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Abstract 

Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem 
cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular 
heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and 
differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs 
are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory 
networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence 
through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of 
the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the 
molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will 
enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we 
highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, 
and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction 
of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We 
evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including 
anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the 
awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such 
as single-cell sequencing and CRISPR–Cas9 screening, on the investigation of the biological properties of 
CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental 
approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs. 

Key words: cancer stem cells, transcriptional and posttranslational regulation, epigenetics, metabolism, tumor 
microenvironment, therapy resistance, CSC-targeting therapies  

Introduction 
Tumors are complex systems that include 

cancerous cells as well as the associated tumor 
microenvironment (TME), which is comprised of 
cancer-associated fibroblasts (CAFs), vasculature, 
infiltrating immune cells, and other components. 
Considerable efforts have been made to model the 

complexity of cancer by integrating the TME to 
interrogate tumor heterogeneity based on epigenetic 
and genetic variations. The concept of cancer stem 
cells (CSCs) states that tumors, like their normal tissue 
counterparts, have a unidirectional cellular hierarchy 
with CSCs at the apex, which are responsible for 
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sustaining tumorigenicity and recapitulating the 
cellular heterogeneity inherent within the original 
tumor [1]. The CSC model stimulated intense interest 
when evidence emerged supporting the model in 
human acute myeloid leukemia (AML) and breast 
cancer. It was found that a small subpopulation of 
cancer cells were capable of initiating leukemia when 
transplanted into immune-deficient mice. Moreover, 
these AML cells could be enriched by using a 
combination of the cell surface markers CD34+CD38− 
[2], while breast cancer-propagating cells were 
marked with CD44+CD24-/low [3]. There is now 
convincing evidence for CSCs in a variety of solid 
tumors, including brain [4, 5], prostate [6, 7], colon [8, 
9], pancreatic [10], ovarian [11], and lung [12]. 
Although the existence of CSCs has been evident in 
various cancer types, it remains uncertain whether the 
CSC model applies to all or only some cancers due to 
issues concerning the robustness of CSC markers and 
the extent to which existing assays underestimate the 
tumorigenic cell frequencies.  

The CSC model has received wide attention 
because it explains the clinical observation that many 
treatments seem to initially eradicate cancer cells, but 
later the cancer will often return. Therefore, it is of 
considerable importance in the clinic to target CSCs 
within the tumor to prevent tumor relapse. CSCs are 
often more resistant to currently available anticancer 
therapies than the rapidly dividing bulk tumor cells 
surrounding the CSC subpopulation. Sporadic genetic 
mutations and epigenetic changes within the tumor 
cells, as well as interactions with the TME, influence 
both CSCs and the tumors response to therapies and 
overall prognosis [13, 14]. In the following sections, 
we provide an update on intrinsic and extrinsic 
regulators of CSCs, including transcriptional and 
post-transcriptional regulation, epigenetics, 
metabolism, and the TME that have shaped our 
understanding of how CSCs function to drive tumor 
growth and therapeutic resistance. We also highlight 
recent developments of CSC-based therapies and 
clinical trials. 

CSC definition and key features 
Various methods have been developed to 

characterize CSCs and determine the degree to which 
a cell possesses the ability to self-renew [15]. CSCs 
form spheres in vitro that are maintained through 
serial passages, while progenitor or differentiated 
cells lack this ability [16]. Moreover, unlike 
differentiated cells, in vivo xenografts with CSCs yield 
sizable tumors in immunocompromised mice, and 
these can be faithfully recapitulated with serial 
transplantations. In addition, cell surface markers 
have been a useful tool to characterize CSCs, as many 

of these markers are present on CSCs and normal 
stem cells but are not expressed on differentiated 
tumor cells [17]. For instance, CD133 is a marker for 
hematopoietic stem cells (HSCs), but has been widely 
acknowledged as a CSC marker in breast, prostate, 
colon, glioma, liver, lung, and ovarian cancers. 
Finally, lineage tracing studies are able to use markers 
(e.g. GFP) to monitor the ability of a cell that gives rise 
to and maintains clonal progeny containing the 
parental marker [1]. CSCs that can grow and maintain 
these colonies demonstrate a hierarchical organization 
structure.  

There is growing evidence indicating that a 
tumor mass composed of CSCs, differentiated cancer 
cells, and the non-malignant stromal cell network all 
work together to allow the tumor to adapt and thrive 
in the harsh TME [18]. A well-characterized example 
of cellular plasticity in normal cells is the intestinal 
stem cell population [19], in which certain 
differentiated endocrine cells modulate their genetic 
profiles to resemble intestinal stem cells after tissue 
injury [20]. Moreover, in colorectal cancer with 
genetic ablation of Leucine Rich Repeat Containing G 
Protein-Coupled Receptor 5+ (LGR5+) CSCs, 
differentiated keratin 20+ (KRT20+) cancer cells 
become dedifferentiated upon entering the niche 
previously occupied by the ablated LRG5+ CSCs [21]. 
Such functional plasticity is also seen in glioma 
stem-like cells (GSCs). Upon treatment with receptor 
tyrosine kinase (RTK) inhibitors, GSCs can adopt a 
slow cell cycling state that is dependent upon Notch 
signaling and is associated with chromatin 
remodeling using H3K27 demethylases [22]. This 
epigenetic modulation allows GSCs to persist when 
confronted with therapeutic insults, thereby 
providing an avenue for therapeutic resistance. In 
breast cancer, differentiated basal and luminal cells 
can revert to a stem cell-like state at a low but 
significant rate [23]. Given sufficient time, 
subpopulations of stem, basal, or luminal cells 
cultured individually can eventually recapitulate 
phenotypic proportions that include the other two cell 
types, thereby mirroring the heterogeneity of clinical 
breast cancer. The ability of cancer cells to endure 
therapeutic stress is once again evident in this 
situation [1, 23]. Unlike stem cells, basal and luminal 
breast cancer cells are normally unable to give rise to 
tumors in mice. However, upon co-inoculation with 
irradiated cells, all three subpopulations are 
effectively tumorigenic. 

