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Abstract 

Rationale: Triple-negative breast cancer (TNBC), which has the highest recurrence rate and shortest 
survival time of all breast cancers, is in urgent need of a risk assessment method to determine an accurate 
treatment course. Recently, miRNA expression patterns have been identified as potential biomarkers for 
diagnosis, prognosis, and personalized therapy. Here, we investigate a combination of candidate miRNAs 
as a clinically applicable signature that can precisely predict relapse in TNBC patients after surgery. 
Methods: Four total cohorts of training (TCGA_TNBC and GEOD-40525) and validation (GSE40049 
and GSE19783) datasets were analyzed with logistic regression and Gaussian mixture analyses. We 
established a miRNA signature risk model and identified an 8-miRNA signature for the prediction of 
TNBC relapse. 
Results: The miRNA signature risk model identified ten candidate miRNAs in the training set. By 
combining 8 of the 10 miRNAs (miR-139-5p, miR-10b-5p, miR-486-5p, miR-455-3p, miR-107, 
miR-146b-5p, miR-324-5p and miR-20a-5p), an accurate predictive model of relapse in TNBC patients 
was established and was highly correlated with prognosis (AUC of 0.80). Subsequently, this 8-miRNA 
signature prognosticated relapse in the two validation sets with AUCs of 0.89 and 0.90. 
Conclusion: The 8-miRNA signature predictive model may help clinicians provide a prognosis for 
TNBC patients with a high risk of recurrence after surgery and provide further personalized treatment to 
decrease the chance of relapse. 

Key words: triple-negative breast cancer, miRNA signature, relapse, prediction, prognosis  

Introduction 
Breast cancer (BC) is one of the most common 

causes of death in women worldwide [1, 2]. BC is not 
a single disease and is composed of several subtypes, 
such as luminal A, luminal B, HER2 and 

triple-negative breast cancer (TNBC). TNBC does not 
express or expresses low levels of the estrogen 
receptor (ER), progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER2). TNBC 
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occurs in approximately 10-20% of patients diagnosed 
with BC at a young age (40-50 years old). TNBC is an 
advanced multidrug resistant (MDR) breast cancer 
with a high recurrence rate within the first three to 
five years and a short overall survival (OS) rate [3, 4]. 
The causes behind survival differences are diverse, 
including genetic predispositions, lifestyle and other 
environmental factors [5-7]. Currently, the treatment 
strategies for TNBC are limited to surgery, 
chemotherapy, and radiation owing to the lack of 
effective therapeutic targets. Moreover, due to the 
high tumor heterogeneity, there is a lack of definitive 
clinical determinants in TNBC-specific diagnostic or 
prognostic markers [8]. 

MicroRNAs (miRNAs) are small noncoding 
RNAs that are 18-25 nucleotides in length and 
negatively regulate gene expression by translational 
repression or mRNA degradation. Previous evidence 
has demonstrated that miRNAs facilitate tumor 
growth, migration, invasion, and angiogenesis as well 
as cell survival and immune evasion by targeting 
mRNAs [9, 10]. In addition, many studies have 
reported that miRNAs may function as potential 
diagnostic and prognostic biomarkers for different 
cancers [11]. Dominika Piasecka et al. found that 
upregulation of miR-10b, miR-21, miR-29, 
miR-221/222, and miR-373 and downregulation of 
miR-145, miR-199a-5p, miR-200 family members, 
miR-203, and miR-205 were significantly associated 
with epithelial-to-mesenchymal transition (EMT) or 
cancer stem cell (CSC)-like properties and have 
prognostic value in TNBC patients [12, 13]. 

In the field of oncology, biomarkers generally 
possess three types of clinical relevance: diagnostic 
value, prognostic value, and predictive value. The 
prognostic value includes the prediction of disease 
outcomes or risk assessments independent of 
treatment [14]. The predictive value involves the 
prediction of responses to treatments as well as 
sensitive and specific biomarkers of clinical outcomes 
at a relatively early stage. Moreover, the integration of 
biomarker data using bioinformatics methods will 
enhance our understanding of biological pathways 
and regulatory mechanisms associated with diseases. 
Next-generation sequencing (NGS) and microarrays 
have increasingly been used to measure the 
expression levels of miRNAs. Advanced 
bioinformatics analysis methods with high efficiency, 
sensitivity and specificity play essential roles in 
miRNA biomarker development [15, 16]. 

The tumor-node-metastasis (TNM) staging 
system is a classification system based on the 
characteristics of the tumor, regional lymph nodes, 
and metastatic sites. In addition, it correlates 
important tumor characteristics with survival data to 

help estimate and follow outcomes [17]. However, the 
current TNM staging system is inadequate for 
identifying high-risk patients. To resolve this 
problem, we conducted an extensive miRNA profiling 
study on TNBC patients with public datasets. Each 
tumor type presents with a unique miRNA signature, 
which can be used to identify new diagnoses, 
prognoses and potential biomarkers for personalized 
medicine [18, 19]. Using systemic and comprehensive 
bioinformatics methods to train and validate the 
approach, we aimed to identify an 8-miRNA 
signature that can improve the current TNM staging 
system and that is superior to the currently offered 
molecular assays to predict relapse in TNBC patients 
after surgery. Moreover, this signature may have 
clinical implications in the molecular biomarkers of 
different cancers, development of targeted therapy, or 
selection of high-risk cancer patients for adjuvant 
chemotherapy [20, 21].  

