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Abstract 

Rationale: Single-cell RNA sequencing (scRNA-seq) has provided an unbiased assessment of specific 
profiling of cell populations at the single-cell level. Conventional renal biopsy and bulk RNA-seq only 
average out the underlying differences, while the extent of chronic kidney transplant rejection (CKTR) 
and how it is shaped by cells and states in the kidney remain poorly characterized. Here, we analyzed cells 
from CKTR and matched healthy adult kidneys at single-cell resolution. 
Methods: High-quality transcriptomes were generated from three healthy human kidneys and two 
CKTR biopsies. Unsupervised clustering analysis of biopsy specimens was performed to identify fifteen 
distinct cell types, including major immune cells, renal cells and a few types of stromal cells. Single-sample 
gene set enrichment (ssGSEA) algorithm was utilized to explore functional differences between cell 
subpopulations and between CKTR and normal cells. 
Results: Natural killer T (NKT) cells formed five subclasses, representing CD4+ T cells, CD8+ T cells, 
cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs) and natural killer cells (NKs). Memory B cells 
were classified into two subtypes, representing reverse immune activation. Monocytes formed a classic 
CD14+ group and a nonclassical CD16+ group. We identified a novel subpopulation [myofibroblasts 
(MyoF)] in fibroblasts, which express collagen and extracellular matrix components. The CKTR group 
was characterized by increased numbers of immune cells and MyoF, leading to increased renal rejection 
and fibrosis. 
Conclusions: By assessing functional differences of subtype at single-cell resolution, we discovered 
different subtypes that correlated with distinct functions in CKTR. This resource provides deeper insights 
into CKTR biology that will be helpful in the diagnosis and treatment of CKTR. 
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Introduction 
Kidney transplantation is one of the most 

effective methods for the treatment of end-stage renal 
disease. The early and late immune responses to 
allografts are different processes. However, the 
pathogenesis of CKTR (mainly from a late immune 
response) remains poorly characterized. The 
long-term effect of renal transplantation has not been 
substantially improved in 20 years [1–3]. Fibrointimal 

thickening of the arteries, interstitial fibrosis and 
tubular atrophy seriously affect not only graft 
function but also survival [4,5]. Traditional bulk 
RNA-seq and renal biopsy approaches reflect the 
average gene expression, not the types and status at 
the single-cell level, thereby neglecting the 
heterogeneity of the transcriptome at single-cell 
resolution [6]. 
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scRNA-seq has been extensively developed, 
allowing expression profiles of individual cell types to 
be obtained rapidly. It plays an important role in 
identifying cell subtypes and illustrating molecular 
differences [7–9]. More recently, scRNA-seq has 
revealed a comprehensive portrait of cancer cells via 
the growth and differentiation of cells. It also provides 
new insights into the pathogenesis of renal diseases 
[10,11]. For instance, a single-cell profile of systemic 
lupus erythematosus with nephritis revealed that the 
highly expressed interferon-inducible genes in renal 
tubular cells were associated with disease severity 
[12]. Another study identified three distinct 
endothelial subclusters generated from mixed renal 
rejection by scRNA-seq [11]. The complex interactions 
between the immune system and renal cells play an 
important role in CKTR [13]. Bulk transcriptional 
analysis results have indicated that antibody- 
mediated rejection (AMR) is the most common driver 
of late allograft loss [14]. However, it is unable to 
uncover transcriptional profiles of individual cells, 
nor can it be used for the molecular characterization 
of CKTR [14]. 

Hence, this study provides a remarkably 
comprehensive catalog of cell types by 
characterizing their molecular functions, providing 
insights into CKTR biology that will be helpful in 
kidney transplantation. By analyzing single cells 
using an unsupervised clustering algorithm at a 
much higher resolution, we identified diverse 
states of immune and stromal cells involved in 
CKTR. Additionally, we uncovered the distinct 
function of immune cell subclasses in CKTR and 
healthy adult kidney samples. 

