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Abstract 

Extracellular vesicles (EVs), naturally secreted by almost all known cell types into extracellular space, can 
transfer their bioactive cargos of nucleic acids and proteins to recipient cells, mediating cell-cell 
communication. Thus, they participate in many pathogenic processes including immune regulation, cell 
proliferation and differentiation, cell death, angiogenesis, among others. Cumulative evidence has shown 
the important regulatory effects of EVs on the initiation and progression of inflammation, autoimmunity, 
and cancer. In dermatology, recent studies indicate that EVs play key immunomodulatory roles in 
inflammatory skin disorders, including psoriasis, atopic dermatitis, lichen planus, bullous pemphigoid, 
systemic lupus erythematosus, and wound healing. Importantly, EVs can be used as biomarkers of 
pathophysiological states and/or therapeutic agents, both as carriers of drugs or even as a drug by 
themselves. In this review, we will summarize current research advances of EVs from different cells and 
their implications in inflammatory skin disorders, and further discuss their future applications, updated 
techniques, and challenges in clinical translational medicine. 
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Introduction 
Extracellular vesicles (EVs) are cell membrane- 

derived phospholipid bilayer structures that can be 
produced and released by almost all cell types and 
range in diameter from 30 to 2000 nm [1]. EVs are 
found in various biofluids and tissues such as serum, 
milk, urine, and blister, to name just a few [2]. 
Currently, EVs are highly heterogeneous and can be 
classified into three different subtypes based on their 
size and biogenesis pathway: exosomes (30-150 nm) 
which are formed by the inward budding of the 
endosomal membrane during the maturation of 
multivesicular endosomes, and microvesicles 
(MVs)/microparticles (100-1500 nm) or apoptotic 
bodies (500-2000 nm) that are pinched off from the 
plasma membrane. However, these EV subtypes 
display overlapping sizes, compositions and 
densities. Once released into the extracellular space, 
EVs can be taken up by recipient cells via activation of 

surface receptors, vesicle internalization (endo-
cytosis), or fusion with target cells to shuttle biological 
information including various RNAs, lipids and 
proteins between cells [3]. Thus, EVs regulate 
multiple biological and pathophysiological processes, 
including immune responses [4], antibacterial 
activities [5], cell proliferation and migration [6], and 
angiogenesis [7, 8], among others, suggesting their 
pathogenic roles in inflammation progression and 
cancer metastasis. 

Multiple methods have been developed to 
isolate EVs, including density gradient centrifugation, 
filtration-based methods and affinity-based or 
precipitation-based methods. Among them, a density 
gradient combined with ultracentrifugation is the 
most widely used and highly recommended method, 
with low yield and high purity [9]. Regarding 
identification methods, the International Society of 
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Extracellular Vesicles has released guidelines that 
include transmission electron microscopy (TEM), 
NanoSight particle size analysis, dynamic light 
scattering, and the identification of protein markers 
by western blotting or flow cytometry [10]. In some 
studies, researchers used mass spectrometry to 
analyze EV proteins and quantify their relative 
abundances or RNA-sequencing (RNA-seq) to 
analyze the expression of non-coding RNAs, for 
example, microRNAs (miRNAs), long non-coding 
RNAs (lncRNAs), or circular RNA (cirRNAs). EV 
cargoes reflect their cellular origin and surrounding 
environmental stimuli. 

Recent work from us and others has indicated 
that EVs play key immunomodulatory roles in the 
pathogenesis of various inflammatory skin diseases, 
such as psoriasis [11, 12], atopic dermatitis (AD) [13], 
lichen planus (LP) [14], bullous pemphigoid (BP) [15], 
systemic lupus erythematosus (SLE) [16], and chronic 
wound healing [7]. These inflammatory skin 
disorders pose major problems in dermatology given 
their complex pathophysiology and refractory nature, 
which ultimately pose a burden to the health, 
economic and social systems. As the level of EVs or 
their cargoes in body fluids may differ between 
patients and healthy controls, EVs have been used as 
potential biomarkers of inflammatory skin disorders 

[17-19]. More importantly, EVs are regarded as ideal 
therapeutic agents in addition to their native 
bioactivities, and they can be engineered to deliver a 
variety of proteins, nucleic acids and/or chemicals or 
drugs. Here, we discuss the current knowledge on the 
specificities and regulatory functions of EVs (mainly 
referring to exosomes and MVs) derived from 
immune and non-immune cells, their roles in the 
pathogenesis and treatment of inflammatory skin 
disorders, and the challenges ahead. 

Characteristics and functions of EVs from 
cells associated with cutaneous 
inflammation 

EVs can be secreted by immune or non-immune 
cells and affect both innate and adaptive immunity, 
including antigen presentation, cell differentiation 
and activation, and immune regulation and 
suppression, among others. In general, EV surface 
markers and cargo contents as well as the functions of 
these EVs are closely related to the pro-inflammatory 
or anti-inflammatory properties of the parent cells, as 
summarized in Table 1. Here, we mainly discuss the 
functions of EVs from cells associated with cutaneous 
inflammation. 

 

Table 1. Functions of EVs derived from immune or nonimmune cells 

Source cell Contents (native) Contents (modified) Target cell Effects Ref. 
Immune cell-derived EVs 
DC-EVs MHC-I and -II, T-cell costimulatory 

molecules, ICAM-1, MHC-peptide 
complexes. 

 DCs Further initiate the alloreactive T cell responses and acute 
rejection (in vivo) 

[29] 

 T cells Promote Th1/Th2 cytokine secretion [26-28, 32] 
 Resident DCs. Further activate CD4+/CD8+T cells. [23] 

TLR4  BMDCs Increase cellular responsiveness to LPS (in vivo). [33] 
Circulating antigens and allergens  Mast cells Induce mast cells to degranulate and trigger anaphylaxis [34] 
 Multiple RNA classes T cells Balance Th1/Th2 responses [24, 25] 
 Viral components T cells or other cells Transfer infectivity in HCV, Dengue virus, and HIV 

infection. 
[35-37]  

B cell-EVs MHC-I and -II, costimulatory and 
adhesion molecules, CD20, CD45, 
heat shock proteins, and pyruvate 
kinase type M2. 

 DCs and others Promote antigen presentation and T cell responses [39, 40, 42] 

C3 fragments  T cells [41] 
FasL  Autologous CD4+ T 

cells 
Induce antigen-specific apoptosis [46] 

 Anti-miR-155 Macrophages Down-modulate endogenous miRNA [45] 
T cell-EVs MHC-I and -II, TCR, CD3, APO2 

ligand, adhesion molecules, FasL, 
and chemokine receptors. 

 Various Exert immune regulatory effects, such as inhibiting NK 
cytotoxicity, regulating DC maturation, and enhancing B 
cell responses and promoting antibody production. 

[4, 49-53]  

 CD8+T cell-EVs Mesenchymal tumor 
stromal cells 

Prevent tumor progression [56] 

MiRNAs or lipids  B cells Modulate B cell survival, proliferation, and antibody 
production 

[4, 53, 58] 

 Th1 cells Inhibit the proliferation of Th1 cells and IFN-γ secretion [55] 
MiRNAs  Various Implicate distinct functions of T cell subsets-derived EVs [54] 
Not specific  Mast cells Induce mast cells to degranulate and release several 

cytokines 
[57] 

Macrophage- 
EVs 

Functional proteins  Various Exert pro-inflammatory role in inflammation [60-62] 
Cholesterol   Lower the cholesterol level [63] 
Wnt proteins  Dermal papilla cells Enhance the hair follicle growth [64] 
MiRs   Monocytes  Induce naïve monocyte differentiation [65]  

 Not specific Neutrophils Promote ROS production and subsequent necroptosis [66] 
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Source cell Contents (native) Contents (modified) Target cell Effects Ref. 
Not specific  Fibroblasts, 

hepatocyte, or 
epithelial cells, etc. 