The transcriptional regulation of CSCs 
CSCs have the ability to self-renew and 

differentiate which allows them to not only be 
tumorigenic, but also possess the plasticity to promote 
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drug/radiation resistance following treatment. These 
processes involve multiple critical and highly 
regulated transcription factors (TFs), which govern 
CSC homeostasis. CSCs also express several critical 
TFs that play a key role in inducing pluripotency in 
somatic cells, including octamer-binding transcription 
factor 4 (OCT4), Sry-related HMG box 2 (SOX2), 
Kruppel-like factor 4 (KLF4), NANOG, and c-MYC 
[24-26]. In addition, many intracellular signaling 
pathways [27], such as Wnt/TCF, Signal transducer 
and activator of transcription 3 (STAT3), and NF-κB 
also have important roles in the regulation of CSC 
phenotypes (Table 1). In particular, the central 
stemness-associated TFs, OCT4, SOX2, KLF4, c-MYC, 
and NANOG are expressed in both CSCs and normal 
stem cells, such as embryonic stem cells (ESCs) [28]. 
Accumulating evidence shows that the 
overexpression of these central stemness-associated 
TFs occurs in various types of human cancers, 
including breast cancer [29], prostate cancer [30], and 
oral squamous cell carcinoma [31]. The aberrant 
expression of these TFs is associated with tumor 
initiation, progression [29], and therapy resistance 
[32]. The central stemness-associated TFs play critical 
roles in maintaining the pluripotency and 
self-renewal properties of CSCs and ESCs, but with 
distinct mechanistic functions between them [28]. 
Although CSCs and ESCs share common properties 
such as self-renewal, they have different phenotypic 
features and proliferative potentials [33]. The central 
stemness-associated TFs play a vital role in the 
maintenance of self-renewal and pluripotency in ESCs 
as well as in the control of early cell fate decisions in 
ESCs [34]. However, the overexpression of these 
central stemness-associated TFs in CSCs regulates 
signaling pathways to promote tumorigenicity and 
cell survival in response to cancer treatments [28]. 

 

Table 1. Key transcriptional factors of CSCs 

Transcription 
factor 

Cancer type Effects Refs 

OCT4 Pancreatic Chemoresistance, and 
tumorigenesis 

[38-41] 

SOX2 Glioma, breast and 
others 

Self-renewal, tumor growth 
and therapy resistance 

[44, 45] 

KLF4 Breast, glioma, and 
osteosarcoma 

Metastasis, migration and 
drug resistance 
 

[50-52] 

MYC Glioma, breast Drug resistance [54, 55] 
NANOG Hepatic, prostate, 

colorectal, and brain 
cancers 

Tumorigenesis and therapy 
resistance 

[56, 62, 
63] 

Wnt/TCF Breast and glioma Metastasis and stemness 
maintenance  

[66, 67] 

STAT3 Breast, liver, colon 
leukemia and prostate 

Proliferation, stemness 
maintenance and 
immunosuppressive 

[69-75]  

NF-κB Breast, prostate, 
ovarian and pancreatic 
cancer 

Pro-inflammatory, 
angiogenesis and invasion 
 

[76-80] 

 

OCT4 
OCT4, encoded by the POU5F1 gene, is 

implicated in multiple processes, including stem cell 
maintenance and embryogenesis [35]. OCT4 is also 
overexpressed in CSCs of various types of human 
cancers, and has a positive association with 
tumorigenesis, therapy resistance, and a worse 
prognosis in cancers [36, 37]. Suppression of OCT4 
increases sensitivity to irradiation and chemotherapy 
in lung cancer [38], glioma [39], and oral squamous 
cancer cells [40]. In pancreatic CSCs (PCSCs), 
combined inhibition of OCT4 and NANOG 
suppressed the proliferation, migration, invasion of 
CSCs in vitro, and the tumorigenicity of CSCs in 
immunocompromised mice, but increased the 
chemosensitivity of CSCs [41]. OCT4-regulated 
expression of EMT-related genes, CXCR4, MMP2, 
MMP9, and TIMP1 is associated with tumor growth, 
metastasis, and drug resistance of PCSCs [41]. Mouse 
breast cancer cells with elevated expression of OCT4 
have an increased ability of forming tumor spheres, 
and a worse high levels of stemness-associated genes 
such as ATXN1, PROM1, CD34, and ALDH1, thereby 
displaying higher tumorigenic potential in vivo [42]. 

SOX2 
SOX2 plays an essential role in embryonic 

development and the maintenance of stemness in 
embryonic and adult stem cells [43]. Dysregulated 
expression of SOX2 is associated with cancer 
pathogenesis and several traits of cancer cells such as 
proliferation, EMT, CSC formation, resistance to 
apoptosis, and chemotherapy [44]. Moreover, 
accumulating evidence shows that SOX2 is involved 
in the regulation of self-renewal, tumor growth, and 
therapy resistance of CSCs in cancer [44, 45]. In 
glioblastoma (GBM), suppression of SOX2 in GSCs 
resulted in cell cycle arrest and markedly reduced 
their abilities of cell growth, migration, invasion, and 
tumorigenicity [46]. In breast cancer, SOX2 is required 
for the proper functioning of CSCs, and mediates 
resistance to the estrogen receptor antagonist 
tamoxifen [47, 48]. Given the roles of SOX2 in cancer 
biology and CSCs, it is of high importance to 
investigate the downstream regulatory pathways 
either directly or indirectly mediated by SOX2 and the 
development of specific SOX2-targeting cancer 
therapies. 

KLF4 
KLF4 is a zinc finger transcription factor that is 

involved in diverse cellular processes, including 
regulation of the cell cycle and maintenance of cellular 
pluripotency [49]. Since the discovery of KLF4 in 2006 
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as one of four key factors required for the induction of 
pluripotent stem cells (iPSCs) [24], there has been an 
increase in research to determine the function of 
KLF4. MicroRNA-7 (miR-7) suppresses the expression 
of KLF4 by directly targeting its 3’-untranslated 
region, which leads to a decrease in brain metastasis 
[50] of breast CSCs. In glioma, KLF4 was found to 
directly bind to the promoter region of Integrin β4 
(ITGB4) and increase ITGB4 expression, resulting in 
an increase in GSC self-renewal and enhanced glioma 
cell migration and proliferation both in vitro and in 
vivo [51]. Furthermore, KLF4 was shown to enhance 
the sphere-formation ability, drug resistance, and 
metastatic potential in osteosarcoma CSCs through 
activation of the p38 mitogen-activated protein kinase 
(MAPK) signaling pathway [52]. Taken together, 
these studies reveal an essential role for KLF4 in the 
regulation of CSC properties and suggest KLF4 as a 
potential therapeutic target for cancer treatments. 

c-MYC 
MYC proteins, including c-MYC, N-MYC, and 

L-MYC have important roles in tumorigenesis and 
therapeutic resistance. Among these MYC members, 
c-MYC is perhaps the most frequently dysregulated 
protein in human tumorigenesis, thereby serving as a 
promising therapeutic target for cancer treatments 
[53]. c-MYC amplification in patient-derived GSCs 
generates sensitivity to PARP inhibition via 
c-MYC-mediated transcriptional repression of CDK18, 
CCNE2, and CDKN1A [54]. Similarly, in triple- 
negative breast cancer, c-MYC interacts with a 
lncRNA, LINC01638, which prevent its ubiquitination 
and degradation. In turn, c-MYC transcriptionally 
regulates MTDH expression and then stimulates 
Twist1 signaling to maintain an EMT signature and 
CSC-like state [55].  