Methods 
Collection and processing of expression profile 
data 

Two public datasets were analyzed in the 
training set: TNBC miRNA sequencing data from 
TCGA_BRCA level 3 data (The Cancer Genome Atlas 
(TCGA, https://www.ncbi.nlm.nih.gov/) and 
GEOD-40525 data from Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/gds). All 
datasets followed the classification system of Voduc et 
al, which is based on the immunohistochemical (IHC) 
semiquantitative analysis of ER, PR and HER2 
expression, as recommended by international 
guidelines [22]. The TCGA_BRCA data had 117 TNBC 
(TCGA_TNBC dataset) and 637 non-TNBC (TCGA_ 
non-TNBC dataset) patients. The TCGA_TNBC and 
GEOD-40525 datasets include 125 patients with 
corresponding miRNA sequencing data derived from 
two different platforms. The TCGA_TNBC dataset 
was obtained through Illumina HiSeq 2000 miRNA 
sequencing (n=117). The miRNA expression levels, 
measured by reads per million miRNAs mapped 
(RPM), were first log2 transformed. The GEOD-40525 
dataset was based on an Agilent-019118 Human 
miRNA Microarray 2.0 platform (n=8). The top 10 
miRNAs (miR-139-5p, miR-10b-5p, miR-486-5p, 
miR-455-3p, miR-107, miR-146b-5p, miR-17-5p, 
miR-324-5p, miR-20a-5p and miR-142-3p) were 
identified after adjustment for multiple comparisons: 
p-value<0.05 and FDR <0.05. The validation set 
contained three public datasets, GSE40049, GSE19783 
and E-MTAB-1989, from Applied Biosystems SOLiD 
sequencing (n=24), an Agilent-019118 Human miRNA 
Microarray 2.0 (n=18) platform and an Affymetrix 
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GeneChip miRNA 2.0 Array (n=18), respectively. The 
validation data were from GEO (https://www.ncbi. 
nlm.nih.gov/gds) and ArrayExpress (https://www. 
ebi.ac.uk/arrayexpress). 

Gaussian mixture and logistic regression 
models for predicting recurrence 

Classification was conducted with model-based 
hierarchical agglomerative clustering based on the 
Gaussian finite mixture model. The miRNA clusters 
were classified by the Gaussian mixture model 
(GMM). Logistic regression analysis was used to 
construct combined models to predict recurrence. 
Receiver operating characteristic (ROC) curves were 
constructed to assess the predictive value of the 
models by calculating the AUCs. With the predictive 
miRNA signature model, the risk scores for the 111 
TNBC patients were calculated from the 
TCGA_TNBC dataset. The TNBC patients were 
classified into recurrence and nonrecurrence groups 
using the median risk score as the cutoff value. The 
sensitivity and specificity of the miRNA prognostic 
signature to predict clinical outcome was evaluated 
by calculating the AUC value of the ROC curve using 
an R package. The associations between disease-free 
survival (DFS) and OS miRNA expression levels were 
estimated by the Kaplan-Meier method, log-rank test 
(Mantel-Cox) and Gehan-Breslow-Wilcoxon methods. 
Differences in survival between the high expression 
and the low expression miRNAs were analyzed using 
the two-sided log-rank test. 

MiRNA-target interactions (MTIs) 
miRTarBase 7.0 is a comprehensive collection of 

MTIs that have been experimentally validated [23]. 
The biological features of miRNA/target duplexes are 
assessed based on the largest collection of MTIs 
currently available. miRTarBase uses a pipeline 
combining text-mining and manual review methods.  

Functional analysis 
Gene set enrichment analysis (GSEA) was 

performed by using the software provided by the 
Broad Institute. Functional enrichment was achieved 
with MSigDB and the GSEA method. In this study, we 
found the top 20 biological functions and pathways by 
using the R packages ggplot2, clusterProfiler [24] and 
DOSE [25] for the statistical analysis of Gene 
Ontology (GO) and Hallmark gene sets in the gene 
clusters. The Reactome knowledgebase provides 
molecular details of signal transduction, transport, 
DNA replication, metabolism, and other cellular 
processes as an ordered network of molecular 
transformations and is an extended version of a classic 
metabolic map in a single consistent data model. 

Statistical analyses 
All statistical analyses were performed using R 

software (version 3.5.1), the mclust R package [26], the 
pROC package version 1.8 and GraphPad Prism 
versions 6 and 8 (San Diego, California USA). Venny 
2.1 and GENE-E were used to determine the 
distribution of the differentially expressed miRNAs 
and their abundance with comprehensive heat 
mapping software dedicated to displaying gene 
expression data. For the TCGA, GEO, and 
ArrayExpress studies, a two-tailed Student’s t-test 
was performed. All statistical tests with a p-value of 
less than 0.05 were considered significant. 

Results 
Screening of candidate miRNAs from public 
datasets 

To screen significant biomarkers and verify 
potential candidate miRNAs in TNBC, we 
incorporated NGS and microarray data. The 
workflow of the study is shown in Figure 1. A total of 
125 TNBC tissues and 15 adjacent normal tissues were 
obtained from two different datasets (TCGA_TNBC 
and GEOD-40525). A total of 1046 and 723 miRNAs 
were expressed in TCGA_TNBC and GEOD-40525, 
respectively. Next, we set the p-value and the FDR 
threshold as less than 0.05. Then, 109 and 44 miRNAs 
were reserved in TCGA_TNBC and GEOD-40525, 
respectively. Finally, 10 candidate miRNAs were 
common to both the TCGA_TNBC and GEOD-40525 
datasets (Figure 1A). The clinicopathological 
characteristics of the datasets are shown in Table 1. A 
detailed list of the 10 miRNAs generated by the Venn 
diagram analysis is provided in Table 2. Furthermore, 
we used these 10 candidates to verify the miRNA 
signature by logistic regression and GMM analysis. 
Afterward, we established an 8-miRNA signature 
according to the AUC value for tumor relapse (Figure 
1B). Since the 8-miRNA signature may be a prognostic 
biomarker, and an independent study of GSE40049 
and GSE19783 was used to validate its predictive 
accuracy. According to the prediction results, we 
identified high-risk groups of TNBC patients who 
require active treatment in order to increase their 
survival rate (Figure 1C). 

 

Table 1. Clinicopathological characteristics of TNBC patients in 
this study. 