Contribute to a variety of inflammation and tissue injures, 
and regulates endothelial cell migration 

[67-69, 72] 

Not specific  Human umbilical 
vein endothelial cells 

Inhibit inflammation and accelerate diabetic wound 
healing (in vivo) 

[71] 

Neutrophil- 
EVs 

Neutrophil-associated receptors, 
granule proteins, annexin A1. 

 Various Modulate the pro-inflammatory or anti-inflammatory 
responses of target cells 

[77-84]  

 Vascular endothelial 
cells. 

Modulate endothelial permeability and vascular 
remodeling. 

[81, 
99-104]  

Arachidonic acid  Platelets Promote platelet-mediated innate immune responses [87] 
 Phosphatidylserine 

(PS) 
Various Suppress C5a priming of the inflammasome activation (in 

vivo) 
[98] 

Antimicrobial proteins  Bacteria or fungus Anti-infections [76, 86] 
 Mycobacterium 

tuberculosis-infected 
neutrophil-EVs. 

Macrophage Induce autophagy and superoxide anion production in 
macrophage, thus indirectly promoting the clearance of 
intracellular mycobacterium tuberculosis. 

[88] 

MiRNAs and lncRNAs.   Implicate roles in diagnosis and therapeutics in 
autoimmunity. 

[85] 

Nonimmune cell-derived EVs 
Mesenchymal 
stem cell-EVs 

Functional proteins   Various Regulate angiogenesis, apoptosis, inflammation, 
proteolysis, and extracellular matrix remodeling 

[106-112]  
Distinct classes of RNAs  
Pro-angiogenic transcription factors 
and others 

 Tubular epithelial 
cells. 
 

Regulate proliferative or anti-apoptotic pathways  [115] 
 Suppress CX3CL1 expression [116] 
 Promote the recovery of kidney function (in vivo). [117] 

Not specific  Various cells in liver 
diseases. 

Suppress the epithelial-to-mesenchymal transition- 
hepatocyte regeneration 

[119] 

 Increase hepatocyte regeneration [119] 
 Decrease proliferation of hepatic stellate cells [120] 
 Reduce the level of serum alanine aminotransferase and 

pro-inflammatory cytokines (in vivo). 
[121] 

Not specific  Various  Ameliorate the atopic dermatitis inflammation (in vivo). [123] 
Keratinocyte- 
EVs 

 MHC molecules T cells Promote CD4+ and CD8+ T cell proliferation [126] 
 Antigens BMDCs Help BMDCs to differentiate into mature phenotype and 

produce large amounts of IL-6, IL-10 and IL-12 
[131] 

 β-defensin 2 and 
chemoattractants 

Various  Amplify the pro-inflammatory cascade [125] 

Functional proteins  Fibroblasts Modulate wound healing [128, 129] 
MiRNAs    Help discriminate between EV subpopulations [127] 
 MiR-381-3p  CD4+ T cells Induce Th1/Th17 polarization in psoriasis. [164] 
 MiR-203 Melanocytes Regulate melanin synthesis by melanocytes in skin 

pigmentation 
[130] 

Not specific  Keratinocytes Suppress cell proliferation [6] 
 Carcinoma cell line 

TR146 
Fibroblast-EVs  Dysregulated 

collagen-related 
miRNA 

Fibroblasts Facilitate wound healing [135] 

MiR-21-3p  Cardiomyocytes Induce cardiomyocyte hypertrophy [133] 
MiR-23a-3p  Keratinocytes/ 

epithelial cells 
Accelerate cell proliferation and scratch closure  [136] 

Not specific  Fibroblasts Protect cells against UVB-induced cell death [137] 
Adipocyte-EVs Adipokines, Enzymes, 

immunomodulatory proteins and 
cytokines, and various mRNAs 

 Various  Exert regulatory effects on metabolic process and insulin 
resistance  

[143-145, 
149, 150]  

MiR-27a  Skeletal muscle cells Induce insulin resistance [151] 
MiR-155  Macrophage Induce M1 macrophage polarization to exacerbate the 

intestine inflammation (in vivo) 
[152, 253]  

 MiR-130b-3p Cardiomyocytes Exacerbate myocardial ischemia/reperfusion injury [153] 
Circ_0075932  Keratinocytes Promote inflammation and apoptosis [141] 
 Not specific Vascular cells Evoke inflammatory responses and vascular remodeling, 

and increase vascular cell adhesion molecule expression 
[154, 155] 

Not specific  Hair-compositing 
cells 

Modulate hair follicle progression [147] 

The contents do not include the common identification markers of EVs; 
Abbreviations: BMDCs, bone marrow-derived dendritic cells; DCs: dendritic cells; ICAM-1, intercellular cell adhesion molecule-1; LPS: lipopolysaccharides; MHC: major 
histocompatibility complex; miR: microRNA; MSCs: mesenchymal stem cells; NK: natural killer; TCR: T cell receptor; Th: T helper; TLR4: Toll-like receptor 4; PD-L1, 
programmed death-ligand 1. 

 
 

Immune cell-derived EVs 

Dendritic cell (DC)-derived EVs 
DCs are the most efficient antigen-presenting 

cells that take up, process and present antigens to T 

cells, which contribute to the initiation and 
progression of immune responses [20]. Early studies 
reported that DC-derived EVs expressed high levels 
of functional major histocompatibility complex 
(MHC) class I (MHC-I) and class II (MHC-II), MHC- 
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peptide complexes, T cell costimulatory molecules, 
and tumor antigens [21-23]. In addition, it was shown 
that EVs derived from LPS-induced DCs carried 
multiple classes of RNAs, including miRNAs, small 
nucleolar RNAs, Y-RNAs, tRNAs, and small nuclear 
RNAs [24], which may have roles in balancing T 
helper 1(Th1)/Th2 responses [25]. 

DC-EVs have been reported to exert either 
inhibitory or -stimulatory effects on the immune 
system, depending on the maturity of the originating 
cell and the subpopulations of EVs. For instance, EVs 
from mature DCs carried more MHC-II and co-
stimulatory molecules, which was critical for priming 
T cell responses and activating the immune system 
[26-28]. In a murine heart transplant model, donor 
mature DCs released EVs that transferred MHC 
molecules to recipient conventional DCs, ultimately 
initiating alloreactive T cell responses and acute 
rejection [29]. In contrast, in a rat model of liver 
transplant, EVs derived from immature DCs induced 
graft tolerance [30]. Moreover, the antigen presenting 
capacities of EVs from DCs varied among EV 
subtypes. For instance, compared to MVs derived 
from mature DCs, small EVs (sEVs) were much more 
efficient in inducing antigen-specific CD8+ T cells and 
eliciting antigen-specific immunoglobulin G (IgG) 
production [31]. Similarly, sEVs derived from 
immature DCs promoted the secretion of Th1 
cytokines, such as interferon-γ (IFN-γ), while larger 
EVs (lEVs) induced Th2 cytokine secretion [32]. Other 
functional proteins, such as toll-like receptor 4 (TLR4), 
could be transferred between DCs through EVs, 
which increased cellular responsiveness to lipopoly-
saccharide (LPS)-induced inflammation in recipient 
cells [33]. In addition, CD301b+ perivascular DCs 
continuously released EVs carrying circulating 
antigens and allergens to neighboring mast cells, and 
the latter could vigorously degranulate and trigger 
anaphylaxis [34]. DC-EVs were also responsible for 
viral evasion and deposition, as DC-EVs may harbor 
viral components and transfer infection-associated 
factors in hepatitis C virus, dengue virus, and human 
immunodeficiency virus infection [35-37]. 

B cell-derived EVs 
B cells are critical modulators of innate and 

adaptive immune responses as they participate in 
antigen-specific interactions and antibody production 
[38]. Similarly, several early studies shown that B 
cell-EVs expressed a multitude of proteins including 
MHC-I and MHC-II molecules [39, 40], costimulatory 
and adhesion molecules, C3 fragments [41], CD20, 
CD45, heat shock proteins, and pyruvate kinase type 
M2 [40, 42], which are crucial for antigen presentation 
and T cell responses. Interestingly, stimulation of 

receptors on B cells, such as CD40 and IL-4 receptor, 
or B cell receptor (BCR) cross-linking, could enhance 
the secretion of EVs [43, 44]. 