NANOG 
As one of the central stemness-associated TFs, 

NANOG plays a critical role in embryonic 
development and cellular reprogramming [24]. 
NANOG is broadly expressed in various types of 
cancers [56]. Recently, the involvement of NANOG in 
tumorigenesis and cancer progression has drawn 
significant attention. Aberrant overexpression of 
NANOG has been described in hepatic, prostate, 
colorectal, and brain CSCs [4, 57-59]. Correlative 
expression between NANOG and CSC markers has 
also been reported. For example, NANOG is enriched 
in CD133+ or CD44+ cancer cells as compared to 
CD133- or CD44- cells [60-62]. NANOG regulates the 
fundamental properties of CSCs such as cell 
proliferation, cell cycle, self-renewal, EMT, 
tumorigenicity, and chemoresistance [56, 62, 63]. 

Therefore, NANOG represents a critical molecular 
nexus underlying tumor initiation and progression 
and may prove to be a novel therapeutic target for 
CSC elimination. 

Wnt/TCF4 
Wnt signaling is one of the key cascades in 

control of embryonic development and is also 
involved in self-renewal, tumorigenesis, and 
metastasis of CSCs [64]. Several components in the 
Wnt signaling pathway, such as LEF1, cyclin D1, 
β-catenin, and TCF-4 are expressed at markedly 
higher levels in the CSC population as compared to 
non-CSCs [65]. The decreased Wnt1 in breast CSCs 
caused the down-regulation of the stemness- 
associated genes CD44, ALDH1, and ATXN1, as well 
as reductions in the CSC subpopulation and tumor 
sphere formation [66]. Additionally, Wnt signaling 
activity is enriched in the proneural subtype of GSCs. 
Wnt signaling is tightly associated with CSC 
properties through the induction of miR-20b and 
miR-125b transcription: these miRs function as 
suppressors of two negative regulators of Wnt 
signaling, FZD6 and APC [67].  

STAT3 
STAT3 is dysregulated in a number of human 

cancers, acting as a key molecular driver in multiple 
signaling processes. Phosphorylated STAT3 at 
tyrosine (Tyr) 705 by Janus kinases (JAK), regulates its 
dimerization, nuclear accumulation, and DNA 
binding, thereby initiating its transcriptional 
regulation [68]. STAT3 is centrally important for the 
maintenance of CD44+/CD24– CSCs in breast cancer, 
suppression of genes involved in cell proliferation 
correspondingly reduce STAT3 activation [69]. 
Furthermore, in colon cancer, the internalized CD44 
and acetyltransferase p300 induce STAT3 acetylation 
at Lysine (Lys) 685, which in turn promotes the 
expression of cell cycle regulators cyclin D1 [70], 
MYC, and Twist1 in colon cancer cells [71]. Moreover, 
in hepatocellular carcinoma, activated STAT3 can 
increase CD133 expression through functional 
cooperation with NF-κB and hypoxia inducible factor 
1 alpha (HIF-1α) [72]. STAT3 is also a key regulator of 
GSCs. STAT3 inhibition suppresses the expression of 
stemness-associated genes OLIG2 and NES, but 
enhances expression of the differentiation marker 
TUBB3 [73]. Additionally in leukemia, inhibition of 
STAT3 with its inhibitor AZD9150 leads to deceased 
expression of leukemic drivers including IL1RAP, 
MSI2, CXCR2, and IL8, as well as MCL1 [74]. 
Similarly, the inactivation of STAT3 in PTEN-deficient 
tumors activates immunosurveillance in prostate 
cancer by reducing the expression of cytokines 
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including CXCL2, GM-CSF, M-CSF, C5a, IL10, and 
IL13, thereby displaying the immunostimulatory 
features of the senescence-associated secretory 
phenotype of tumor cells [75]. 

NF-κB 
NF-κB is critical in the toll-like receptor 2 (TLR2)- 

initiated TLR2-MyD88-NF-κB signaling pathway, 
which creates a pro-inflammatory microenvironment 
and supports self-renewal of epithelial ovarian CSCs, 
through up-regulation of CD44, NANOG, SOX2, as 
well as IL-6 [76]. NF-κB co-operates with β-catenin to 
enhance the expression of CD44, ALDH1, MYC, and 
OCT4, known markers of breast CSCs, which results 
in an enriched CD44high/CD24−/low sub-population 
post poly(I:C) treatment [77]. On the other hand, 
NF-κB plays a critical role in the expansion of breast 
CSCs through heterotypic signals that promote 
macrophage recruitment and angiogenesis [78]. TLR9 
is essential for the propagating potential of prostate 
cancer cells via activation of NF-κB and STAT3, which 
induces the expression of key stem cell-related genes, 
including NKX3.1, KLF-4, BMI-1, and COL1A1 by 
directly interacting with their promoters [79]. In 
PCSCs, NF-κB induces SOX9 expression, which is 
critical in controlling the CSC population and 
invasion ability of the pancreatic cancer cells [80]. 
Finally in GSCs, the STAT3/NF-κB signaling pathway 
is constitutively activated in both adherent and 
spheroid GSCs, and helps to up-regulate the positive 
regulators of the Notch pathway, including NOTCH1, 
NOTCH3, NOTCH4, HES5, HEY1, and JAG1, but also 
down-regulates the negative regulators, such as 
CTBP1 and RBPJ [81]. 

Post-transcriptional regulation in CSCs 
Advancements in technology and methodology 

have broadened our understanding of post- 
transcriptional modifications as an additional 
regulatory mechanism of gene expression in cancer. 
The term “epitranscriptome” [82] was coined to refer 
to diverse post-transcriptional modifications on RNA, 
including various RNA processing events such as 
RNA methylation, editing, and alternative splicing. 
Emerging data suggest that epitranscriptome 
regulation plays a central role in CSC maintenance 
and cancer development [83].  