Data set TCGA_TNBC GEOD 40525 data set 
Number    
TNBC 117 8 
Adjacent normal 8 7 
Total 125 15 
Age (years) 57.42±14.56 NA 
Preservation type Fresh tissue Fresh tissue 
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Data set TCGA_TNBC GEOD 40525 data set 
TNM Stage   
I 21 NA 
II 68 NA 
III 21 NA 
IV 1 NA 
Other 6 NA 
Lymph node metastasis  
Present 74 5 
Absent 37 3 
Other 6 0 
Distant metastasis   
Present 4 NA 
Absent 107 NA 
Other 6 NA 
Number of deaths 96 NA 
Median survival (months) 25.4 NA 
Follow-up period (days)  
Median 858 NA 
Range 1-3472 NA 
Platform Illumina HiSeq 2000 

miRNA Sequencing, 
Illumina Genome 
Analyzer miRNA 
Sequencing 

Agilent 019118 Human 
miRNA Microarray 2.0  

NA: not available. Mean ± standard deviation (SD) were presented. 
 
A heatmap was generated representing the 

expression of the 10 candidate miRNAs distinguished 
from adjacent normal and tumor tissues for both the 
TCGA_TNBC and GEOD-40525 datasets combined. 
The expression levels of hsa-miR-486-5p, hsa-miR- 
139-5p and hsa-miR-10b-5p were downregulated, and 
the expression levels of hsa-miR-107, hsa-miR-146b- 
5p, hsa-miR-142-3p, hsa-miR-17-5p, hsa-miR-455-3p, 
hsa-miR-324-5p and hsa-miR-20a-5p were 
upregulated in both the TCGA_TNBC and 
GEOD-40525 datasets (Figure 2A-B). The comparisons 
of the expression levels of the 10 candidate miRNAs 
between the tumor and adjacent normal groups 
revealed that the differences were statistically 
significant (all p-value <0.05) in the TCGA_TNBC and 
GEOD-40525 datasets (Figure 2C-D). Based on the 
above observations, we assessed the specificity and 
sensitivity of the 10 miRNAs for diagnosis by ROC 
analysis (Table S1). Additionally, previous studies 
found that these 10 miRNAs are involved in several 
cancers (Figure S1). According to the TCGA_TNBC 
data, expression of the 10 candidates in non-TNBC 
patients was significant compared to expression in 
TNBC patients. Only hsa-miR-486-5p of the 3 
downregulated miRNAs was not significant (Figure 
3A). The hsa-miR-20-5p, hsa-miR-107, hsa-miR-146b- 
5p, hsa-miR-455-3p, hsa-miR-324-5p, hsa-miR-17-5p, 
hsa-miR-142-3p were extremely significant in 7 
upregulated miRNAs between TNBC with non-TNBC 
patients (Figure 3B). The results showed that these 10 
candidate miRNAs were very different in TNBC and 
non-TNBC patient samples. 

These results suggested that the expression 
levels of aberrantly expressed miRNAs were 

consistent among individual studies (TCGA_TNBC 
and GEOD-40525). Thus, these 10 miRNA candidates 
might be a promising parameter in patients with 
TNBC. 

Establishment of the 8-miRNA signature for 
TNBC recurrence prediction with the training 
set 

To implement predictive modeling, we used 
logistic regression analysis to evaluate the association 
between the expression values of each of the 10 
miRNA candidates as well as the AUC values that 
were screened in the patient DFS analysis. There were 
a total of 1023 formulas from the logistic regression 
model of the 10 miRNA candidates. Furthermore, we 
used decisive GMM-based clustering, which is a very 
feasible approach and has a good clustering 
performance [27-29]. Then, we clustered gene sets by 
the GMM (instead of the 1023 formulas) and AUCs 
into the eight clusters in our proposed algorithm. 
Afterward, we selected one of the eight clusters that 
had the highest AUC as our signature to predict the 
relapse of TNBC patients. Hence, a miRNA candidate 
risk score model for recurrence was developed by 
integrating the expression data of the 8 miRNAs. The 
hsa-miR-139-5p, hsa-miR-107, hsa-miR-486-5p, hsa- 
miR-10b-5p, hsa-miR-146b-5p, hsa-miR-455-3p, hsa- 
miR-20a-5p and hsa-miR-324-5p signatures showed 
an average accuracy of 0.8031 by the GMM classifier 
in one of the 1023 formulas, as shown in Figure 4A. 
Additionally, the accuracy of miRNAs as well as the 
8-miRNA and any 7-miRNA signatures to distinguish 
between recurrent and nonrecurrent patients in the 
TCGA_TNBC dataset by an ROC test is provided in 
Table S2. We also used this formula to predict and 
compare the AUC values of the luminal A (AUC=0.7; 
green), luminal B (AUC=0.83; blue), HER2 (AUC= 
0.94; red) and TNBC (AUC=0.8; purple) subtypes, as 
shown in Figure 4B. The results suggested that the 
AUC values of these 10 candidates in HER2, luminal 
B, and TNBC patients were better than those in 
luminal A patients for predicting relapse. However, 
the AUC values of 8-miRNA combinations in TNBC 
were limited to 0.8 and were less than those of the 
other subtypes. 