Recently, the functions of B cell-EVs in the tumor 
microenvironment and inflammation have attracted 
much attention. EVs derived from CD40/IL-4- 
induced B cells could be loaded with miRNA-155 
mimics or inhibitors using the electroporation method 
and transferred to macrophage cell lines [45], thus 
reducing the expression of endogenous miRNAs in 
recipient cells, which suggested that B cell-EVs are an 
efficient delivery strategy. Klinker et al. reported that 
MHC-II+FasL+ EVs isolated from B cell-derived 
lymphoblastoid cell lines could induce antigen- 
specific apoptosis in autologous CD4+ T cells, 
suggesting that this kind of EVs had immuno-
suppressive functions [46]. Although B cells and 
derived autoantibodies are crucial for the progression 
of cutaneous autoimmune diseases, including BP [29, 
47] and SLE [48], the roles of B cell-EVs in 
dermatology are largely unknown and warrant 
further study. 

T cell-derived EVs 
T cells are key regulators of the adaptive 

immune responses involved in inflammatory and 
autoimmune skin disorders. T cell receptor (TCR) 
activation and intracellular calcium stimulation could 
increase EV secretion [49]. It has been shown that T 
cell-derived EVs contained MHC- I and -II, TCR, CD3, 
APO2 ligand, adhesion molecules such as CD2 and 
LFA-1, FasL, and chemokine receptors, among others 
[49, 50]. These bioactive T cell-EVs could be taken up 
by different cell types, inducing a variety of 
immunoregulatory effects, such as inhibiting NK cell 
cytotoxicity [51], regulating DC maturation [52], and 
enhancing B cell responses and antibody production 
[4, 53]. 

As T cells are classified into several subsets, their 
EVs exert distinct effects. It was previously reported 
that EVs released from CD4+T cell subsets, including 
Th1, Th17 and Treg cells, contained different patterns 
of miRNAs, suggesting distinct functions for T cell 
subset-derived EVs [54]. Okoye et al. showed that 
Treg cell-EVs transferred Let-7d to Th1 cells to inhibit 
their proliferation and IFN-γ secretion, thus 
contributing to the suppression and prevention of 
systemic immune diseases [55]. Activated CD8+ T cells 
not only prevented tumor progression by direct 
cytotoxicity against tumor cells but also released EVs 
to induce mesenchymal tumor stromal cell apoptosis 
[56]. Moreover, another study revealed that T cell-EVs 
could stimulate human mast cells to degranulate and 
release several cytokines, such as IL-24, which in turn 
activated keratinocytes in vitro [57]. Increasing 
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evidence has suggested that EVs also participated in 
T-B cognate interactions. T cell-EVs or their delivered 
miRNAs/lipids regulated B cell survival, 
proliferation, and antibody production [4, 53, 58], 
suggesting that T cell-EVs could be engineered to treat 
B cell overactivation-related diseases. 

Macrophage-derived EVs 
Macrophages are a highly heterogeneous 

population that can be activated to differentiate into 
different phenotypes, including pro-inflammatory M1 
or anti-inflammatory M2 macrophages. Macrophages 
release EVs containing mRNAs that help to identify 
the phenotype of the parent cells [59]. Using mass 
spectrometry, the contents of EVs derived from 
macrophages that were exposed to LPS were 
identified and included groups of functional proteins, 
such as plasma membrane-associated proteins, 
chaperones, metabolic enzymes, cytokines, alarmins, 
and damage-associated molecular patterns [60-62]. It 
was also shown that macrophage-EVs were enriched 
in the active accessible pool of cholesterol, which 
increased the efficiency of cholesterol transfer to 
high-density lipoprotein, thus lowering the 
cholesterol level [63]. A recent study reported that 
Wnt proteins, such as Wnt3a and Wnt7b, were 
enriched in macrophage-EVs, thus activating the 
Wnt/β-catenin signaling pathway to enhance hair 
follicle growth in vivo and in vitro [64]. 

On the other hand, macrophage-EVs play a 
pro-inflammatory role in chronic inflammation and 
metabolic reprogramming. For instance, macrophage- 
EVs could induce naive monocyte differentiation via 
transferring miR-223, which regulated host defense 
and inflammation [65]. EVs released from 
hemorrhagic shock-activated macrophage promoted 
reactive oxygen species (ROS) production in 
neutrophils and their subsequent necroptosis [66]. In 
addition, macrophage-EVs activated corresponding 
recipient cells such as fibroblasts [67], hepatocytes 
[68], or epithelial cells [69], which contributed to the 
progression of cardiac injuries, liver injuries, or acute 
lung injuries. Moreover, once EVs derived from DNA 
damage-induced macrophages were taken up by 
recipient cells in vivo, the enhanced cellular glucose 
uptake and metabolic reprogramming in recipient 
cells triggered pro-inflammatory responses that 
augmented chronic inflammation [70]. On the other 
hand, macrophage-EVs are critical for some anti- 
inflammatory reactions. For example, in a diabetic 
skin wound healing rat model, macrophage-EVs 
inhibited the secretion of pro-inflammatory 
mediators, thus inhibiting inflammation and 
accelerating diabetic wound healing [71]. In addition, 
macrophage-EVs negatively regulated endothelial cell 

migration by facilitating the internalization and 
proteolytic degradation of surface integrin β1 [72]. As 
macrophages are one of the key regulatory cell 
populations in the context of chronic inflammation 
[73], the role of macrophage-EVs in psoriasis, AD, and 
skin regenerating needs to be further elucidated to 
advance the field. 

Neutrophil-derived EVs 
Neutrophils are one of the most critical innate 

immune cells that exert antimicrobial effects via 
phagocytosis, degranulation, and neutrophil extra-
cellular traps (NETs). Though short-lived, neutrophils 
can modulate the immune responses in inflammation 
and cancers [74]. Neutrophil-EVs, first identified by 
Stein and Luzio [75], were reported to be increased in 
the circulation during sepsis and inflammation [76]. In 
response to diverse activators, neutrophils generate 
EVs with different contents such as neutrophil- 
associated receptors (CD11b, CD18, CD62L, Fc 
receptors, and complement receptors) and granule 
proteins (myeloperoxidase, lactoferrin, elastase, 
matrix metallopeptidase 9, proteinase 3, heat shock 
proteins, and S100 calcium-binding protein A8) 
[77-84]. One recent study showed that 22 miRNAs and 
281 lncRNAs were dysregulated in neutrophil-EVs 
from patients with diffuse cutaneous systemic 
sclerosis, suggesting a potential role for EVs in the 
diagnosis and treatment of autoimmune diseases [85]. 

As neutrophils are indispensable for controlling 
bacterial and fungal infections, their EVs contribute to 
the defense against pathogens in several ways. It has 
been found that neutrophil-EVs were enriched in 
antimicrobial proteins, which could inhibit the 
growth and reproduction of bacteria or fungi [76, 86]. 
Neutrophil-EVs also shuttled arachidonic acid into 
platelets, and these activated platelets in turn elicited 
a full neutrophil response, ultimately facilitating 
neutrophil influx into the lung to eliminate infections 
[87]. Interestingly, EVs released from Mycobacterium 
tuberculosis-infected neutrophils could induce 
autophagy and superoxide anion production in 
macrophages, thus indirectly promoting the clearance 
of intracellular Mycobacterium tuberculosis [88]. 