Materials and Methods 
Chronic kidney transplantation rejection 
samples 

Our study received approval from the 
Institutional Review Board (IRB) at Zhujiang 
Hospital of Southern Medical University. The two 
patients described in this study provided informed 
consent. The first transplantation recipient was a 
30-year-old male with two-fold higher serum 
creatinine and high panel reactive antibodies (PRA) 
(class I: 28%; class II: 41%) in the biopsy specimen, 
for which the histologic read was chronic rejection 
(tubular atrophy and moderate interstitial fibrosis). 
The second recipient was a 53-year-old female with 
high PRA (class II: 11%) in the biopsy specimen, for 
which the histologic read was chronic rejection 
(tubular atrophy and mild interstitial fibrosis). 
Detailed information on the two patients is 
provided in Supplementary Table S1. 

Healthy adult kidney samples 
Healthy adult kidney scRNA-seq data were 

collected from the Gene Expression Omnibus 
database [6] (Accession ID: GSE131685) for three 
samples (barcodes.tsv, features.tsv and gene 
expression matrix (*.mtx)). Basic information for the 
scRNA-seq data, including the number of cells, 
genes and depth, is provided in Supplementary 
Table S2. 

Tissue processing, 10x Genomics sample 
processing and bioinformatic analysis 

Detailed information can be found in the 
Supplemental Material. 

Results 
scRNA-seq transcriptomic profiles of the 
CKTR and normal groups 

We collected scRNA-Seq data from three healthy 
adult kidneys from a public database [6] and two 
CKTR biopsy specimens from Zhujiang Hospital of 
Southern Medical University (Figure 1A-B). The 
number of UMIs (Figure 1C) was not significantly 
correlated with the percentage of mitochondrial genes 
but was positively correlated with the amount of 
mRNA (Figure 1D). We carried out QC analyses 
(Figure 1E-F) on the basis of the amount of mRNA, the 
mRNA reads and the percentage of mitochondrial 
genes. As the five kidney data sets were not well 
integrated to be represented as a distinct batch, we 
used the R package Harmony to correct the batch 
(Figure 1G-H). We classified the cells according to the 
maximum average expression in the G1/S (43 genes) 
and G2/M (54 genes) phases and colored the cells. In 
each region, three periods of cells were randomly 
distributed, and there was no difference in the cell 
cycle status (Figure 1I). After QC, highly variable 
genes (the top 2000) were identified and used in the 
downstream analysis (Figure 1J). 

We used tSNE to visualize 15 clusters (Figure 
2A), and cell type annotation was performed based on 
the specifically high gene expression of each cluster 
reported in the CellMarker database (Table S3). We 
have defined clusters 0-15 as follows: proximal tubule 
cells, proximal convoluted tubule cells, glomerular 
parietal epithelial cells (1), NKT cells, glomerular 
parietal epithelial cells (2), proximal straight tubule 
cells, B cells (1), monocytes, distal tubule cells, 
collecting duct cells, endothelial cells, fibroblasts, B 
cells (2), mast cells and nephron epithelial cells, and 
no bias included by the cell cycle status was 
identified. Most of the tubular and epithelial cells 
were from the healthy adult kidney samples (Figure 
2B-C). We used a heatmap to visualize the marker 



Theranostics 2020, Vol. 10, Issue 19 
 

 
http://www.thno.org 

8853 

genes related to each cluster, which is shown in Figure 
2D. Additionally, the distribution of the marker genes 
in all cells in each cluster also confirms the 

representativeness of our cell assignments (Figure 2E). 
A complete list of DEGs between each cluster is 
shown in Table S4. 

 