RNA methylation in CSCs 
N6-methyladenosine (m6A) represents the most 

widely distributed internal mRNA modification in 
mammals, with around 25% of mRNAs containing at 
least one m6A site [84]. As a dynamic process, m6A is 
catalyzed by RNA methyltransferases known as 
“writers” and can be removed by RNA demethylases 

called “erasers” (Figure 1A). A number of proteins 
have been identified in the m6A writer complex, 
including methyltransferase-like 3 (METTL3, catalytic 
component), Wilms tumor 1-associated protein 
(WTAP, key adaptor for METTL3), methyltransferase- 
like 14 (METTL14, RNA adaptor needed for METTL3 
activity), RNA binding motif protein 15 (RBM15, 
mediator of methylation specificity through binding 
to U-rich regions in mRNAs), and Vir Like M6A 
Methyltransferase Associated (VIRMA) [85]. Two 
different enzymes were identified as m6A 
demethylases: fat mass and obesity-associated protein 
(FTO) and alkylated DNA repair protein AlkB 
homolog 5 (ALKBH5). However, recent studies using 
methylated RNA immunoprecipitation sequencing 
(MeRIP-Seq), and several other findings have shown 
that FTO physiologically targets m6Am 

(N6,2′-O-dimethyladenosine), which is 
indistinguishable from m6A, suggesting that m6A 
might not be the correct substrate of FTO [86]. 
Additionally, several m6A-binding proteins, such as 
YTH domain containing protein family 
(YTHDF1/2/3 and YTHDC1/2) and insulin-like 
growth factor 2 mRNA-binding proteins 
(IGF2BP1/2/3), have been identified as m6A 
“readers”. By recruiting various “readers”, m6A exerts 
diverse effects on RNA metabolism, stability 
(YTHDF2), splicing (YTHDC1 and hnRNPG), nuclear 
export (YTHDC1), translation efficiency (YTHDF1, 
IGF2BPs, eukaryotic initiation factor 3, eIF3), and 
phase separation potential (YTHDF1/2/3) of targeted 
mRNAs [87-93].  

Given the critical role of m6A modifications in 
regulating cellular pluripotency and differentiation 
[94], their linkage with CSC maintenance and 
tumorigenesis is not surprising. Studies strongly 
support the critical requirement for the m6A “writer” 
complex in AML (Figure 1B). Depletion of METTL3, 
METTL14, or WTAP results in cell-cycle arrest, 
differentiation of leukemic cells, and delayed 
leukemogenesis in vivo, through m6A modifications of 
target mRNAs, such as c-MYC, BCL2, PTEN, SP1, SP2, 
and MYB [95-97]. FTO also exerts an oncogenic role in 
AMLs, which suppresses leukemia cell differentiation 
and enhances leukemogenesis by modulating the 
expression of targets such as ASB2, RARA, and MYC 
[98, 99]. Targeting YTHDF2 stabilizes m6A-modified 
transcripts, such as TNFR2, and selectively 
compromises AML development without dampening 
normal hematopoiesis [100]. In glioma (Figure 1B), 
studies addressing the roles of m6A in GSCs have 
generated divergent results. For example, treatment 
of serum and retinoic acid elevated the level of m6A in 
GSCs, inducing GSC differentiation, while 
knockdown of METTL3 or METTL14 promoted 
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growth, self-renewal, and tumorigenesis [101]. 
Controversially, other studies showed that global 
m6A levels were decreased during serum-induced 
GSC differentiation and METTL3-mediated m6A 
modifications play essential roles in the maintenance 
and tumorigenicity of GSCs through stabilizing SOX2 
and SRSF transcripts [102, 103]. ALKBH5 is 
overexpressed in GSCs and plays a critical role in GSC 
self-renewal and tumorigenesis through 
demethylating FOXM1 nascent transcripts and 
enhancing FOXM1 expression [104]. In breast cancer 
(Figure 1B), hypoxia-induced ALKBH5 expression in 
breast cancer cells demethylated and stabilized 
NANOG mRNA, thereby promoting the self-renewal 
of breast CSCs [105]. IGF2BPs play oncogenic roles in 
cancers as m6A readers by enhancing mRNA stability 
and translation of MYC transcripts [92]. Taken 

together, RNA methylation has been recognized as a 
critical regulator of CSC generation and maintenance 
by modulating the expression of various 
oncoproteins. 

RNA editing in CSCs 
Comprehensive RNA sequencing has revealed 

extensive post-transcriptional modifications in the 
human transcriptome with the most prevalent form 
being adenosine-to-inosine (A-to-I) conversion [106]. 
These modifications are catalyzed by adenosine 
deaminases acting on double-stranded RNA (ADAR) 
enzymes that include three ADAR members, ADAR1, 
ADAR2, and ADAR3. Following deamination of 
adenosine to inosine, the residue is interpreted as a 
guanosine (G) by the splicing and translational 
machinery, producing various functional results, such 

as changes in translated amino acids, 
biosynthesis and target recognition by small 
noncoding RNA, alternative RNA splicing, and 
lncRNA functions [107].  

Although the overall biological functions 
of ADARs are still under investigation, aberrant 
activity of ADAR and dysregulated A-to-I RNA 
editing has been found in many human cancers 
[107, 108]. In various tumor tissues, the level of 
A-to-I RNA editing is increased, probably due 
to the upregulation of ADAR1 in tumors [108]. 
Several A-to-I RNA editing events have been 
found to correlate with cancer development 
and progression. In human chronic myeloid 
leukemia (CML), ADAR1 activation enhances 
self-renewal capacity of leukemia stem cells 
(LSCs) by editing let-7 pri-microRNA 
(pri-miRNA), resulting in impaired let-7 
biogenesis and increased LIN28B pluripotency 
gene expression [109, 110]. In hepatocellular 
carcinoma (HCC), ADAR1-induced amino acid 
substitution in antizyme inhibitor 1 (AZIN1) 
enhances its activity and promotes tumor 
initiation and development [111]. Moreover, 
SLC22A3 RNA editing is required for early 
tumor invasion and cell migration in familial 
esophageal cancer [112]. In oral squamous cell 
carcinoma, ADAR1 promotes the EMT and 
stem-like cell phenotype by facilitating 
oncogenic onco-miRNA maturation. A 
systematic multi-cancer miRNA analysis 
identified A-to-I editing in miR-200b, where 
increased levels were found associated with a 
worse prognosis for cancer patients [113]. 
Mechanistically, the edited miR-200b switches 
its role from suppressing to enhancing tumor 
invasion through targeting LIFR, an established 
inhibitor of cancer metastasis [113]. ADAR2 is 

 

 
Figure 1. Mechanism of N6-methyladenosine (m6A) modification and its roles in 
CSCs. (A) m6A is regulated by writers, erasers, and readers. “Writers” refer to the m6A 
methyltransferase complex including METTL3, METTL14, WTAP, and  RMB15. “Erasers” are 
m6A demethylases including ALKBH5 and FTO. “Readers” are proteins that recognize m6A, 
including YTH domain containing proteins (YTHDF1/2/3 and YTHDC1/2), IGF2BP1/2/3, and 
other factors such as hnRNPG and eIF3. The binding of these “readers” to m6A mediates 
downstream RNA processes, including stability, splicing, nuclear export, translation, and phase 
separation potential of targeted mRNAs. (B) The m6A modification and its regulators play critical 
roles in cancer stem cell maintenance and tumorigenicity. 



Theranostics 2020, Vol. 10, Issue 19 
 

 
http://www.thno.org 

8727 

an essential enzyme for brain development [114] and 
is downregulated in gliomas [115]. Overexpression of 
ADAR2 inhibits glioma cell proliferation and tumor 
growth by editing and reducing the expression of 
several onco-miRNAs, including miR-222/221 and 
miR-21 [116, 117]. Taken together, these studies 
suggest that aberrant regulation of RNA editing 
significantly contributes to the malignant phenotypes 
of CSCs. 