To validate the prognostic role of this 8-miRNA 
signature, the miRNA risk score was calculated as 
follows: the combination miRNA panel= (0.02554× 
expression value of miR-139) + (-0.000005284× 
expression value of miR-10b) + (-0.0003305× 
expression value of miR-486) + (0.008664× expression 
value of miR-107) + (0.003201× expression value of 
miR-324) + (0.001031× expression value of miR-455) + 
(0.000474× expression value of miR-146b) + 
(-0.001575× expression value of miR-20a). By dividing 
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the risk score according to its median (median=1.602), 
111 patients were stratified into high-risk (n=55) and 
low-risk (n=56) groups (6 patients did not have OS or 
DFS data in the TCGA_TNBC dataset) (Figure 5A-B). 
Moreover, Kaplan-Meier survival analysis of the 
8-miRNA signature was used to compare the 
high-risk group with the low-risk group regarding 
patient DFS and OS. In the analysis, we confirmed 
that the high-risk group had a significantly higher 
recurrence and death rate than the low-risk group 
(Figure 5C-D), and more significantly, the ROC curve 
further demonstrated that the risk score model was 

able to effectively predict the recurrence of TNBC 
patients. Additionally, the AUC value of the 
8-miRNA signature was 0.8032 (Figure 5E). The 
8-miRNA functional roles of TNBC are shown in 
Table S3 and are involved in TNBC growth, 
metastasis, chemoresistance, immunomodulators, 
relapse, and apoptosis. 

These results further support that the 
combination of the 8-miRNA signature significantly 
improved the prognostic value. Patients in the high- 
risk group had a higher relapse and death probability 
than those in the low-risk group. 

 

 
Figure 1. Schematic workflow for the identification of recurrence-related miRNA predictor(s) in TNBC. (A) 125 TNBC tissues and 15 adjacent normal tissues 
were obtained from two different datasets (TCGA_TNBC and GEOD-40525). The 10 candidate miRNAs were intersected from these datasets. (B) These 8 miRNAs analyzed 
by expression level, Kaplan-Meier curves, TNM classification and GSEA for functional validation. (C) The GSE40049 and GSE19783 were used to test the predictive accuracy. 
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Table 2. The expression of ten candidate miRNAs in TNBC tissue between the TCGA_TNBC and GEOD-40525 datasets. 

Data sets TCGA_TNBC GEOD_40525 
microRNA Chromosome Log2 fold change p-value FDR Log2 fold change p-value FDR 
Downregulated 
hsa-miR-139-5p 11q13.4 -2.895735451 8.33E-33 9.08E-31 -2.662765892 3.76E-04 1.60E-02 
hsa-miR-10b-5p 2q31.1 -2.511149588 2.59E-32 1.41E-30 -2.779048673 4.60E-04 1.58E-02 
hsa-miR-486-5p 8p11.21 -4.248281522 3.08E-09 8.39E-08 -1.778231191 7.94E-04 1.91E-02 
Upregulated 
hsa-miR-455-3p 9q32 3.309861939 3.19E-02 3.91E-02 2.688322067 9.74E-04 2.13E-02 
hsa-miR-20a-5p 13q31.3 1.950986771 4.29E-02 4.62E-02 1.738424993 3.08E-03 4.36E-02 
hsa-miR-107 10q23.31 1.000952191 6.88E-03 1.79E-02 0.883928962 3.40E-03 4.38E-02 
hsa-miR-324-5p 17p13.1 1.785810283 7.72E-03 1.87E-02 0.885061916 4.45E-03 5.26E-02 
hsa-miR-146b-5p 10q24.32 0.94811004 3.38E-02 3.92E-02 1.951810829 4.45E-03 5.26E-02 
hsa-miR-142-3p 17q22 1.986602322 4.99E-02 4.99E-02 2.661047195 5.23E-03 5.00E-02 
hsa-miR-17-5p 13q31.3 2.453964607 2.03E-02 3.07E-02 1.900494005 4.49E-04 1.71E-02 

FDR: False-discovery rate 
 

 
Figure 2. The ten candidate miRNAs were aberrantly expressed in TNBC samples from the TCGA_TNBC and GEOD-40525 datasets. (A) Heatmap of 
miRNA sequencing expression from the TCGA_TNBC dataset. The expression of meta-signature miRNAs between TNBC and noncancer groups (adjacent normal tissue). (B) 
Heatmap of miRNA array expression from the GEOD-40525 dataset. The expression of 10 meta-signature miRNAs between TNBC and noncancer groups (adjacent normal 
tissue). Adjacent: adjacent normal; TNBC: triple-negative breast cancer. (C) The expression of 10 miRNAs between 8 adjacent normal (N) and 117 TNBC tissues from 
TCGA_TNBC dataset. (D) The expression of 10 miRNAs between 7 adjacent normal (N) and 8 TNBC tissues from the GEOD-40525 dataset. The p-values were calculated using 
Student’s t-test. *p<0.05;**p<0.01;***p<0.0001. 

 

Survival analysis of the prognostic miRNA 
signature in TNBC 

To further investigate the specific association of 
the 8 individual miRNAs with clinical characteristics 
regarding the OS and DFS of TNBC patients, a 

comprehensive survival analysis was performed with 
the Kaplan-Meier method. In the analysis, the results 
suggested that three miRNAs (hsa-miR-455-3p, 
hsa-miR-107 and hsa-miR-486-5p) were significantly 
associated with OS (p-value<0.05; Figure 6A-B). In 
addition, the DFS analysis results suggested that 
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hsa-miR-139-5p was significantly associated with DFS 
(p-value<0.05; Figure 7A-B). These results suggested 
that hsa-miR-139-5p was correlated with recurrence in 
TNBC patients. Nevertheless, hsa-miR-455-3p, 
hsa-miR-107 and hsa-miR-486-5p were associated 
with OS. To investigate the main prognostic factors 
correlated with the TNM classification for diagnosis, 
tumor size, lymph node status and distant metastasis 
were used to represent the main prognostic factors. 
Only hsa-miR-139-5p was significantly expressed in 
tumor stages I-II (early stage) and III-IV (p-value<0.05; 
Figure 8A). We also found that hsa-miR-139-5p was 

highly correlated with lymph node metastasis (LNM; 
p-value<0.05; Figure 8B) and highly expressed in 
distant metastasis (p-value<0.05; Figure 8C). The 
8-miRNA signature was assessed in the early stage of 
TNBC with the distribution of the 8-miRNA signature 
with risk scores and the recurrence status of the 
combined 91 patients (stage I and II) from the TCGA_ 
TNBC dataset. Patients with high-risk scores tended 
to experience increased relapse compared with 
patients with low-risk scores (AUC=0.8225; Figure 
S2).  