 
Figure 1. Quality control (QC) of single cells from healthy adult human kidney and kidney allograft biopsy samples. (A) Overview of the scRNA-seq process 
using healthy adult human kidney and kidney allograft biopsy samples. (B) Summary of the sample origins. GEO: Gene Expression Omnibus (C) The relationship between the 
percentage of mitochondrial genes and the mRNA reads. (D) The relationship between the amount of mRNA and the mRNA reads. (E) Before QC, scatterplot illustrating the 
number of genes, unique molecular identifiers (UMIs) and percentage of mitochondrial genes in each cell type from the five kidney samples. (F) After QC, scatterplot illustrating 
the number of genes, UMIs and percentage of mitochondrial genes in each cell type from the five kidney samples. (G) We detected the batch effect between five different kidney 
samples. (H) We used the Harmony R package to remove the batch effect between five different kidney samples. (I) UMAP plot showing the cell cycle status of each cell. (J) Red 
point illustrating the top 2000 highly variable genes. 
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Figure 2. Overview of the 27,197 single cells from healthy adult human kidney and kidney allograft biopsy samples. tSNE of the 27,197 cell profiles, with each 
cell color coded for the associated cell type (A), the cell cycle status (B) and its sample origin (C; normal or CKTR). Normal: healthy adult human kidney; CKTR: kidney allograft 
biopsy. (D) Heatmap showing the marker genes of each cluster, highlighting the selected marker genes for each cluster. (E) Expression of marker genes for the cell types are 
defined above each panel. Additional marker genes for each cell type are shown in Figure S1. 
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Figure 3. NKT cell clusters. tSNE plot of 1973 NKT cells, color-coded by their associated cluster (A), the cell cycle status (B) and its sample origin (C; normal or CKTR). 
Normal: healthy adult human kidney; CKTR: kidney allograft biopsy. (D) tSNE plot color-coded for expression (gray to white to red) of marker genes for CD4+ T cells, CD8+ 
T cells, CTLs, Tregs and NK cells. CTL: Cytotoxic T lymphocyte. (E) tSNE plot color-coded for the ssGSEA score for CD4+ T cells, CD8+ T cells, CTLs, Tregs and NK cells. 
ssGSEA: single-sample gene set enrichment. (F) Heatmap of the ssGSEA score, as estimated using gene sets from MsigDB, for five NKT cell clusters from CD4+ T cells, CD8+ 
T cells, CTLs, Tregs and NK cells. (G) Violin plots showing the expression distribution of selected genes involved in metabolism, MHC-related, chemokine/cytolytic activity, 
negative regulation of interleukin production and NK cell chemotaxis, stratified by NKT cell subpopulation. (H) Differences in pathway activities were scored per cell by GSVA 
between CKTR and normal group NKT cells (n = 899 and 1074 cells from 5 samples, respectively). Shown are t values from a linear model, corrected for patient of origin. (I) 
Average expression of marker genes for each NKT subclass in normal and CKTR samples. The box plot center, box and whiskers correspond to the median, IQR and 1.5 × IQR, 
respectively. Data were analyzed using the Mann-Whitney U test. 
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mRNA expression portraits differences among 
the NKT cell subclasses 

We detected 1973 NKT cells. Reclustering these 
1973 NKT cells revealed five clusters (Figure 3A), and 
these five clusters were evenly distributed in cell cycle 
status (Figure 3B). Three were mostly from CKTR 
samples (clusters 0, 1 and 3), and the two others were 
mostly from normal samples (clusters 2 and 4; Figure 
3C). Marker genes for each subpopulation were used 
to assign corresponding cells to known NKT cell types 
(Figure 3D; Figure S1; Table S5). This analysis 
revealed CD4+ T cells (cluster 0; marker genes LTB 
and IL7R), CD8+ T cells (cluster 1; marker genes 
CD8A and CD8B), CTLs (cluster 2; marker genes 
GNLY and GZMB), Tregs (cluster 3; marker genes 
FOXP3 and CTLA4) and natural killer (NK) cells 
(cluster 4; marker genes MT1X and MT2A). 

Analysis of signaling signatures highlighted that 
(Figure 3E-G) CD8+ T cells (cluster 1) and CTLs 
(cluster 2) were involved in antigen processing and 
presentation (APP), cytotoxicity (granzyme) or 
chemokine secretion, while the other three sub-
populations (clusters 0, 3 and 4) showed relatively 
stationary or inhibitory functions. For instance, the 
negative regulation of the interleukin production 
signature in Tregs (cluster 3) was much higher than 
that in the other four subtypes. A more detailed 
analysis revealed the upregulation of genes involved 
in cytotoxic activities (GNLY, PRF1, GZMH and 
GZMB) and chemotaxis (CCL4 and CCL5) in CTLs 
(Figure 3G). Tregs and CTLA4 were upregulated in 
Tregs, while INFG was downregulated (Figure 3G). 

A direct comparison of NKT cells in the CKTR 
and normal groups revealed T-cell activation and 
antigen presentation as the top enriched signature in 
CKTR NKT cells (Figure 3H). Additionally, the 
average expression of marker genes in each of the five 
clusters was enriched in CKTR compared with the 
normal group (Figure 3I). We performed an analysis 
of the disease samples alone (Figure S2A-F). The 
similarities and differences in marker gene expression 
across matched clusters as expected. 