Dysregulation of RNA splicing in CSCs 
Comprehensive transcriptomic analyses across 

cancer types have revealed widespread RNA 
alternative splicing (AS) alterations in tumors, which 
can be derived from somatic mutations in splicing- 
related genes, altered expression or activity of splicing 
factors, or mutations in cis-regulatory elements [118, 
119]. As an important regulator of embryonic stem 
cell pluripotency and reprogramming [120], RNA 
splicing also contributes to CSC generation and 
maintenance. For example, specific isoform 
expression signatures distinguish LSCs from normal 
human HSCs where the mis-spliced gene products 
include a pro-survival isoform of BCL-XL and splice 
variants of SHP-1 and PTK2B, which have been 
associated with hematological malignancies. More 
importantly, treatment with a spliceosome 
modulatory drug, 17S-FD-895, impairs LSC 
maintenance while sparing normal hematopoietic 
cells in humanized pre-clinical models [121]. 
Moreover, specific splice variants of different stem 
cell regulatory RNAs, including CD44v3 and exon 8, 
9-deleted GSK3β enhances LSC self-renewal [122, 
123]. Protein arginine methyltransferase 5 (PRMT5) 
regulates the alternative splicing of genes involved in 
DNA repair, which maintain the genomic integrity of 
HSCs [124]. Mutations affecting key spliceosome 
components, frequently occurring in hematologic 
malignancies, contribute to HSC maintenance and 
tumorigenic potential [125]. Loss of 
SETD2/H3K36me3 mediates splicing modulation, 
regulates intestinal self-renewal, and aggravates 
Wnt/β-catenin-dependent colorectal tumorigenesis 
[126]. The splicing factor, SRSF3, governs alternative 
splicing programs and promotes the self-renewal and 
tumorigenicity of GSCs [127]. CD44 splice isoform 
switching was also shown to modulate the plasticity 
of breast CSC [128].  

Together, recent studies revealed widespread 
alterations of RNA processing events in various types 
of human cancers. However, the events that have 
been functionally demonstrated as relevant to 
tumorigenesis or tumor development are still limited. 
Future studies should elucidate the extent to which 
epitranscriptomic alterations detected by 

next-generation sequencing technology can be 
incorporated into functionally relevant gene products 
and contribute to tumor development and 
malignancy. Moreover, other RNA processing events, 
such as alternative cleavage and polyadenylation, 
have been demonstrated to control cell fate decisions 
and pluripotency in iPSCs [129], but their 
involvement in CSC generation and maintenance 
remains largely unknown. Future studies aimed at 
comprehensively deciphering the epitranscriptome in 
CSCs and the crosstalk between different RNA 
processing events should unveil novel biomarkers 
and therapeutic targets in CSCs. 

CSC epigenetics  
Tumor development and progression is 

regulated by both genetic and epigenetic 
modifications. The complex phases of tumorigenesis 
require discrete genetic changes in neoplastic cells 
and epigenetic alterations. Epigenetic changes within 
a cell do not involve primary DNA sequence 
alterations but rather accessibility of genetic loci to 
transcriptional machinery and chromatin remodeling, 
thus modulating DNA accessibility and transcription. 
Epigenetic mechanisms such as changes in DNA 
methylation, histone modifications, as well as 
noncoding RNAs, have been shown to play critical 
roles in cancer progression which influence cellular 
states at multiple steps in carcinogenesis. In the initial 
stage of cancer, changes in DNA methylation and 
chromatin caused by genetic mutations lead to 
oncogenic cellular reprogramming and acquisition of 
undifferentiated phenotypes [130]. Convincing 
evidence in support of this view may come from 
findings in GBM, a lethal form of primary brain tumor 
characterized by high genetic heterogeneity. H3K27M 
mutations, which are found in over 70% of diffuse 
intrinsic pontine gliomas (DIPG), lead to a global 
reduction of the repressive H3K27me3 mark induced 
by the polycomb repressive complex 2 (PRC2), and 
drive neoplastic transformation in neural precursor 
cells and the induction of stemness properties [131, 
132]. As cancers grow and progress, additional 
epigenetic changes triggered by cell-extrinsic 
signaling from the TME affect behaviors and features 
of cells and help to establish tumor architecture [130].  

DNA methylation in CSCs 
The complex phases of tumorigenesis cannot 

only be accounted for by discrete genetic alterations in 
neoplastic cells alone, but also involve epigenetic 
alterations. Proteins implicated in the regulation of 
DNA methylation are critical regulators of oncogenic 
self-renewal capacity. DNA methyltransferases, 
including DNMT1, DNMT3A, and DNMT3B, transfer 
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a methyl-group to cytosines followed by guanine 
residues (CpG), while methylcytosine dioxygenases 
(TET1 and TET2) initiate a demethylation process by 
converting 5-methylcytosine (5mC) to 
5-hydroxymethylcytosine. DNMT3A is a commonly 
mutated gene in ∼20% of patients with AML [133], 
resulting in inhibition of the methyltransferase 
activity of DNMT3A and expansion of preleukemic 
HSCs. Mutations in the TET proteins suppress the 
function of DNMTs [134]. Furthermore, isocitrate 
dehydrogenase (IDH) is a gene that encodes the 
protein responsible for converting isocitrate to 
α-ketoglutarate, a required co-factor for TET and 
other dioxygenases [135]. Interestingly, mutations in 
both TET and IDH proteins are associated with the 
onset and progression of myeloid malignancy. These 
data indicate that dysregulation of DNA methylation 
resulting from different genetic mutations can have 
similar results [133]. In addition to leukemia, IDH 
mutations also frequently occur in gliomas. IDH1 
and/or IDH2 mutations have been observed in a 
majority of patients with low-grade primary gliomas 
and secondary high-grade gliomas, which generate a 
genome-wide hypermethylation of CpG islands, 
known as the glioma-CpG island methylator 
phenotype (G-CIMP) [136]. IDH mutations can 
reprogram committed cells and promote the 
acquisition of self-renewal capabilities. In normal 
human astrocytes, IDH1R132H overexpression can 
increase cell proliferation and promote acquisition of 
stem cell characteristics [137]. In addition to the 
canonical DNA methylation modification (5mC), 
noncanonical DNA methylation events occur on the 
sixth position of adenine bases (N6-methyladenine, 
N6-mA) where regulation by the DNA demethylase 
ALKBH1 plays an important role in GSC growth, 
self-renewal, and tumor formation capacity [138]. 