 

 
Figure 3. Comparison of 10 candidate miRNAs in TNBC and non-TNBC. The bell-shaped curve of ten miRNAs between 85 normal (including 8 and 77 adjacent 
normal of TNBC and non-TNBC), 117 TNBC and 637 non-TNBC cases from TCGA_TNBC dataset. (A) Three downregulated miRNAs in which hsa-miR-486-5p weren’t 
significant between TNBC with non-TNBC patients in 10 candidates. (B) Seven upregulated miRNAs were all significant between TNBC with non-TNBC patients in 10 
candidates. The p-values were calculated using the Student’s t-test. *p<0.05; **p<0.01;***p<0.0001; ns is not significant. 
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Figure 4. The pattern of AUC and 1023 logistic regression models were based on Gaussian finite mixture models. (A) The pattern of the logistic regression 
model correlated with the AUC scores and was identified by a Gaussian mixture. There are eight clusters of 1023 combinations. (B) A total of 1023 combinations correlated with 
the AUC scores in four BC subtypes. 

 
As noted above, these results indicated that 

hsa-miR-139-5p may play an important role in the 
progression and metastasis of TNBC. The 8-miRNA 
signature is a predictor for the recurrence of early 
stage TNBC in patients. 

Identification of gene sets enriched with the 
8-miRNA signature-based risk score 

To comprehensively study the interaction 
between miRNAs and their functions, GO and 
Hallmark pathway analyses for the 8-miRNA 
signature were performed in the high-risk group 

(Figure 9A). Functional enrichment analysis revealed 
that the 8-miRNA signature was enriched in 
inflammation, metastasis and metabolism, and the top 
20 pathways are shown in Table S4 and Figure S3. 
Accordingly, we calculated the enrichment ratio, 
which is the normalized enrichment score (NES) × 
GeneRatio (enrichment gene count/total gene count), 
and then ranked this ratio. The bubble chart shows 
that the 8-miRNA signature was correlated with 
TNF-α/NF-κB signaling, thymocyte aggregation, 
mast cell activation, T cell differentiation, 
inflammatory responses and cell-cell adhesion. 
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Moreover, the top 10 sets from GSEA with Hallmark 
gene sets showed that most pathways and genes are 
critical for inflammatory regulation, and cancer 
metastasis was associated with a high-risk score. The 
top 10 GO pathway gene sets were also associated 

with lymphocyte activation, cell-cell adhesion and 
the external side of the plasma membrane, which are 
essential for the inflammatory response and tumor 
progression (Figure 9B). 

 

 
Figure 5. Predictive value of the 8-miRNA signature in 111 TNBC patients. (A) The 8-miRNA signature risk score distribution with the DFS and OS status of patients. 
The colorgram of 8-miRNA expression profiles of high- and low-risk groups with TNBC. The blue line represents the median miRNA signature cutoff dividing patients into low- 
and high-risk groups. (B) The expression of heatmap in 8 miRNAs for 111 TNBC patients. (C) Kaplan-Meier estimates of the low- and high-risk groups in DFS for the training 
set. (D) Kaplan-Meier estimates of the low- and high-risk groups in OS for the training set. (E) ROC for TNBC recurrence by the miRNA signature between patients with or 
without recurrence in the combined or respective miRNAs. The 8 combined miRNAs had a stronger predictive value than a single miRNA. OS: overall survival; DFS: disease-free 
survival; R: recurrence; NR: nonrecurrence. 
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Figure 6. Kaplan-Meier survival analysis estimates the OS of TNBC patients according to the expression of these 8 miRNAs. There was a total of 111 patients 
in the validation set (TCGA_TNBC). (A) The three downregulated miRNAs of hsa-miR-486-5p is significant in OS of patients with TNBC. (B) The upregulated miRNAs of 
hsa-miR-455-3p and hsa-miR-107 are significant in OS of patients with TNBC. The p-values were calculated using Log-rank and Gehan-Breslow-Wilcoxon tests. *p<0.05. 

 
To further confirm which biofunctions are 

correlated with this 8-miRNA signature, we used 
another approach. The flow chart in Figure 9C 
combines the miRNA targets from miRTarBase with 
the 8-miRNA candidates to identify their potential 
targets. Then, Reactome, which is a functional 
enrichment tool, was used to align the targets and 
their biofunctions. Next, a bubble chart was used to 
show the 8-miRNA signature according to the 
entities.ratio, entities.found and entities.FDR 
functions. The results showed that the 8-miRNA 
signature was correlated with interleukin-4 and 
interleukin-13 signaling, cellular senescence, 
transcriptional regulation by RUNX3, transcriptional 
regulation by MECP2 and oxidative stress-induced 
senescence. Furthermore, the top 25 functional 
pathways were ranked with entities. The FDRs are 
shown in Table S5. The bar chart demonstrates that 

the resulting pathways are essential for the immune 
system, cellular response, gene expression, cancer 
and signal transduction (Figure 9D). 

These results suggesed that the 8-miRNA 
signature is most involved in inflammation and 
cancer metastasis. This finding might be due to 
immune escape to promote tumor recurrence, which 
consequently might have significantly contributed to 
patients with high-risk scores having higher relapse 
and death rates than patients with low-risk scores. 
Therefore, this 8-miRNA signature is defined as the 
8-miRNA recurrence predictor of TNBC in this study. 