In addition, neutrophil-EVs can modulate the 
pro- and/or anti-inflammatory responses of target 
cells. For instance, neutrophil-EVs enhanced the 
expression of pro-inflammatory molecules in 
endothelial cells [89, 90]. Neutrophil-EVs containing 
neutrophil elastase degraded the extracellular matrix, 
which exacerbated chronic obstructive pulmonary 
disease [91]. Moreover, we showed that neutrophil- 
EVs activated adjacent keratinocytes and increased 
the expression and production of pro-inflammatory 
mediators, which induced a vicious cycle in severe 
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pustular psoriasis [82]. In addition, neutrophil-EVs 
exerted anti-inflammatory effects, such as reducing 
pro-inflammatory mediators to protect the cartilage 
[92], inhibiting the production of pro-inflammatory 
cytokines and enhancing anti-inflammatory cytokines 
in NK cells [93], monocyte-derived DCs [94], or 
macrophages [95-97], which indirectly limited 
excessive inflammatory responses. Neutrophil-EVs 
from joint aspirates of gouty arthritis patients had 
similar anti-inflammatory properties. In response to 
C5a, neutrophils released phosphatidylserine-positive 
EVs to suppress the inflammasome activation that 
was primed by C5a and consequently inhibited IL-1β 
release and neutrophil influx [98]. 

Furthermore, neutrophil-EVs also modulate 
endothelial permeability and vascular remodeling in a 
cargo-dependent manner. Neutrophil-EVs were able 
to disrupt junctional integrity and increase 
permeability due to the activities of S100A8, S100A9, 
myeloperoxidase (MPO), and cathepsin G, among 
others [81, 99] [100-102]. In contrast, neutrophil-EVs 
transferring barrier-protecting proteins, such as 
annexin 1, maintained junctional integrity and 
decreased permeability [103, 104]. Thus, it is worth 
further exploring the regulatory role of neutrophil- 
EVs in inflammatory skin diseases that display 
vascular remodeling in skin lesions. 

Non-immune cell-derived EVs 

Mesenchymal stem cell-derived EVs 
Mesenchymal stem/stromal cells (MSCs) are 

self-renewing, multipotent stromal cells that can 
differentiate into a variety of cell types. MSCs mainly 
exert immunomodulatory effects associated with 
tissue homeostasis and regeneration. MSC-derived 
EVs are reported to have multiple biological 
functions, including anti-inflammation, tissue repair, 
immunosuppression, and neuroprotection [105]. 
Thus, recent studies have focused on exploiting 
MSCs-EVs as a possible noncellular therapy, which 
will be discussed in Section 4 of this review. RNA-seq 
studies showed that MSC-EVs were enriched for 
distinct classes of RNAs [106-108], and the proteomics 
profiling of MSC-EVs identified functional proteins 
involved in cell proliferation and apoptosis, 
inflammation, extracellular matrix remodeling, and 
angiogenesis [109-112]. 

In general, MSC-EVs mainly play protective 
roles in inflammation. For instance, in tubular or renal 
injury, MSC-EVs regulated proliferative or anti- 
apoptotic pathways in tubular epithelial cells [113, 
114], shuttled several pro-angiogenic transcription 
factors [115], or suppressed CX3CL1 expression and 
reduced the subsequent infiltration of macrophages in 
the damaged kidney [116]. Recent in vivo studies 

further indicated that MSC-EVs promoted the 
recovery of kidney function in animal models of 
ischemia-reperfusion-induced acute kidney injury, 
which could be considered as a future potential 
therapy [117]. Moreover, some studies have reported 
that MSC-EVs could be used for the treatment of liver 
diseases, as MSC-EVs suppressed the epithelial-to- 
mesenchymal transition [118], increased hepatocyte 
regeneration [119], and decreased the proliferation of 
hepatic stellate cells [120]. They also reduced the level 
of serum alanine aminotransferase and pro- 
inflammatory cytokines in liver injury mice, 
suggesting that MSC-EVs have anti-inflammatory 
effects in liver injury [121]. Human umbilical cord 
MSC-EVs carrying circular RNAs could inhibit 
ischemia-induced pyroptosis and the release of 
downstream IL-1β and IL-18, which helped repair 
ischemic muscle injury [122]. 

In dermatology, adipose tissue-derived MSC- 
EVs attenuated pathological symptoms in an AD 
mouse model, reducing clinical scores levels of IgE 
and eosinophils in the blood, the infiltration of 
immune cells in skin lesions, and the mRNA 
expression of various inflammatory cytokines [123], 
which indicated that MSC-EVs could be a novel and 
promising therapeutic strategy for AD treatment. 

Keratinocyte-derived EVs 
Keratinocytes, the main components of the 

epidermis, can sense pathogens and mediate immune 
responses. Dysregulation of keratinocytes and their 
crosstalk with other immune cells gives rise to the 
initiation and propagation of inflammatory skin 
diseases in susceptible individuals [124]. Similar to 
EVs derived from other cells, keratinocyte-EVs also 
vary in composition and abundance of contents 
depending on the parent cell status and stimulus. For 
example, IL-17A-treated keratinocytes released EVs 
containing β-defensin 2 and chemoattractants such as 
CXCL1, CXCL3, CXCL5, and CXCL6 [125]. In 
addition, Staphylococcus aureus (S. aureus) enterotoxin 
B-loaded HaCaT cells (a keratinocyte cell line) 
released EVs containing MHC molecules, which 
promoted CD4+ and CD8+ T cell proliferation in vitro 
[126]. Keratinocyte-EVs were also reported to carry a 
set of miRNAs that helped discriminate between EV 
subpopulations [127]. 

Keratinocytes-EVs are actively involved in 
cellular cross-talk, thus regulating various functions 
associated with skin homeostasis, including wound 
healing, proliferation, and pigment production. For 
example, keratinocyte-EVs carried cathepsin B, 
transforming growth factor binding protein, and 
matrix metalloproteinase-1, which stimulated fibro-
blasts to facilitate extracellular matrix remodeling and 
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subsequent keratinocyte migration during wound 
healing [128, 129]. In skin pigmentation, EVs from 
ultraviolet B-irradiated keratinocytes significantly 
increased both the expression and activity of 
melanosomal proteins in melanocytes [130], partially 
explaining how the cell crosstalk regulated 
pigmentation. In addition, EVs derived from 
keratinocyte induced by IFN-γ could be internalized 
by bone marrow-derived cells, and the latter cells 
differentiated into a mature phenotype with enhanced 
CD40 expression and increased IL-6, IL-10, and IL-12 
production [131]. Given that keratinocytes play vital 
roles in host defense and immune responses in skin 
lesions, it is hypothesized that their EVs may act as 
regulators in the complicated immune disorders of 
inflammatory skin diseases. 

Fibroblast-derived EVs 
Fibroblasts can synthesize the major components 

of the extracellular matrix in connective tissue, thus 
maintaining the structural integrity of most tissues. 
Increasing evidence indicated that fibroblasts and 
their derived EVs exhibited functional specializations 
according to their source organ and spatial location 
[132]. For instance, cardiac fibroblasts-EVs could 
transfer miR-21-3p to cardiomyocytes and induce 
cardiomyocyte hypertrophy [133]. Fibroblast-EVs 
from patients with eosinophilic asthma promoted 
epithelial cell proliferation, thus contributing to 
airway remodeling in severe asthma [134]. 
Fibroblast-EVs from scleroderma patients exhibited 
dysregulated collagen-related miRNA levels and 
further upregulated the expression of type I collagen 
in fibroblasts to facilitate wound healing [135]. 
Similarly, fibroblast-EVs could shuttle miR-23a-3p to 
accelerate scratch closure of epidermal keratinocytes 
in vitro [136]. Moreover, fibroblast-EVs significantly 
inhibited the production of ROS and cell death in 
fibroblasts induced by ultraviolet B radiation, thus 
playing a critical role in skin homeostasis during 
photoaging [137]. 