Chromatin remodeling in CSCs  
Chromatin remodelers and chromatin marks are 

frequently altered in human tumors. In AML CSCs, 
genes implicated in stemness maintenance, 
proliferation, or metabolism are marked with both 
H3K4me3 and H3K27me3. Moreover, during 
differentiation from CSCs to progenitor cells, genes 
related to stem cell identity were repressed via loss of 
the H3K4me3 mark alone [139]. Similarly, DIPGs with 
H3K27M display a global reduction of H3K27me3, 
with specific enrichment at the loci of tumor 
suppressor genes. In these tumors, H3K27M binds to 
the catalytic site of the PRC2 and inhibits its 
methyltransferase activity [131, 140]. Gene mutations 
in the subunits of PRC2 are frequently observed in 
cancer. Elevated expression of EZH2 is found to be 
associated with poor clinical prognosis and tumor 

invasiveness in various types of cancers [141]. In 
addition, increased EZH2 expression is also 
associated with tumor progression and poor 
prognosis of glioma, wherein both genetic and 
pharmacological EZH2 inhibition eradicate 
self-renewal and tumorigenicity of GSCs [131, 142, 
143]. Additionally, EZH2 loss in combination with 
JAK2 V617F, RUNX1, TET2, or NRas G12D mutations 
can initiate myeloid or lymphoid malignancies 
[144-148]. Both gain- and loss-of-function PRC2 
mutations can be tumorigenic [149, 150], indicating 
that chromatin remodeling factors drive cancer 
initiation and progression in a context-dependent 
manner. Moreover, expression of EZH2 is not 
correlated with the abundance of H3K27me3 across 
breast cancer subtypes [151]. Therefore, it is important 
to consider several aspects of chromatin remodelers in 
future studies, including the expression of chromatin 
remodelers to evaluate chromatin state, histone marks 
as a consequence of epigenetic regulators, and the 
undefined functions of chromatin remodelers beyond 
chromatin [151]. 

Noncoding RNAs in CSCs 
Noncoding RNA such as long noncoding RNAs 

(lncRNAs) and miRNAs play important roles in 
epigenetic modulations. LncRNA of transcription 
factor 7 (lncTCF7), which is overexpressed in liver 
CSCs, promotes self-renewal and tumor propagation 
of human liver CSCs through activation of Wnt 
signaling. This results from the recruitment of the 
Switch/sucrose nonfermentable (SWI/SNF) complex 
to the promoter of TCF7 which enhances TCF7 
expression [152]. Furthermore in glioma, epidermal 
growth factor receptor (EGFR) signaling-regulated 
lncRNA NEAT1 regulates the Wnt/β-Catenin 
pathway by scaffolding EZH2 [153]. Moreover, 
LINC00339 is upregulated in glioma tumors and cells, 
and promotes cell proliferation, migration, invasion, 
and vascular mimicry formation by modulating the 
miR-539-5p/TWIST1/MMPs axis [154]. Finally, 
lncRNA-Low Expression in Tumor (lncRNA-LET) 
participates in the development of chemo-resistance 
in urinary bladder cancers [155].  

Over 2,500 miRNAs have been identified in 
humans, forming complicated regulatory networks in 
which each miRNA can simultaneously control the 
expression of various genes based on sequence 
homology, while each mRNA can be regulated by 
various miRNAs. Malignancy and stemness- 
associated miRNAs have been identified in GSCs, and 
their dysregulation is related with a poor prognosis of 
glioma patients, as well as cancer initiation and 
therapeutic resistance of CSCs [67, 156]. As cancer is a 
disease with multiple gene and miRNA aberrations, 
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miRNA-based strategies have the potential to be 
employed in combination with conventional therapies 
for cancer treatment [157]. Overall, recent advances in 
epigenetics offer a better understanding of the 
epigenetic alterations underlying malignant 
transformation and provide novel opportunities for 
therapeutic strategies to target CSCs. 

CSC metabolism  
Metabolic plasticity is a hallmark of cancer [158]. 

Most cancer cells and other rapidly proliferating cells 
predominantly produce their energy through 
glycolysis followed by lactic acid fermentation, even 
in the presence of sufficient oxygen, a phenomenon 
termed the Warburg effect. Such aerobic glycolysis 
generates ATP less efficiently but more rapidly, and 
provides the building blocks for macromolecule 
synthesis, maintains redox homeostasis, and 
generates a tumor-supporting acidic 
microenvironment [159]. Unlike bulk tumor cells 
which depend on glycolysis, CSCs demonstrate a 
unique metabolic flexibility. Several reports suggest 
that CSCs are primarily glycolytic and exhibit 
decreased mitochondrial function [160-165], whereas 
other studies, especially examination of patient- 
derived low-passage CSCs and chemoresistant CSCs, 
report an increased dependence on mitochondrial 
function and oxidative phosphorylation [166-173]. 
Possible explanations for these discrepancies may be 
related to tumor types, environmental stimuli in the 
experimental system, and dynamic cellular 
phenotypes, including the transition from quiescent to 
proliferative CSCs. Several studies show that CSCs 

can switch between glycolysis and oxidative 
phosphorylation to survive in malleable, sometimes 
hostile environments such as hypoxia, starvation, or 
metastatic sites [167, 174-176].  

In addition to the glucose-related metabolic 
reprogramming, lipid metabolism also regulates the 
functionality of CSCs in terms of self-renewal and 
tumorigenic abilities by building the plasma 
membranes, supplying bioenergy through fatty acid 
oxidation, and activating signal pathways as second 
messengers [160, 177-184]. Additionally, increased 
amino acid metabolism, especially glutamine, fuels 
oxidative phosphorylation and favors survival in 
LSCs [185]. Metabolism of lysine, serine, and 
branched-chain amino acids may also support CSC 
features [186-188]. GSCs upregulate de novo purine 
synthesis under the transcriptional control of MYC, 
which maintains self-renewal, proliferation, and 
glioma sphere forming capacity [189].  

Apart from providing substrates for cellular 
biosynthesis, metabolites could also actively affect 
stemness and lineage differentiation through 
epigenetic modulation. Histone acetylation is under 
the control of processes which influence the local 
acetyl-CoA pools, such as hypoxia, nutrient 
limitation, and intracellular acidification [190-192]. 
The balance of DNA and histone methylation relies on 
the dynamics of methyl mark deposition and removal, 
under the control of S-adenosylmethionine 
metabolism and α-ketoglutarate/D-2-hydroxygluta-
rate metabolites that provide methyl groups and 
control the activity of demethylase enzymes, 
respectively [193]. Small-molecule perturbation of the 

S-adenosylmethionine metabolism impacts the 
tumorigenicity of CSCs [194]. Cancer-associated 
IDH mutations generate the oncometabolite, 
D-2-hydroxyglutarate, a competitive suppressor 
of α-ketoglutarate-dependent dioxygenases, and 
lock IDH-mutant cancer cells in a stem-like state 
[195-197]. 