Validation of the miRNA signature for TNBC 
recurrence prediction by the validation set 

To validate the prognostic role of this 8-miRNA 
signature, we applied the same miRNA signature 
obtained from testing to an additional 60 TNBC 
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patients in independent cohorts. The expression in the 
validation cohort GSE40049, GSE19783, and 
E-MTAB-1989 datasets was assessed and comprised 
of recurrence events and no recurrence events (the 
clinicopathological characteristics are shown in Table 
S6). We performed logistic regression analysis using 
the same 8-miRNA signature to diagnose and predict 
the probability of patient recurrence. According to the 
median risk score (median=-1.9938), 24 patients were 
stratified into high-risk (n=11) and low-risk (n=13) 
groups in GSE40049 (Figure 10A). In addition, 
according to the median risk score (median=-3371), 18 
patients were stratified into high-risk (n=8) and 
low-risk (n=10) groups in GSE19783 (Figure 10B). 
Kaplan-Meier survival analysis with the 8-miRNA 
signature was used to compare the DFS of patients in 
the high-risk and low-risk groups. In the analysis, we 

confirmed that the 8-miRNA signature in the 
high-risk group was associated with a significantly 
higher recurrence in patients from the GSE40049 
(Figure 10C), GSE19783 (Figure 10D), and 
E-MTAB-1989 datasets (data not shown). We 
analyzed the AUC values between the training and 
validation sets, which were 0.8961 (GSE19783) and 
0.9062 (GSE40049) in the validation sets compared to 
0.8032 in the training set (Figure 10E). Hence, the ROC 
curve showed that the 8-miRNA signature in the 
validation sets was better than that in the training set. 

In summary, the combination of the 8-miRNA 
signature in the validation sets showed a significantly 
improved prognostic value (AUC=0.8961 and 0.9062). 
Patients in the high-risk groups had more recurrence 
and death than those in the low-risk groups. 

 

 
Figure 7. Kaplan-Meier survival analysis estimates the disease-free survival of TNBC patients according to the expression of these 8 miRNAs. A total of 111 
patients were included in the validation set (TCGA_TNBC). (A) The three downregulated miRNAs of hsa-miR-139-5p is significant in DFS of patients with TNBC. (B) All of the 
upregulated miRNAs are not significant in DFS of patients with TNBC. The p-values were calculated using Log-rank and Gehan-Breslow-Wilcoxon tests. *p<0.05. 
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Figure 8. The difference in 8-signature miRNA expression in subgroups divided by TNM classification. (A) 111 TNBC patients with 8 N vs. 89 stage I-II vs. 22 stage 
III-IV. The p-values were calculated with the Kruskal-Wallis test. (B) 111 TNBC patients with 74 LN0 vs. 21 LN1 vs. 12 LN2 vs. 4 LN3. The p-values were calculated with the 
Kruskal-Wallis test. (C) 111 TNBC patients with 107 no metastasis vs. 4 metastasis. The p-values were calculated using Student’s t-test. *p<0.05; **p<0.01;***p<0.0001; ns is not 
significant. N: adjacent normal; T: tumor stage; LN: lymph node; M: metastasis. 
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Figure 9. Network of enrichment analysis for the 8-miRNA recurrence predictor of TNBC. (A) The workflow showed that the mRNA expression of 
TCGA_TNBC and the 8-miRNA recurrence predictor were enriched with GSEA. (B) The bubble pattern and bar chart shows the top 20 enrichment pathways with GeneRatio, 
gene count and p.adjust (FDR). The Inflammatory regulation and metastasis correlated with gene enrichment. (C) The workflow showed that miRTarBase was combined with 
the eight-miRNA recurrence predictor and enriched with Reactome. (D) The bubble pattern shows the top 25 enrichment pathways with entities.ratio, entities.found (count) 
and entities.FDR. The bar chart demonstrates that the gene sets involved in the immune system, cellular response, gene expression and disease were significantly enriched in 
pathways related to the eight-miRNA recurrence predictor. 

 

Discussion 
In this study, we identified a total of 8 miRNAs 

as a signature that is associated with tumor recurrence 
in TNBC patients from the training sets, TCGA_TNBC 
and GEOD-40525. We further verified that these 
findings were consistent in three validation sets, 
GSE40049, GSE19783 and E-MTAB-1989. The 
prognostic risk score of recurrence in TNBC patients 
and individual current prognosis regimens based on 
precise predictions are important. Our results showed 

that patients with high-risk scores according to this 
8-miRNA signature have increased cancer relapse and 
decreased survival. In addition, previous studies have 
reported that these miRNAs are correlated with 
several cancer types, including colorectal cancer, BC, 
lung cancer, gastric cancer, prostate cancer, 
endometrial cancer, pancreatic cancer, etc. These 
tumor-associated miRNAs may play a crucial role in 
the pathogenesis, tumor progression and prognosis of 
TNBC [30-34].  
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Figure 10. Predictive value of the 8-miRNA signature for TNBC in the testing study. (A) The 8-miRNA signature risk score distribution with the DFS status of 
patients. The colorgram of 8-miRNA expression profiles of high- and low-risk groups with TNBC. The green line represents the median miRNA signature cutoff dividing patients 
into low- and high-risk groups in GSE40049. (B) The 8-miRNA signature risk score distribution with the DFS status of patients. The colorgram of 8-miRNA expression profiles 
of high- and low-risk groups with TNBC. The green line represents the median miRNA signature cutoff dividing patients into low- and high-risk groups in GSE19783. (C) 
Kaplan-Meier estimates of the low- and high-risk groups in DFS for the testing set GSE40049. (D) Kaplan-Meier estimates of the low- and high-risk groups in DFS for the testing 
set GSE19783. (E) ROC curve for TNBC patient relapse by the 8-miRNA signature with/without recurrence in the combined or respective miRNAs. The AUC supports that the 
8-miRNA signature best predicts in both the training (TCGA_TNBC) and testing sets (GSE40049 and GSE19783). R: recurrence; NR: nonrecurrent. 
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The World Health Organization (WHO) 
successfully separates BC into TNBC and non-TNBC 
according to the histopathological characteristics [35]. 
We explored the expression levels of 10 miRNAs in 
TNBC and non-TNBC and compared them to 
corresponding levels in adjacent normal tissues. First, 
the 10 miRNAs were significantly expressed between 
the two analyzed TNBC and non-TNBC groups. 
Second, the expression levels were very different 
between the TNBC and non-TNBC groups for 
miR-139-5p, miR-107, miR-10b-5p, miR-146b-5p, 
miR-17-5p, miR-142-3p, miR-455-3p, miR-20a-5p and 
miR-324-5p but not for miR-486-5p (p-value of 0.2137). 
Furthermore, based on our findings, an 8-miRNA 
signature given by the miR-139-5p, miR-107, 
miR-486-5p, miR-10b-5p, miR-146b-5p, miR-455-3p, 
miR-20a-5p and miR-324-5p expression levels was 
demonstrated to significantly influence the prognosis 
of TNBC patients but not non-TNBC patients. 