Adipocyte-derived EVs 
Nowadays, the adipose tissue has been 

recognized as an endocrine organ that secretes 
pleiotropic bioactive molecules that modulate 
metabolism in distant organs and immune cell 
functions [138]. Adipogenesis was thought to affect 
EV structure, molecular composition, and function, as 
EV production was higher in cells before adipogenesis 
[139]. Interestingly, mouse perigonadal adipose tissue 
in leptin-deficient obese mice released more EVs than 
that of lean mice [140], and the cargoes and regulatory 
functions of these EVs were also different [141, 142]. 
Protein profiling has revealed that EVs released by 

adipose tissue carried adipokines such as adiponectin, 
IL-6, monocyte chemoattractant protein-1, and resistin 
[143]. In addition, these EVs also harbored enzymes 
including fatty acid synthase, acetyl-CoA carboxylase, 
glucose-6-phosphate dehydrogenase, immuno-
modulatory proteins and cytokines, as well as various 
mRNAs [144, 145]. Further, two subpopulations of 
adipocyte-EVs, small EVs and large EVs, were 
identified and shown to exhibit specific protein 
signatures [146]. Notably, the functions of EVs 
released from adipocytes in different differentiation 
states were varied. For instance, EVs from immature 
adipocytes were shown to induce telogen-to-anagen 
transitions in hair follicles, whereas those from 
mature adipocytes inhibited hair follicle progression 
[147]. Therefore, it can be hypothesized that under 
different circumstances, adipocytes secrete EVs with 
distinct regulatory functions, contributing to diverse 
immune responses. 

Adipocyte-EVs, now regarded as a new 
adipokine, exert regulatory functions in metabolic 
processes and insulin resistance [148]. It was reported 
that circulating EVs were significantly increased in 
obese mice and humans compared to lean controls, 
and could be biomarkers of metabolic stress [149]. 
Besides, EVs derived from the adipocytes of obese 
mice increased appetite and weight when 
administered to lean mice, whereas EVs from the 
adipocytes of lean mice decreased the weights of 
obese mice [150], indicating their regulatory role in 
obesity and metabolic diseases. Another study 
reported that obese adipocytes released high levels of 
exosomal miR-27a, which repressed PPAR-γ and 
induced insulin resistance in skeletal muscle [151]. 

In addition, adipocyte-EVs play pathogenic roles 
in immune responses via exerting effects on various 
cells. Adipocyte-EVs from obese mice induced M1 
macrophage polarization to exacerbate intestinal 
inflammation [152]. In addition, EVs from diabetic 
adipocytes or high glucose/high lipid-challenged 
non-diabetic adipocytes were enriched in miR- 
130b-3p, which aggravated myocardial ischemia/ 
reperfusion injury in the diabetic heart [153]. Similar 
findings have been reported in perivascular adipose 
tissues, where adipocyte-EVs from obese mice evoked 
inflammatory responses and vascular remodeling 
[154]. Moreover, TNF-α/TNF-α+hypoxia-induced 
adipocyte-EVs enhanced neutrophil adhesion by 
increasing vascular cell adhesion molecule expression 
on one vascular cell line [155]. Considering the critical 
roles of adipocytes in skin repair and inflammatory 
states, future studies of these EVs will have 
far-reaching implications. 
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Figure 1. Extracellular vesicles (EVs) in the cell-cell crosstalk of psoriasis. Keratinocyte-EVs induced by psoriatic cytokines such as IL-17A can be taken up by 
neighboring keratinocytes to upregulate mRNA expression of β2 defensin and chemokines, by neutrophils to induce NETosis and the production of IL-6, IL-8, and TNF-α in 
neutrophils, or by CD4+T cells to facilitate Th1/Th17 polarization. In turn, neutrophil-EVs also induce keratinocytes to produce a variety of chemokines to attract more immune 
cells. In addition, IFN-α promotes mast cells to secrete EVs, which induces the generation of neolipid antigens and subsequent recognition by lipid-specific CD1a-reactive T cells. 
Neu, neutrophils; NETs, neutrophil extracellular traps. 

 

EV involvement in the pathophysiology 
of inflammatory skin disorders 

Chronic inflammatory skin diseases, including 
psoriasis, AD, LP, and SLE, among others, are 
refractory with long-lasting courses. Though 
biological drugs such as anti-TNF, anti-IL-17, and 
anti-IL-12/23 agents show treatment-associated 
benefits, the complex pathogenesis is insufficiently 
understood, which warrants further exploration. 
Here, we will mainly describe how EVs participate in 
complicated pathophysiological processes involved in 
inflammatory skin disorders. 

Psoriasis 
Psoriasis is the most common chronic 

inflammatory skin disease and is characterized by 
abnormal proliferation and differentiation of 
keratinocytes and massive infiltration of immune cells 
[156]. A number of studies have shown that 

endothelial cell- and platelet-derived EVs were 
increased in patients with psoriasis [157-161], were 
positively correlated with the psoriasis area and 
severity index score [157], and were decreased by 
anti-TNF-αbut not anti-IL-12/23 treatment [162]. 
Besides, psoriasis-related cytokines modulated the 
production of EVs, as IL-17A induced HaCaT cells to 
produce EVs carrying the mRNAs of several 
chemokines and β‐defensin 2 [125]. Recent studies 
attempted to analyze the miRNA profiles in plasma- 
derived EVs to illustrate their potential as future 
psoriasis biomarkers [17, 163]. 

Studies on the functions of EVs in psoriasis have 
gradually developed in recent years (Figure 1). As one 
early study revealed, IFN-α induced mast cells to 
release EVs that were capable of transferring 
cytoplasmic PLA2 activity to neighboring CD1a- 
expressing cells, which further led to the generation of 
neolipid antigens and subsequent recognition by 
CD1a-reactive T cells [11], which established EVs as 
critical mediators in psoriasis. Our recent study 
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demonstrated that EVs isolated from psoriatic 
cytokine-induced keratinocytes could be endocytosed 
by neutrophils and induced the latter to produce 
NETs and pro-inflammatory cytokines, thus 
exacerbating psoriatic inflammation [12]. 
Interestingly, neutrophils from patients with 
generalized pustular psoriasis secreted more EVs than 
those from controls, and further triggered 
keratinocytes to produce high levels of inflammatory 
molecules, such as IL-1β, IL-36G, IL-18 and TNF-α 
[82]. These results suggest that EVs are critical 
mediators of keratinocyte-neutrophil crosstalk in the 
pathogenesis of psoriasis. Moreover, our latest study 
revealed that EVs derived from psoriatic 
keratinocytes transferred miR-381-3p to CD4+ T cells, 
inducing Th1/Th17 polarization and promoting 
psoriasis development [164]. Interestingly, it was 
reported that EVs from two similar diseases, 
rheumatoid arthritis (RA) and psoriatic arthritis 
(PsA), showed divergent effects, as RA-derived or 
healthy control-derived EVs profoundly inhibited 
osteoclast differentiation while PsA-derived EVs had 
a stimulatory effect [165]. Therefore, by 
comprehensively studying the biological functions of 
EVs, we will gain important insights regarding their 
roles in the immune network of psoriasis, or other 
associated syndromes. 

Atopic dermatitis 
AD is another common inflammatory skin 

disease, characterized by typical type 2 skin 
inflammation with a defective barrier [166, 167]. As 
AD patients are susceptible to S. aureus infection, 
which in turn aggravates AD inflammation- 
associated, several studies have explored the role of S. 
aureus-derived EVs in AD. S. aureus-EVs could 
exacerbate AD inflammation by delivering bacterial 
effector molecules to host cells, thus aggravating the 
inflammatory responses (Figure 2). For instance, it 
was reported that S. aureus-EVs efficiently increased 
the production of pro-inflammatory mediators such 
as IL-6, thymic stromal lymphopoietin, and macro-
phage inflammatory protein-1α in dermal fibroblasts 
[168], triggered HaCaT cells to overexpress pro- 
inflammatory cytokines including IL-1β, IL-6, IL-8, 
and MIP-1α [169], and induced endothelial cell 
activation and monocyte recruitment [13]. In addition, 
it was shown that α-hemolysin transported in S. 
aureus-EVs induced keratinocyte necrosis, 
exacerbating both skin barrier disruption and AD-like 
skin inflammation [170]. Thus, S. aureus-EVs may be 
regarded as one of the therapeutic targets for the 
management of AD aggravation. Notably, EVs 
derived from thymol-treated S. aureus or Lactobacillus 
plantarum alleviated the AD-like skin lesions 

including epidermal thickening and IL-4 level [171, 
172], indicating their potential to treat AD. 