CSC microenvironment  
The TME constitutes a heterogeneous 

population of neoplastic and non-transformed 
cells driven by both extrinsic and intrinsic factors 
(Figure 2). It is initiated by the expansion of 
neoplastic cells comprised of CSCs which create 
the tumor niche. CSCs continuously remodel the 
TME to maintain an amenable niche. To maintain 
this architecture, CSCs continuously interact 
with other TME components including CAFs, 
immune cells, tumor vasculature, other 
differentiated cells, and extracellular cues, thus 
establishing a favorable environment [198, 199]. 
The origin of intra-tumor heterogeneity is based 

 

 
Figure 2. The TME consists of a heterogeneous population of cells including CSCs, dormant 
cancer cells, TAMs, T cells, other immune cells, and various secretory factors such as cytokines 
and growth factors. 
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on two different theories. The first, known as the CSC 
model, states that the cancer “stem cell” is the only 
tumorigenic fraction capable of indefinite self-renewal 
and differentiation, thus initiating and maintaining 
tumor growth. The second, a clonal evolution model, 
emphasizes that genomic/genetic instability arising 
from stochastic mutations in individual tumor cells 
results in a clonal diversity. Thus, as a result of natural 
selection, clones that acquire an advantageous 
mutation outgrow those that lack such mutations 
[200]. While ambiguity remains, CSCs are believed to 
be source of tumor heterogeneity and progression in 
various cancers [10, 201]. 

Cancer associated fibroblasts (CAFs) 
Mesenchymal stromal cells (MSCs) are an 

integral component of the TME and include 
undifferentiated MSCs along with fibroblasts, 
pericytes, and vascular or lymphatic endothelial cells 
[202]. MSCs present in solid tumors are called CAFs 
and are pro-tumorigenic as opposed to the normal 
fibroblasts which typically suppress tumor formation. 
The abundance of these stromal cells is correlated 
with poor prognosis in certain cancers due to 
increased tissue remodeling through expression of 
matrix associated proteolytic enzymes, extracellular 
matrix (ECM) deposition, and dysregulated 
angiogenesis [199, 203]. Moreover, MSCs affect tumor 
growth by secreting growth factors that bind to 
surface receptors on tumor cells and pro-angiogenic 
factors, such as VEGF and PDGF, which promote 
tumor niche neovascularization. Furthermore, CAFs 
are involved in the resistance to drug treatment and 
therapy. For instance, in preclinical models, 
fibroblast-associated secreted factors, such as 
WNT-16b, enhanced tumor cell proliferation and their 
depletion augmented chemotherapy response [204]. 
MSCs are known to be involved in various 
immunosuppressive mechanisms mediated by 
metabolites such as indoleamine 2, 3 dioxygenase 
(IDO), arginase 1 and 2, nitric oxide synthase 2, 
TGF-β, prostaglandin E2, and adenosine. Specifically, 
high levels of CD73 expressed on the surface of MSCs 
catalyze the hydrolysis of adenosine monophosphate 
(AMP). Increased levels of adenosine in the TME lead 
to activation of the immunosuppressive A2A 
adenosine receptor on CD8+ anti-tumor T cells and 
NK cells, resulting in a dampened immune response 
[202, 205, 206]. Thus, attempts are being made to 
relieve the immunosuppression caused by MSCs in 
addition to other members of the immunosuppressive 
microenvironment. One such target is fibroblast 
activation protein (FAP), a type of serine protease that 
is expressed at abnormally high levels by CAFs. 
Inhibition of FAP using an anti-tumor vaccine, 

monoclonal antibody, or chimeric antigen receptor 
(CAR) T-cell therapy, affects tumor cell growth and 
increases the CD8+ T cell response [207-209]. 
Moreover, the signaling pathways that affect the 
tumor mesenchyme are being targeted. For instance, 
tyrosine kinase inhibitors (TKIs) are known to inhibit 
MSC proliferation and differentiation. Hedgehog 
signaling inhibition reduces the fibrous tissue in the 
stroma, thereby increasing vessel formation and 
facilitating drug delivery. Also, secretion of high 
amounts of the chemokine CXCL12 results in 
increased TGF-β secretion through binding to its 
receptor CXCR4, which in turn causes EMT, a key 
step in metastasis. Thus, targeting this signaling axis 
has shown anti-metastatic potential in vivo [210-214]. 
However, no clinically relevant data is available for 
the aforementioned targets and new therapeutic 
strategies are thus required. 

A reciprocal crosstalk exists between CSCs and 
CAFs in the TME that proves essential for 
self-renewal of CSCs. CSCs secrete various cytokines 
and ligands, such as such as hepatocyte growth factor 
(HGF) and CCL2, to reprogram normal fibroblasts 
into CAFs, thereby contributing to cancer cell 
stemness. These factors induce various stemness 
regulators in CSCs such as Wnt and NOTCH, which 
contribute to CSC proliferation and self-renewal [201]. 
Further, in lung and breast cancer, the CD10+/GPR77+ 
specific population of CAFs has been correlated with 
poor patient survival. Driven by active NF-κB 
signaling, these cells secrete IL6 and IL8 to induce 
cancer stemness [215]. Thus, targeting CAFs would 
indirectly provide the therapeutic benefit of inhibiting 
CSCs. 

Tumor vasculature 
Development of tumor vasculature, or 

angiogenesis, is primarily driven by the condition of 
hypoxia [216]. Hypoxic cancer cells secrete VEGF-A 
which binds VEGF receptor 2 (VEGFR2) on the 
surface of endothelial cells (ECs) of nearby blood 
vessels and initiates tumor angiogenesis [217]. In 
pre-malignant epithelial tumors, a basal lamina 
separates the tumor from the surrounding vascular 
tissue along with angiostatic signals from the ECM 
and relatively low pro-angiogenic factors, thus 
preventing the pre-malignant lesions from developing 
a vasculature. However, during malignant 
transformation, there is an angiogenic switch wherein 
pro-angiogenic factors such as growth factors, 
cytokines, ECM proteins, and ECM remodeling 
enzymes regulate the vascular ECs to establish an 
infiltrative and actively growing vascular network 
[218]. Furthermore, the tumor-associated blood 
vessels develop an aberrant morphology involving 
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excessive branching, abnormal bulges, defective 
basement membrane, and discontinuous EC lining, 
thus depicting impaired vascular maturation [219]. 
Poorly organized tumor vasculature results in regions 
of hypoxia and acidity in the tumor, creating 
gradients based on the distance from the vascular bed, 
which in turn affects the distribution and availability 
of chemotherapeutic drugs to all cancer cells [220]. 
The process of vessel normalization using low dose 
anti-VEGF therapy can alleviate tumor hypoxic 
condition and enhance anti-cancer immunity, 
indicating that the tumor vasculature directly 
regulates the immune microenvironment [221, 222]. 