In this study, the 8 miRNAs can predict the 
relapse of TNBC in the combination of logistic 
regression. For individuals, each miRNA also 
regulates the progression of TNBC in previous 
experimental studies by up- or downregulation of 
expression levels. Among them, 5 miRNAs 
upregulated in TNBC improve the metastasis 
progression of TNBC (such as miR-107, miR-20a-5p, 
and miR-455-3p) [36-38], proliferation (such as 
miR146b-5p and miR-455-3p) [32, 38], and apoptosis 
(such as miR-20a-5p and miR-324-5p) [39, 40]. The 
downregulated miRNAs were miR-139-5p, 
miR-10b-5p, and miR486-5p, which are involved in 
chemoresistance and metastasis [31, 41-46]. 

These miRNAs are involved in the complex 
regulation of TNBC progression, and most of them are 
associated with metastasis and resistance. Even 
though all of them are related to TNBC development, 
it is still difficult to determine the fate of cancer 
development based on each miRNA. Due to the 
complexity of the genetic network, tumor progression 
is more likely to depend on a group of critical 
miRNAs rather than a single one. Therefore, the 
prognosis analysis might not always be consistent 
with the unique miRNA expression level (Figs 6, 7). 
The evident reason is that miRNAs play a pleiotropic 
role in cancer. Some studies have indicated the 
pleiotropic role of miRNAs in various cancers, such as 
miR-107 and miR-146-5p [32, 47]. For TNBC, miR-107 
regulates tumor progression by both oncogenic and 
suppressor effects on metastasis. These studies 
implied that relapse prediction might depend on a 
group of critical miRNAs, and this hypothesis was 
verified by the significant association of OS analyses 
in our study (Figs 5, 10).  

Previous studies did not investigate these 8 
miRNAs as a signature to predict the relapse of TNBC 
patients. In addition, the 8-miRNA signature was 
analyzed for DFS and OS. The findings suggest that 
only miR-107, miR-146b-5p, miR-455-3p, miR-486-5p 
and miR-139-5p have statistical significance in TNBC 
patients. However, we used the 5-miRNA signature to 
predict the recurrence of patients, and it had poor 
prognostic results, with an AUC of 0.673 (Figure S4). 
Similarly, we also tried to calculate a 7-miRNA 
signature to predict the recurrence of TNBC patients. 
The data showed that the 7-miRNA signature (AUC 
of 0.8032) has very similar accuracy to the 8-miRNA 
signature (AUC of 0.8005) (Figure S5). Most of the 
genes are targeted by more than one miRNA, and 
these miRNAs may target the same or different genes 
in similar functional pathways [48, 49]. 

These reasons lead to differences in the 
predictions according to the 5- or 8-miRNA signature 
based on RNA-RNA crosstalk and ceRNA-ceRNA 
regulation. Juan Xu et al. provided constructive 
suggestions regarding miRNA-miRNA crosstalk. 
They consider miRNA crosstalk based on genomic 
similarity, regulatory networks, functions and 
phenomics [50]. In addition, a growing number of 
studies have tried to investigate ceRNA-ceRNA 
regulation in specific cancer types. The competing 
endogenous RNAs (ceRNA) hypothesis assumes that 
the RNA transcript that covers miRNA recognition 
elements (MREs) can sequester miRNAs from other 
targets sharing the same MREs, thereby regulating 
their expression [51]. Hence, the combined signature 
is crucial for cancer risk prediction since it integrates 
the multifactorial nature of cancer and tumorigenesis, 
which is imperative for the personalization of patient 
care. 

Libero Santarpia et al. demonstrated that a 
four-miRNA signature (miR-18b, miR-103, miR-107, 
and miR652) may assist in accurately predicting 
tumor relapse and OS in patients with TNBC [52]. We 
performed a ROC analysis by this four-miRNA 
signature and compared it with our 8-miRNA 
signature. The Figure S6 suggested that our 8-miRNA 
signature predicted DFS ability better than the 
4-miRNA signature in TCGA_TNBC and combined 
GSE19783 and E-MTAB-1989 data. Additionally, 
Kaplan-Meier analysis of miR-18b, miR-103, miR-107, 
and miR652 expression is shown in Figure S7. OS in 
TNBC patients with miR-107 expression levels of 
survival was significant. However, no miRNAs in the 
DFS of TNBC patients were significant (Figure S8). 
The Figure S9 shows the expression of the four 
miRNAs in the TNM classification. 