B lymphocytes harbor two distinct types of 
memory B cells 

We detected 1267 B lymphocyte cells. B cell 
infiltration has been suggested to be involved in 
allograft rejection. Clustering revealed five subclasses 
(clusters 0-4; Figure 4A; Table S5). Of these, cell type 
assignments were performed based on the R package 
‘SingleR’. The tSNE plot showed a rather good 
distribution of B cells, suggesting that there was no 
bias in the cell cycle status (Figure 4B). Figure 4C 
shows that B cell subtypes represent the most 

CKTR-enriched subtypes, especially memory B cells 
(cluster 0). DEG analyses failed to identify marker 
genes of each cell type, and we adapted an algorithm 
(reported by Mariathasan et al) to calculate the score 
of the top 10 DEG sets, which validated the robustness 
of our clustering (Figure 4D). Surprisingly, we 
identified a distinct signaling signature between 
memory B cells in cluster 0 and memory B cells in 
cluster 4, revealing immune activation-associated 
pathways (inflammation, proinflammatory cytokine 
and B cell proliferation) upregulated in cluster 0 
(Figure 4E). Additionally, memory B cells (cluster 0) 
enriched a repertoire of B cell proliferation and 
lineage commitment genes, while these signaling 
signatures showed weak enrichment in memory B 
cells (cluster 4; Figure 4F). In contrast to memory B 
cells (cluster 4), memory B cells (cluster 0) displayed 
high expression of genes involved in immune 
activation (for example, TNFRSF13B, CD79B, LYN, 
PAX5, CD74, PTPRC, DAPP1 and CD22; Figure 4G). 
Additionally, the average expression of marker genes 
in memory B cells (cluster 0) was enriched in the 
CKTR group compared with the normal group 
(Figure 4H). We identified differences in B cells, 
revealing CKTR-associated increases in mature B-cell 
differentiation, proliferation, and regulation of Fc 
receptor-mediated stimulatory signaling (Figure 4I). 
Additionally, Figure S3A-F indicated that B 
lymphocytes of the CKTR harbored two distinct types 
of memory B cells. 

Transcriptome profiles of classic and 
nonclassical monocytes 

Monocytes are composed of several cell subtypes 
and play important roles in CKTR. A total of 1011 
monocytes detected here were divided into five 
clusters, corresponding to the following: 

CD14+ monocytes (cluster 0; CD14 and CD163), 
CD14+ monocytes (cluster 1; CD14 and S100A8), 
CD16+ monocytes (cluster 2; LILRA1 and CD16), 
CD14+ monocytes (cluster 3; SELL and CD14) and 
myeloid dendritic cells (cluster 4; XCR1 and CLEC9A; 
Figure 5A-D; Table S5). We compared pathway 
enrichment levels between classic and nonclassical 
monocytes (Figure 5E). For instance, antigen 
presentation and second messengers were generally 
high in cluster 0. Several fatty acid metabolism 
pathways were enriched in cluster 1. Similarly, tSNE 
plots show cluster 0 represents strong immune 
responses and monocyte activation, while cluster 1 
shows high expression of fatty acids (Figure 5F). 
Moreover, cluster 0 expressed higher levels of major 
histocompatibility complex class (MHC), including 
HLA-A, HLA-B, HLA-C, HLA-DRA, HLA-DMA and 
HLA-DRB5 (Figure 5G).  



Theranostics 2020, Vol. 10, Issue 19 
 

 
http://www.thno.org 

8857 

 

