGATGGCACAGTACCGAGTT
Gadd45a (-374)	TGAGCTTGGCTCGTTAGACA	CTGCCCCACTCCTTGTAAGC
Gadd45a (+635)	CTGGCAGAGCTGTTGCTACT	TCTTACCGTCACCAGCACAC
Gadd45b (-387)	TCTCCCCGAAAGTTCAAGCC	GACTGCCAGCGAATCGAGAG
Gadd45b (+92)	GAAAGTAAGTCCCACCGCCT	TCAGTCACACTTCACAGCGG
Gadd45b (+260)	GACAACGCGGTTCAGAAGTG	GTCACCGCCTGCATCCTAAA
<i>Il10</i> (-695)	TCCCGTCAAAGAGTGTTGGG	GGGTTACCATACTGGAGCCG
<i>Il10</i> (+76)	TGCTAAGGTGACCTCCTGGT	CCTGGGTTGAATGTCCGCTA
<i>Il10</i> (+1767)	GGTGCCGTGGCTTTCAAAAA	TGGAAGGATGGACTGTTGCC
<i>Il11</i> (-704)	ACACCCTCAGCTCCTCAGTT	GAACACTGGGACAGGGATGG
<i>Il11</i> (-332)	GAGCCTTGTGTCTGTCCCAG	AGGGCACGGAAGGAAAAGTT
<i>Il11</i> (+465)	GACGACCACGAACTCCCAAC	GTCCCCTCTAGCTGTGCCTA

Supplementary Table 4: Primers for ChIP-qPCR

^{*a*} The 5' endpoints of PCR products are positioned as upstream (-) or downstream (+) from transcription start sites.