miR-139-5p was highly correlated with TNM 
stage and was able to distinguish between different 
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stages (I-II vs. III-IV stage, p<0.05), nodes (LN0, LN1, 
LN2 and LN3, p<0.05), and metastasis (no metastasis 
vs. metastasis, p<0.05). Several lines of evidence 
suggest that miR-139-5p is a prognostic biomarker for 
different cancer types. For example, the EZH2/ 
miR-139-5p axis impeded EMT and LNM in 
pancreatic cancer [53]. MiR-139-5p downregulated 
VEGFR to inhibit signaling pathways in the 
development of esophageal cancer [54]. MiR-139 
could act as an anti-oncomir to suppress primary 
malignant brain tumor progression by targeting 
insulin-like growth factor 1 receptor (IGF-1R), 
associate of Myc 1 (AMY-1) and peroxisome 
proliferator-activated receptor γ coactivator 1β 
(PGC-1β), thus inhibiting the PI3K/AKT and c-Myc 
signaling pathways [55]. The tumor suppressor 
function of miR-139-5p involves targeting HOXA10 to 
inhibit endometrial cancer cell growth and migration 
[56]. MiR-139-5p was able to regulate the cell motility 
and invasion of aggressive BC through the TGFβ, 
Wnt, Rho, and MAPK/PI3K signaling cascades [41]. 
MiR-139-5p directly binds to Rho-associated coiled- 
coil-containing protein kinase 2 (ROCK2) to suppress 
cell proliferation and invasion in ovarian cancer (OC) 
[57]. Many studies have identified that the miR-139-5p 
expression level could serve as a diagnostic, 
prognostic and therapeutic marker in the future. In 
addition, low miR-139-5p expression was correlated 
with poor prognosis in hepatocellular carcinoma 
(HCC) and glioblastoma multiforme (GBM). 
However, further research and studies with larger 
samples are still needed to elucidate its functions [58, 
59]. 

MiRNAs not only play a pivotal role in tumor 
differentiation but also contribute to biological 
processes in TNBC. Functional enrichment of the 
8-miRNA signature was analyzed with Hallmark and 
GO annotations. The combined results showed that 
these miRNAs were highly correlated with 
inflammatory regulation, tumor metastasis, and 
metabolism. Many reports confirm that TNBC 
exhibits the strongest immunogenicity and may 
provide an option for immunotherapy. For example, 
CD4+ helper T cells have an immune response 
pathway via Th1 and Th2 in ER-negative BC. Type I 
immune responses, such as CD4+ T cells, secrete 
cytokines (TNF-α, IFN-Υ, CD8+, and IL-2 cytotoxic T 
cells) to support the destruction of the tissue 
environment. Moreover, tumor-associated 
macrophages (TAMs) are composed of M1 and M2 
phenotypes and are correlated with macrophage 
polarization, cytokine profiles and migratory 
functions [60]. Hartman et al. demonstrated that an 
effective treatment strategy involved suppressing 
both IL-6 and IL-8 in TNBC. Hence, recent evidence 

has suggested that activated immune response genes 
are associated with good prognosis [61, 62]. 
Furthermore, a recent clinical trial used 
pembrolizumab, which is a high-affinity anti-PD-L1 
antibody, in metastatic TNBC patients who express 
PD-L1. PD-L1 can bind to and activate cytotoxic T 
cells to prevent T-cell activation and proliferation as 
well as the release of IL-2. PD-L1 is an important 
regulatory checkpoint since it prevents excessive 
adaptive immune responses [63-65]. Metastasis in BC 
is characterized by a distinctive spread to the lungs, 
liver, brain, and bones via regional lymph nodes. 
Increasing evidence shows that miRNAs are involved 
in a variety of processes contributing to tumorigenesis 
and metastasis in TNBC [66]. In recent studies of 
metastatic BC, miR-10b, miR-20a, miR-139-5p, and 
miR-486-5p were highly expressed in lymph node 
metastases [67, 68]. In addition, MUC1, which is a cell 
wall-based mucin glycoprotein present on the apical 
surface of epithelial cells, is highly expressed in many 
adenocarcinomas. Pillai K et al. demonstrated that 
MUC1 overexpression is associated with angiogenesis 
and chemoresistance in cancer [69-72]. 

A major question that must be asked is why do 
miR-107, miR-486-5p and miR-455-3p have statistical 
significance in OS but not in DFS? Likewise, 
miR-146b-5p and miR-139-5p were significant in DFS. 
Zhiying Luo et al. demonstrated that the expression 
level of miR-107 has also been associated with both 
DFS and OS. Overexpression of miR-107 and 
miR-146b-5p is significantly associated with an 
improved objective response to chemotherapy and 
promotes cell growth, invasion and glycolysis in 
colorectal cancer (CRC) [72, 73]. In addition, the 
oncomiR miR-455-3p provides a potential therapeutic 
target to achieve better clinical outcomes in cancer 
[74]. Both miR-486 and miR-139-5p can be used as 
biomarkers for cancer recurrence. Although these 
previous studies were not all focused on TNBC, these 
5 miRNAs were all associated with clinical outcomes. 
Another question to raise is why the expression levels 
(adjacent normal vs. tumor) of 3 of the 8 miRNAs in 
GSE40049 were not consistent with the training 
results (Figure S10). We believe the differences lie in 
the composition due to the diversity of TNBC tissue. 
In the training set, the results of the 8-miRNA 
signature analyses were also used to predict patient 
relapse. In addition, the platforms applied during 
training and validation were different. For example, 
the NGS platforms applied for the quantification of 
miRNA expression included Illumina HiSeq 2000 
miRNA sequencing and Applied Biosystems SOLiD 
sequencing. Each method has its strengths and 
weaknesses. In addition, recent studies have 
discussed that “scientists rise up against statistical 
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significance”. Because of human nature and cognition, 
different researchers think that a p-value of more or 
less than 0.05 in results can be either statistically 
significant or statistically insignificant. These common 
practices suggest that the thresholds of statistical 
significance can be misleading [75]. 

Overall, the evidence indicates that this 
8-miRNA signature can accurately predict the relapse 
of TNBC patients and that it will be useful for further 
clinical prognosis. 

Conclusions 
In conclusion, we demonstrated that it is 

possible to accurately identify clinical outcomes in 
TNBC patients using an 8-miRNA signature. The 
8-miRNA signature could be useful in TNBC 
according to risk in trials on the adjuvant treatment of 
patients. Further validation studies in large 
independent patient cohorts are needed to assess the 
true clinical value of our findings for TNBC diagnosis 
and prognosis. 
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