Lichen planus 
LP is the third most common inflammatory skin 

disease, characterized by epidermal keratinocyte 
death and dense infiltration of T cells in the dermis 
[173]. We previously provided evidence of the role of 
IFN-γ in the cell-mediated cytotoxicity of keratino-
cytes in LP [174]. Recently, several studies explored 
the function of EVs in LP. For instance, one study 
profiled salivary EVs from patients with oral LP and 
identified miR-4484, miR-1246, and miR-1290 as 
enriched miRNAs in LP, making these molecules 
potential biomarkers for oral LP [19]. In addition, it 
was shown that circulating EVs in erosive oral LP 
patients enhanced T cell proliferation and attenuated 
T cell apoptosis [14]. Thus, further studies are 
warranted to profile and determine the pathogenic 
roles of EVs derived from skin lesions or circulation of 
LP patients. 

Bullous pemphigoid 
BP is a severe autoimmune inflammatory 

disorder and clinically manifests as subepidermal 
blisters and erosions of the skin and/or mucous 
membranes [175]. Blister fluid contains infiltrated 
immune cells, cytokines, and chemokines, as well as 
EVs, all of which are capable of exerting biological 
functions and promoting inflammatory responses. We 
showed that EVs isolated from the blister fluid of BP 
patients could be internalized by human 
keratinocytes, which led to the production of critical 
inflammatory cytokines and chemokines, enhancing 
neutrophil trafficking to skin lesions and triggering 
local autoinflammatory responses [15]. Neutrophils 
were reported to be critical for blister formation and 
exacerbated inflammation in BP [176, 177]. We also 
employed mass spectrometry to elucidate the 
proteome of blister fluid-derived EVs for the first 
time, showing that they contained a variety of 
proteins implicated in autoimmunity and 
inflammatory responses [15]. However, the 
contributions of neutrophil-, T cell-, B cell-, and other 
monocyte-EVs to the initiation and progression of BP 
are largely unknown. 

Systemic lupus erythematosus 
SLE is a chronic, refractory, and systemic 

autoimmune disease characterized by circulating 
autoantibodies and the formation of immune 
complexes. It harms multiple organs and presents a 
variety of clinical manifestations [178]. To date, the 
contents and functions of EVs carrying autoantigens, 
cytokines, surface receptors, and non-coding RNAs 
have been studied in SLE. 
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Figure 2. Extracellular vesicles (EVs) in the pathogenesis of AD. On the one hand, EVs secreted from S. aureus could induce keratinocyte necrosis and damage to 
epidermal barrier structures and functions, which in turn facilitates further colonization of S. aureus-EVs. These keratinocytes produce IL-1β, IL-6, IL-8, and MIP-1α in response 
to S. aureus-EVs. On the other hand, S. aureus-EVs upregulate the production of pro-inflammatory mediators in fibroblasts, including IL-6, thymic stromal lymphopoietin, 
macrophage inflammatory protein-1α, and eotaxin, contributing to the Th2 immune response in AD pathogenesis. S. aureus, Staphylococcus aureus. 

 
As early studies reported, the total number of 

EVs and IgG-positive EVs were increased in the 
plasma of SLE patients [18, 179], and their high levels 
were positively correlated with anti-DNA levels, 
suggesting that these EVs could represent an 
important source of immune complexes in SLE [180]. 
Nielsen et al. showed that the level of annexin V 
non-binding cell-derived EVs was positively 
correlated with disease severity and some systemic 
indicators [181]. They further found that the levels of 
IgG, IgM, and C1q were elevated in EVs from SLE 
patients compared with those from healthy controls 
[182]. Nevertheless, it was not clearly demonstrated 
whether IgG in EVs had autoantibody activity. It was 
also reported that CD31+/annexin V+/CD42b- MVs 
[182] or CD41+ EVs harboring IgG [183] were higher in 
SLE patients than in controls. Using high-sensitivity 
nano-liquid chromatography tandem mass 
spectrometry, 248 proteins were found to be 
significantly upregulated in the circulating EVs 
isolated from SLE patients relative to those of the 
controls [184]. In addition, another recent study 

measured EVs by flow cytometry to identify small 
(0.2-0.7 μm) and large (0.7-3.0 μm) EVs, and showed 
that patients with active lupus nephritis had increased 
levels of large EVs containing mitochondria 
(mitoEVs) and IgG-positive mitoEVs, indicating that 
distinct EV subpopulations can have different 
functions in SLE [185]. Further, urinary EVs of SLE 
patients were also identified and enriched in miRNAs, 
with miR-146a being the most prominent [186]. 

Moreover, it was shown that these increased EVs 
in the plasma of active SLE patients induced ROS 
production and degranulation in neutrophils [187], 
activated pDCs to secrete IFN-α via TLR7 [188], or 
contributed to MSC senescence in SLE [189]. The 
elevated EVs and their immune complexes in SLE 
patients also promoted secondary leukocyte 
infiltration by regulating vascular remodeling and 
chemokine secretion [16]. Moreover, EVs derived 
from platelets mostly harbored IgG and 
overexpressed CD69 and CD64, and promoted 
pro-inflammatory responses in monocytes, thus 
exacerbating SLE-associated inflammation [190]. 
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Thus, it is worth noting that EVs play a crucial role in 
initiating and aggregating autoimmune reactions in 
SLE. 

Chronic wound healing 
Wound healing is a complex and dynamic 

process that includes hemostasis, inflammation, 
angiogenesis, re-epithelialization and remodeling 
[191]. However, the disturbances in this process, 
common in diabetes and aging individuals, lead to 
chronic wounds, a dilemma in dermatology [192, 193]. 
A variety of cell types with distinct roles are involved 
in the different phases of chronic wound healing, 
including neutrophils [194], macrophages [195], mast 
cells [196], DCs [197], T cells [198], fibroblasts [199], 
and others [192]. Therefore, EVs, cytokines, growth 
factors, and chemokines derived from multiple 
sources can actively regulate complex cellular 
signaling networks. 

Numerous studies have focused on pathogenic 
factors and new techniques to promote wound 
healing. According to recent studies, EVs can 
contribute to multiple stages of wound healing 
cascades such as cell proliferation and differentiation 
[200], coagulation [201], angiogenesis [202], and 
extracellular matrix remodeling [203]. For instance, 
EVs isolated from platelet-rich plasma could 
effectively induce the proliferation and migration of 
endothelial cells and fibroblasts to improve 
angiogenesis and re-epithelialization in chronic 
wounds, therefore showing efficacy in chronic 
wounds in a diabetic rat model [204]. EVs released 
from corneal epithelial cells were enriched in 
provisional matrix proteins, fibronectin, and 
thrombospondin-1, promoting the differentiation of 
myofibroblasts in the development of corneal scars 

[200]. Similarly, EVs carrying miR-21, which were 
mainly derived from resident keratinocytes, were 
elevated in the wound fluid of healing chronic wound 
patients, and able to convert M1-polarized human 
macrophages to fibroblast-like cells; however, the 
conversion was strikingly impaired in a mouse model 
of experimental diabetes, and could be rescued by 
nanoparticles delivering miR-21 to macrophages 
[205]. However, advanced glycation end products 
induced human umbilical vein endothelial cells to 
secrete EVs enriched in miR-106b-5p, which triggered 
fibroblast autophagy, thus decreasing collagen 
synthesis and delaying cutaneous wound healing 
[206]. EVs derived from normal and diabetic human 
corneolimbal keratocytes exhibited distinct contents, 
and accelerated or delayed the proliferation of limbal 
epithelial cells in wound healing [207]. Therefore, we 
hypothesize that EVs derived from various sources 
contribute to the local immune responses in chronic 
wound healing. 