 
Figure 4. B cell subclasses in healthy adult human kidney and kidney allograft biopsy samples. tSNE plot of 1267 B cells, color-coded by their associated cluster (A), 
the cell cycle status (B), and its sample origin (C; normal or CKTR) and the score of the top 10 marker genes (D). Normal: healthy adult human kidney; CKTR: kidney allograft 
biopsy. (E) Heatmap of the ssGSEA score, as estimated using gene sets from MsigDB, for two B cell clusters for memory B cells from cluster 0 and memory B cells from cluster 
4. (F) tSNE plot color-coded for ssGSEA score of representative pathways for the clusters (clusters 0 and 4) are indicated. (G) Violin plots showing the expression distribution 
of selected genes involved in immune activation, stratified memory B cells (cluster 0) and memory B cells (cluster 4). (H) Average expression of marker genes for each B cell 
subclass in normal and CKTR samples. The box plot center, box and whiskers correspond to the median, IQR and 1.5 × IQR, respectively. Data were analyzed using the 
Mann-Whitney U test. (I) Differences in pathway activities scored per cell by GSVA between CKTR and normal group B cells (n = 1121 and 146 cells from 5 samples, 
respectively). Shown are t values from a linear model, corrected for the patient origin. 
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Figure 5. Monocyte subpopulations in healthy kidney and kidney allograft biopsy samples. tSNE plot of 1011 monocytes, color-coded by their associated cluster 
(A), the cell cycle status (B) and its sample origin (C; normal or CKTR). Normal: healthy adult human kidney; CKTR: kidney allograft biopsy. (D) tSNE plot color-coded for 
expression (gray to white to red) of marker genes for CD14+ monocytes (cluster 0), CD14+ monocytes (cluster 1), CD16+ monocytes (cluster 2), CD14+ monocytes (cluster 
3) and myeloid dendritic cells (cluster 4). (E) Heatmap of the ssGSEA score, as estimated using gene sets from MsigDB, for three CD14+ monocyte (classical type) clusters from 
clusters 0, 1 and 3. (F) tSNE plot color-coded for ssGSEA score of representative pathways for the clusters (clusters 0 and 1) as indicated. (G) Violin plots showing the 
expression distribution of selected genes involved in immune activation, fatty acid metabolism and interleukin production, stratified CD14+ monocytes (cluster 0), CD14+ 
monocytes (cluster 1) and CD14+ monocytes (cluster 3). (H) Heatmap of the ssGSEA score, as estimated using gene sets from MsigDB, for two monocyte clusters from classical 
(Clusters 0, 1, and 3) and nonclassical (cluster 2) monocytes. (I) Differences in pathway activities scored per cell by GSVA between CKTR and normal group monocytes (n = 290 
and 721 cells from 5 samples, respectively). Shown are t values from a linear model, corrected for the sample origin. (J) Average expression of marker genes for each monocyte 
subclass in normal and CKTR samples. The box plot center, box and whiskers correspond to the median, IQR and 1.5 × IQR, respectively. Data were analyzed using the 
Mann-Whitney U test. 
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Some molecules that correlated with fatty acids 
(PCK1 and APOE) were upregulated in cluster 1 
(Figure 5G). Monocytes were derived predominantly 
from healthy adult kidneys. Some signaling 
signatures correlating to inflammation 
(proinflammatory cytokines, chemokines), 
lymphocyte recruitment and antigen presentation 
were enriched in classic monocytes (CD14+) 
compared with nonclassical monocytes (CD16+; 
Figure 5H). We compared signature expression levels 
between CKTR and normal monocytes (Figure 5I). 
Mostly, monocyte activation pathways, including 
MHC and INF-γ/β, and the inflammatory response, 
were significantly higher in CKTR-derived 
monocytes. Additionally, the average expression of 
marker genes in monocytes (CD14+, C0 and C1) and 
myeloid dendritic cells was enriched in the CKTR 
group compared with the normal group (Figure 5J). 
Also, CKTR-derived monocytes are composed of 
several cell subtypes and play important roles in 
CKTR. A total of 290 monocytes detected here were 
divided into five clusters (Figure S4A-G). 

Myofibroblasts (MyoFs) were enriched in the 
CKTR biopsies 

Fibroblasts have been considered to correlate 
strongly with allograft fibrosis. In our datasets, 226 
fibroblasts were detected. Subcluster analysis using 
the R package ‘SingleR’ revealed three sub-
populations (Figure 6A; Table S5). Major fibroblasts 
were derived from CKTR, and most fibroblasts 
showed no bias in cell cycle status (Figure 6B-C). All 
fibroblasts can be divided into three clusters using an 
algorithm (reported by Mariathasan et al) to calculate 
the score of the top 10 DEG sets, validating the 
subclustering robustness (Figure 6D). The first stroma 
cluster (fibroblast cluster 0) uniquely expressed 
COL12A1 and MMP2, two genes strongly up-
regulated in kidney MyoFs during fibrosis, indicating 
a MyoF cluster (Figure 6E) [11,15]. Remarkably, the 
MyoF subclass (mostly derived from CKTR) 
represents a high signature level of collagen and 
extracellular matrix (ECM) molecules and included 
platelet-derived growth factor (PDGF) signaling, 
collagen binding with the cell matrix and CXC3 
chemokine binding. Cluster 1 displayed high 
expression levels of TGF-β signaling involved in 
activities related to epithelial-to-mesenchymal 
transition (EMT) and angiogenesis, while cluster 2 
showed an enrichment in cellular biosynthesis 
processes (Figure 6F-G). Additionally, we observed 
MyoFs involved collagen and ECM signaling, with 
MyoFs expressing collagen-related genes (COL3A1, 
COL6A1, COL6A2, COL6A3, and COL4A1) and 
PDGR-related genes (PDGFRA and PDGFRB. Cluster 