Therapeutic approaches of EVs in 
inflammatory skin disorders 
EVs as biomarkers in inflammatory skin 
disorders 

EVs are mainly regarded as diagnostic and 
prognostic biomarkers in cancer but are still largely 
unexplored in skin inflammatory diseases. Recently, 
increasing evidence has indicated their potential role 
as noninvasive biomarkers for predicting the onset, 
relapse or reaction to drugs in the field of 
inflammatory skin disorders. 

Several studies on psoriasis, SLE, AD, and LP 
[19] aimed to explore the role of EVs as biomarkers 
(Figure 3). For instance, the level of IL-17A+ EVs in 

 

 
Figure 3. Extracellular vesicles (EVs) are potential biomarkers in inflammatory skin disorders. EVs derived from various origins have the potential to serve as 
biomarkers in several inflammatory dermatoses, including psoriasis, LP, and SLE. In psoriasis, the level of IL-17A+ EVs in circulation was significantly higher in patients with 
moderate-to-severe psoriasis than in those with mild psoriasis. MiR-199a-3p was the most up-regulated in serum EVs from psoriasis patients, implicating its diagnostic role in 
future study. Let-7b-5p and miR-30e-5p in serum EVs were significantly lower in patients with PsA, suggesting that circulating EV miRNAs might serve as biomarkers for PsA. In 
SLE, the increase in endothelial EVs or circulating EVs carrying several immune molecules was positively correlated with disease activity. And urinary EVs of SLE patients were also 
identified and enriched in miRNAs, with miR-146a being the most prominent. Urinary EVs containing let-7a and miR-21 were significantly down-regulated in lupus nephritis 
patients, and elevated after the complete course of effective treatment. In LP, salivary EVs of patients from oral LP were enriched in miR-4484, miR-1246, and miR-1290, making 
them potential biomarkers for oral LP. 
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circulation was significantly higher in patients with 
moderate-to-severe psoriasis than in those with mild 
psoriasis, suggesting that the components of EVs 
could be indicators of distinct disease stages [161]. 
Another study further compared the plasma-derived 
EV miRNAs from cutaneous-only psoriasis patients 
(n=15) with those of PsA patients (n=14), showing 
that let-7b-5p and miR-30e-5p in plasma-derived EVs 
were significantly lower in PsA patients, which 
suggested that circulating EV miRNAs might serve as 
biomarkers for PsA [163]. A recent study profiled the 
miRNAs of EVs from psoriasis patients (n=52) and 
healthy controls (n=26) and revealed that 26 miRNAs 
were upregulated and 24 were downregulated, with 
miR-199a-3p the most differentially expressed in 
psoriasis [17]. These results highlight the potential of 
EVs as diagnostic markers for psoriasis patients, 
however, larger samples and the pathogenic roles of 
EVs should be considered in the future. In SLE, 
several studies have suggested that the levels of 
circulating EVs were correlated with disease activity 
and clinical features, indicating that EVs could be 
reliable biomarkers of SLE activity [18, 181, 184]. For 
instance, it was shown that the increase in endothelial 
EVs was positively correlated with disease activity, 
glomerulonephritis, and vascular dysfunction [181], 
and was reduced by immunosuppressive therapy 
with decreasing cardiovascular risk [208]. Urinary 
EVs containing let-7a and miR-21 were significantly 
down-regulated in lupus nephritis patients and 
elevated after complete course of effective treatment, 
suggesting that urinary EV-associated miRNAs could 
be used as liquid biopsies to estimate the clinical stage 
of lupus nephritis patients [209]. In addition, as one 
recent study preliminarily explored, serum microbial 
EVs showed potential as novel biomarkers for AD 
diagnosis [210]. 

Further studies of the novel ways that EVs can 
reflect disease pathogenesis or clinical stages, predict 
relapse or prognosis, indicate responses to therapies, 
or guide therapy beyond current biomarkers are 
needed. 

EVs as therapeutic agents in inflammatory skin 
disorders 

Currently, EVs are being explored as 
nanotherapeutic agents for immune therapy, 
regenerative medicine, and drug delivery. In 
dermatology, studies on EVs are just beginning to 
show promising prospects in inflammatory skin 
disorders. As mentioned above, adipose tissue- 
derived MSC-EVs showed promising results as a 
cell-free therapeutic modality for AD treatment [123]. 
Several other investigations have demonstrated the 
potential uses of MSC- and APC-derived EVs as 

cell-free agents to treat autoimmune diseases. It was 
reported that the transplantation of MSCs would 
rescue bone marrow MSC function in a lupus knock- 
out mouse model via transferring EVs-derived Fas to 
recipient cells [211]. Another study showed that 
MSC-EVs were successfully used to treat a patient 
with refractory graft-versus-host disease and showed 
sustained alleviation of cutaneous and mucosal 
manifestations after 4 months [212]. 

Moreover, several studies have shown that EVs 
can be used as therapeutic agents in wound healing. 
EVs derived from umbilical cord blood were shown to 
be enriched in miR-21-3p, and promoted the 
proliferation and migration of fibroblasts and 
enhanced the angiogenic activities of endothelial cells, 
thus accelerating re-epithelialization and cutaneous 
wound healing [213]. Keratinocyte-EVs could also 
modulate fibroblast function and angiogenesis by 
transferring miR-21 to facilitate skin wound healing 
[7]. EVs from oral mucosa epithelial cells of human 
healthy donors showed pro-regenerative effects on 
skin wound healing [214], and EVs from human 
urine-derived stem cells could promote angiogenesis 
and wound healing in diabetic mice [215]. 
Interestingly, Synechococcus elongatus-EVs were 
capable of augmenting endothelial angiogenesis and 
stimulating new blood vessel formation, indicating 
that Synechococcus elongatus-EVs maybe a promising 
strategy for wound healing [202]. It was shown that 
MSCs-EVs maintained or accelerated rapid wound 
healing by activating fibroblasts [203], epithelial cells 
[216], or gingiva wound healing [217], which 
provided a potential therapeutic approach in this 
field. 

Nowadays, the combination of EVs and 
biomaterials to enhance the wound healing process 
represents a novel approach for chronic wound 
therapy [218]. One study developed an injectable 
antibacterial hydrogel with stimuli-responsive 
adipose-derived MSC-EVs, which could efficiently 
accelerate chronic wound healing and skin 
regeneration with coordinated actions [219]. More 
recently, a study reported that a light-activated 
hydrogel containing small EVs isolated from human 
mononuclear cells promoted wound healing, a 
process that was partially orchestrated by EV- 
miRNAs [220]. Additionally, allogenic EVs isolated 
from adipose tissue-derived stromal cells were 
engineered into a thermoresponsive gel, which 
resulted in a statistically significant improvement in 
fistula healing [221]. To date, several phase-I or 
phase-II clinical trials have been conducted to study 
whether EVs can be used in humans without 
life-threatening complications [222, 223]. However, 
only one clinical trial was established to study the use 
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of EVs in the treatment of skin diseases. AGLE-102 is 
an allogeneic EV derived from normal donor MSCs. 
One phase 1/2A, multi-center, randomized study 
aimed to assess the safety and efficacy of AGLE-102 in 
the treatment of lesions in epidermolysis bullosa 
patients (NCT04173650). 