1 displayed high expression of EMT-related genes 
(POLR2F, POLR2I and POLR2L), while cluster 2 
showed a high expression of biosynthesis signatures 
(for example, STAT1, STAT3, NOTCH3, PDGFRB and 
VEGFA; Figure 6H). Additionally, the average 
expression of marker genes in cluster 0 and cluster 1 
showed differences between the CKTR and normal 
groups (Figure 6I). Additionally, we did uncover 
signaling differences in fibroblasts, indicating CKTR- 
associated increases in collagen, PDGF, ECM, and 
TGF-β and in fibroblast activation and migration 
(Figure 6J). The comparison of different fibroblasts 
subpopulations in CKTR was detailed in Figure 
S5A-G. 

Discussion 
Here, we present comprehensive profiles of cell 

types and subtypes (mainly immune cells and a 
stromal cell type) in healthy adult kidney and CKTR 
biopsy samples at a single-cell resolution. By 
assessing key molecular function differences cell 
subclasses coopted by CKTR and matching healthy 
adult kidney samples, our study did uncover many 
important results made previously in bulk and 
highlight critical points for further research in CKTR 
biology. By identifying cell subpopulations and 
distinct signaling signatures and by analyzing the 
expression levels of key molecular functions in cell 
subtypes, our data will help advance the diagnosis 
and treatment of CKTR. 

First, our analysis identified 15 separate cell 
types, including five tubular cell types (33.3%), three 
epithelial populations (20.0%), five types of immune 
cells (33.3%), one type of stromal cells (6.7%) and 
endothelial cells (6.7%). Second, each subclass showed 
distinct pathway signatures and activities, both 
between CKTR and normal samples or within each 
other, indicating that these subtypes represent 
different biological and molecular entities. A third 
observation associated major cell subclasses enriched 
in immune activation activities with CKTR samples. 

T and NK cells play important roles in CKTR. 
Donor antigen-presenting cells (APCs), including 
macrophages, recognize allogeneic antigens of donors 
and then send them to the cell surface. They are 
indirectly identified by T lymphocyte cells and 
participate in allograft rejection, forming interstitial 
fibrosis areas [16–18]. Studies suggest that CD8+ T 
cells and CTLs can directly activate cell killing via 
cytotoxic activities (including high interferon (IFN) 
and granzyme expression) [19–21]. In addition, type I 
IFN can enhance Th1 polarization of CD4+ T cells and 
favor B cell differentiation involved in antibody 
production [22].  
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Figure 6. Fibroblast clusters in healthy kidney and kidney allograft biopsy samples. tSNE plot of 226 fibroblasts, color-coded by their associated cluster (A), the cell 
cycle status (B), its sample type of origin (C: Normal or CKTR) and the score of top 10 marker genes (D). Normal: healthy adult human kidney; CKTR: kidney allograft biopsy. 
(E) Heatmap of the ssGSEA score, as estimated using gene sets from MsigDB, for three fibroblast clusters from clusters 0, 1 and 3. (F) tSNE plot color-coded for ssGSEA score 
of representative pathways for the clusters (clusters 0, 1 and 3) as indicated. (G) Violin plots showing the expression distribution of selected genes involved in collagen and cell 
matrix adhesion, EMT/TGF-β, and cellular biosynthesis, stratified by monocyte subpopulation. EMT: epithelial-to-mesenchymal transition. (H) tSNE plot color-coded for 
expression (gray to red) of marker genes for myofibroblasts (MyoFs). (I) Average expression of marker genes for each fibroblast subclass in normal and CKTR samples. The box 
plot center, box and whiskers correspond to the median, IQR and 1.5 × IQR, respectively. Data were analyzed using the Mann-Whitney U test. (J) Differences in pathway 
activities scored per cell by GSVA between CKTR and normal group fibroblasts (n = 188 and 38 cells from 5 samples, respectively). Shown are t values from a linear model, 
corrected for the sample origin. 