Importantly, EVs, especially exosomes, have 
great potential as drug delivery vehicles. They are 
suitable for delivering therapeutic agents due to their 
natural properties, including material transportation, 
stability in circulation, relatively long half-lives, and 
excellent biocompatibility [224]. For instance, EV- 
based drug formulations offer a powerful and novel 
delivery platform for anti-cancer and -inflammation 
therapy [225-227]. For example, since the transcription 
factor nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB) plays a pivotal role in 
modulating the inflammatory cascades in a variety of 
inflammatory diseases, including septic shock and 
psoriasis, an optogenetically engineered EV system 
was employed to load a large amount of super- 
repressor IκB into EVs. These engineered EVs were 
taken up by recipient cells and then attenuated 
systemic inflammation in septic model mice [228]. 
Though several techniques are in use for drug loading 
and targeted delivery, a standard effective method is 
still lacking. Existing methodologies include the 
incubation of drugs with EVs, electroporation or 
saponification to induce the formation of small pores 
within the membranes, freeze-thaw methods that can 
cause the degradation of many EV proteins, and the 
transfection of nucleic acids into the secreting cells, 
among others [229]. Any method can be selected 
depending on the study demand and its advantages. 
Therefore, to exploit the therapeutic potential of EVs, 
innovative approaches and full considerations are 
required. 

Based on the availability, cost of production and 
safety, plants, fruits, and even milk can be used as 
sources from which to isolate EVs for clinical use 
[230]. For instance, anti-tumor drugs such as 
doxorubicin and curcumin were loaded on 
grapefruit-EVs decorated with targeting 
modifications, and showed anti-inflammatory effects 
in tumor-bearing mice [231]. Milk-EVs were reported 
to survive harsh and degrading conditions in the gut 
and then taken up by various cell types. Thus, several 
studies isolated EVs from milk and attempted to load 
them with various drugs with high yield and safety 
[232-234]. Thus, these innovations and updated 
techniques can be considered in the future study of 
EV utility in inflammatory skin diseases. 

In dermatology, the combination of EVs and 
biomaterials in regenerative medicine warrants 
in-depth study in mouse models and clinical trials, for 

instance, in wound healing and hair regeneration. The 
topical use of this kind of EV will also show 
promising prospects in treating inflammatory skin 
diseases. With improved understanding of EV 
functions and the development of related 
bioengineering strategies, it is possible to develop 
therapeutic applications such as EVs enriched in the 
cargo of interest, with enhanced targeting properties 
or decorated with physiological or synthetic ligands 
to target specific receptors that are overexpressed in 
different autoimmune diseases. 

Challenges and Future Directions 
Currently, several major challenges limit the 

broader translational use of EVs. As the EV 
classifications are continuously evolving, one problem 
is the lack of unique markers for the heterogeneous 
subclasses of EVs, which overlap in sizes, biophysical 
properties, and contents [235]. Therefore, the ISEV 
suggested the use of physical characteristics (such as 
small EVs), biological composition (some protein 
positive EVs), or descriptions of conditions (such as 
hypoxic EVs) to name the EV subtypes [236]. Since the 
isolation methods and approaches for EV analysis are 
evolving [237], standard methods need further 
validation. One proposed solution is to 
comprehensively study the biogenesis and cargo 
content of all EVs from multiple cell types [238]. Using 
asymmetric flow field-flow fractionation, one group 
identified two exosome subpopulations, large 
exosomes (90-120 nm) and small exosomes (60-80 
nm), and discovered an abundant population of non- 
membranous nanoparticles termed “exomeres” (~35 
nm). Each subpopulation showed unique protein and 
nucleic acid profiles, as well as biophysical properties, 
suggesting a distinct biological function for each 
subpopulation [239]. Besides, fourier-transform 
infrared spectroscopy provided collective fingerprints 
of EV subpopulations including large (~600 nm), 
medium (~200 nm), and small (~60 nm) EVs [240]. 
Moreover, diverse subpopulations of plasma EVs 
were identified using high-sensitivity fluorescence- 
activated vesicle sorting and showed that erythrocyte- 
and platelet-derived EVs carried distinct repertoires 
of nucleic acids that were similar to those of their 
original sources [241]. Therefore, as increasing 
evidence has shown that EV subclasses carry different 
cargoes, it is necessary to develop standardized and 
effective methods to identify and isolate the different 
EV subpopulations. 

Current EV isolation methods yield many non- 
vesicular proteins and contaminated EVs, which limit 
the profiling of nucleic acids or proteins in EVs. Thus, 
several techniques were developed to improve our 
understanding of EV contents. A recent study used a 
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trypsin-digested proteomics approach to classify 
trypsin-sensitive and trypsin-resistant vesicular 
proteins, and to systematically study the actual- 
vesicular proteins, which helped to identify reliable 
functional proteins, and revealed their patho-
physiological roles, an important aspect in the use of 
EVs as liquid biopsies [242]. In addition, new 
techniques such as exosome-templated nano-
plasmonics [243] and nanopatterned microchips [244] 
were recently developed to accurately and sensitively 
monitor the molecular profiles of EVs, which would 
facilitate the development of liquid biopsies. 

Further, how to identify and clearly observe EVs 
has been a major obstacle in understanding EVs and 
their utility. Notably, new technologies have 
flourished in recent years. For instance, one study 
used a non-pH-sensitive red fluorescent tag to 
visualize the lifecycle and biogenesis of EVs, 
including multivesicular body (MVB) trafficking, 
MVB fusion, EV uptake, and endosome acidification 
[245]. To quantify EV uptake at the single-cell level, 
another study developed an engineering approach 
that combined mass cytometry with highly multi-
variate cellular phenotyping. This innovation could 
help to unravel the in vivo fate of EVs taken up by 
recipient cells, elucidating the mechanism of action of 
EVs in vivo [246]. The updated technologies tracking 
EVs will improve our mechanistic understanding of 
the biodistribution of EVs. 

Nowadays, efforts to increase the production of 
EVs by cells for future therapeutic applications are 
ongoing. Conventional isolation methods such as 
ultracentrifugation require multiple steps that cause 
significant loss and damages to EVs. To overcome this 
limitation, researchers have developed several 
methods to increase the yield of EVs or to engineer 
EVs. One strategy is to increase EV biogenesis in the 
donor cell by overexpressing regulatory proteins 
involved in EV biogenesis [247] or increasing MVB 
docking at the plasma membrane [248]. Besides, 
physical conditions including radiation, hypoxia, and 
low pH were reported to upregulate EV production. 
For instance, nitrogen cavitation was used to instantly 
disrupt neutrophil-like HL60 cells leading to a 16-fold 
increase in the formation of nanosized membrane 
vesicles, which were then loaded with an anti- 
inflammation drug to treat acute lung inflammation/ 
injury and sepsis induced by LPS [249]. Ultra-
sonication of MSCs for 1 min also improved the EV 
yield, which exhibited ∼20-fold higher and ∼100-fold 
faster production than the natural secretion [250]. A 
recent study described a detailed method to fabricate 
an origami-paper-based device that integrated the ion 
concentration polarization technique for effective 
enrichment and isolation of EVs in a simple manner 

[251]. Further, engineered EVs showed promising 
roles in this field. One group developed a system to 
engineer EVs to sustainably release TGF-β1, IL-2, and 
rapamycin to induce Treg differentiation from naïve T 
cells [252]. However, more studies should be 
conducted to ensure that the engineered EVs exhibit 
stable bioactivities and efficacies, stable packing of 
biological materials, and little cytotoxicity. 

Conclusions 
In recent years, we have witnessed a boom in EV 

studies in the context of nearly all diseases, such as in 
the dysregulation and treatment of cancers, 
inflammation, and autoimmune diseases. Therefore, 
we reviewed the regulatory functions of immune and 
non-immune cell-derived EVs, and their roles in 
inflammatory skin disorders, as triggers of immune 
responses, potential biomarkers, or therapeutic 
agents. However, the studies are just beginning in 
dermatology, and the precise contents of most EV 
preparations or their multiple functions remain to be 
deciphered. Likewise, new strategies and more 
comprehensive studies are needed to identify EV 
subpopulations with high accuracy and selectivity, 
and to address the emerging challenges. We are 
optimistic that continuing studies on EVs will allow 
future application of EVs in the detection and 
treatment of various inflammatory skin diseases. 
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