Theranostics 2020, Vol. 10, Issue 19 
 

 
http://www.thno.org 

8861 

Previous bulk RNA-seq on CKTR suggested that 
extensive activation of the immune system can lead to 
necrosis of renal tubular epithelial cells, rupture of the 
basement membrane, and finally progression to 
fibrosis and loss of renal allograft function [22]. 
Additionally, proinflammatory transcripts were 
previously associated with allograft rejection [22]. We 
therefore explored these potential functional 
differences between each NKT cell subtype or 
between CKTR and normal samples. CD8+ T cells and 
CTLs representing the immunoactivation signature 
were more abundant in the CKTR biopsy samples. A 
similar ssGSEA was observed in CD8+ T cells and 
CTLs, showing higher cytotoxic (IFN and granzyme 
secretion), antigen presentation and proinflammatory 
(cytokines and chemokine production) activities. 
Interestingly, NKs exhibited weak immunoactivation 
states, except for encoding several molecules 
(granzyme). Together, these observations suggest that 
T cell subclusters represent distinct signatures that 
have different roles in allograft loss [20]. 

B lymphocyte cell infiltration plays an important 
role in the CKTR [17,23]. We consistently identified B 
cells representing the most CKTR-enriched cells: two 
memory B cells representing totally distinct biological 
functions [24–26] (activated and stationary states). For 
instance, activated memory B cells were mostly 
derived from CKTR samples and were enriched in 
B-cell proliferation, differentiation, antigen presenta-
tion, lymphocyte recruitment and inflammatory 
responses, while major stationary memory B cells 
were mostly derived from healthy human kidney 
samples and displayed a strong fatty acid metabolism 
and cell cycle signal. 

The interaction between B lymphocyte cells and 
surrounding stromal cells plays key roles in 
proinflammatory and profibrotic activities and 
remains poorly characterized [17,23]. The ECM is an 
important repertoire of molecules in CKTR. For 
instance, MyoFs express high levels of some 
collagens, TGF-β, and other ECM molecules involved 
in tissue remodeling [23,27,28]. Our subclustering 
showed that one stroma cluster may be MyoFs. 
ssGSEA highlighted that myofibroblasts secreted 
(collagen and fibronectin) or expressed PDGFs, which 
further led to renal interstitial fibrosis [29–31] (Figure 
6E). Additionally, EMT and vascular regulatory 
activities were also enriched in MyoFs. Although the 
source of myofibroblasts is not yet clear, they may 
originate from renal tubular epithelial cells, intrinsic 
fibroblasts or other cells (such as pericytes) [32]. These 
observations suggest that specific functions of 
myofibroblasts and memory B cells play important 
roles in allograft rejection and loss. 

Our analyses, however, have several limitations. 
First, chronic renal rejection samples are single 
biopsies, and therefore, our observations cannot 
generalize the whole dynamic development of chronic 
renal rejection. More recently, there is a lack of 
dynamic immune portraits and molecular 
characterization of CKTR. Clearly, additional work 
and research are needed to describe the dynamic 
immune profiles of CKTR. Second, scRNA-seq has 
offered opportunities to uncover novel cell types and 
status comprehensively without some bias and RNA 
degradation, while the cell viability used for this 
technique is normally high. Due to the high number of 
dead renal cells in CKTR, it is still necessary to carry 
out further work on how to determine the best time to 
biopsy. Third, three matched healthy adult kidney 
samples obtained from the GEO database were used 
as controls, and we could not perform immuno-
histochemistry to further verify the observations. 
Fourth, there is no comparison between acute and 
chronic renal rejection. 

Conclusions 
Despite these limitations, we describe 

comprehensive profiles of immune cells, stromal cells 
and novel cell subtypes in healthy adults and renal 
allograft rejection samples at single-cell resolution 
and further compare the distinctive features in 
signaling pathways among each cell subpopulation. 
We expect that our findings will provide novel and 
deeper insights into human chronic renal 
transplantation rejection that will be helpful in the 
therapy of human allograft rejection. 
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