CSCs reciprocally interact with members of the 
perivascular niche including ECs and ECM 
components. ECs promote the self-renewal of CSCs 
through signaling pathways such as Sonic hedgehog, 
NOTCH, nitric oxide, Jagged-1 [223-227], and 
VEGF-neuropilin 1 (Nrp1, a receptor for VEGF and 
other molecules) [227]. Furthermore the nutrient-rich 
environment and pro-angiogenic factors such as 
VEGF and MYC, promote CSC proliferation [201]. 
Reciprocally, CSCs drive the tumor vascularization by 
stimulating endogenous ECs and creating blood 
vessel-like structures in melanoma, glioma, breast 
cancer, and colorectal cancer [228-230]. Furthermore, 
pericytes derived from CSCs modulate the 
blood-tumor barrier (BTB) by modulating tight 
junctions. The BTB acts as a barrier for effective drug 
delivery against GBM. Thus, selective elimination of 
the CSC-derived pericytes in xenograft murine 
models disrupt tight junctions of the BTB and increase 
vesicular transport, thereby enhancing drug effusion 
into the tumors [92, 231]. Therefore, targeting the 
supportive cross talk of CSCs and the tumor 
vasculature can be therapeutically valuable.  

Immune cells in the TME 
Immune cell infiltration is a complex 

phenomenon in solid tumors serving pro-tumorigenic 
functions. Profiles of immune cells substantially differ 
among various types of cancers. However, the 
interplay between cancer cells and immune cells 
remains constant in solid tumors. The tumor 
infiltrating immune cells are comprised of both 
lymphoid and myeloid lineages recruited to the 
tumor from the bone marrow through systemic 
circulation, which largely consists of various types of 
leukocytes such as neutrophils, lymphocytes, 
monocytes, and macrophages and their immature 
precursors [232]. While tumor-associated 
macrophages (TAMs) form the dominant population 
of immune cells in different tumor types (up to ~50%), 
T-cells constitute a very low fraction of tumor 
infiltrating immune cells [233]. 

The heterogeneity of TAMs is a major barrier to 
tumor therapy. Cancer cells recruit TAMs to the TME 
and reprogram them, thereby using the innate arm of 
the immune system for their own benefit [234]. TAMs 
are derived from circulating monocytes that arrive at 
the TME in response to signaling molecules such as 
chemokines, pro-inflammatory signals, and 
damage-associated molecule patterns (DAMPs) 
containing high mobility group box 1 (HMGB1) [235, 
236]. DAMPs bind to their specific pattern-recognition 
receptors on macrophages, such as TLR4 for HMGB1, 
triggering pro-inflammatory signaling [237], typically 
representing an M1 phenotype. M1 TAMs are 
classically activated macrophages with an enhanced 
ability to engulf pathogens, thus possessing 
anti-tumorigenic properties. However, upon their 
arrival into the TME, monocytes differentiate and are 
polarized to an alternatively activated state of 
macrophage called ‘M2’. M2-polarized TAMs have a 
pro-tumorigenic potential that supports and 
maintains the CSC population by secreting 
chemokines and ligands activating cell stemness 
pathways such as Sonic hedgehog. For example, 
Milk-fat globule-epidermal growth factor-VIII 
(MFG-E8) secreted from TAMs activates STAT3 and 
Sonic hedgehog signaling in CSCs, thus increasing 
resistance to therapies [238]. Furthermore, TAMs 
secrete higher amounts of TGF-β1 which promotes 
EMT and CSC properties in many types of cancers 
[239, 240]. Additionally, CSCs reprogram the immune 
cells in the TME by secreting immunosuppressive 
proteins such as IL4, which otherwise mitigates the 
anti-cancer immune response [241]. Moreover, GSCs 
secrete periostin (POSTN) to recruit 
macrophages/monocytes and accelerate tumor 
growth; while M2 macrophages physically interact 
with mouse breast CSCs through ligand-receptor 
interactions of EphA4-Ephrin and CD90-CD11b [242, 
243]. Lastly, lung CSCs promote the polarization of 
myeloid cells to an M2-like phenotype through an 
IFN-regulated transcription factor IRF5 that is critical 
for producing macrophage colony-stimulating factor 
(M-CSF) required for generation of tumorigenic 
myeloid cells [244].  

Cytotoxic T lymphocytes and their 
interaction with other members of the 
TME 

Studies from animal models of cancer have 
shown that CAFs, the tumor vasculature, and TAMs 
restrict the accumulation of CD8+ cytotoxic T 
lymphocytes (CTLs) in the TME [245]. The apoptosis 
inducer Fas ligand (FasL) is expressed in the 
vasculature of different types of cancers such as 
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breast, ovarian, bladder, colon, and prostate cancer, 
but not in the normal vasculature. Cancer cell-derived 
FasL expression in endothelial cells is associated with 
scarce CD8+ T cell infiltration, while facilitating 
enhanced infiltration of immunosuppressive 
regulatory T cells (Tregs) that express high level of 
apoptosis suppressor, c-FLIP [246]. CAF cells with 
membrane protein fibroblast activation protein-α 
(FAP), hinder T cell infiltration by producing either a 
dense collagen matrix or the chemokine CXCL12. 
Inhibition of CXCR4, a CXCL12 receptor, promotes T 
cell accumulation and cancer regression [247, 248]. 
TAMs can directly or indirectly inhibit CTLs through 
different mechanisms. TAMs directly inhibit CTLs 
through immune checkpoint engagement by 
expressing programmed cell death ligand 1 (PD-L1) 
and B7-H4, secreting inhibitory cytokines IL-10 and 
TGF-β, and depleting metabolites such as L-arginine, 
which is essential for T cell fitness and anti-tumor 
activity [249]. TAMs also inhibit T cells indirectly by 
regulating the immune microenvironment. TAMs in 
human ovarian cancer produce CCL22 to recruit 
immunosuppressive Treg cells which suppress CTLs, 
stimulate TAMs to produce immunosuppressive 
cytokines IL-6 and IL-10, and enhance B7-H4 
expression, which in turn suppresses IL-2 production 
and T cell proliferation [249]. Furthermore, inhibition 
of the CSF1 receptor (CSF1R) pathway or 
CC-chemokine receptor 2 (CCR2), attenuates 
macrophage recruitment and enhances T cell 
infiltration in the tumor. CSF1R inhibition suppresses 
murine glioma. However, clinical trials of CSF1R 
inhibition have failed to increase overall survival for 
patients with gliomas [250, 251]. Additionally, TAMs 
restrict the intra-tumoral localization of T cells by 
producing reactive nitrogen species, increasing 
fibrosis, and inducing TGF-β signaling [249]. TGF-β 
produced by CSCs inhibits the proliferation of active 
T cells while inducing immunosuppressive Treg cells 
through both Foxp3-dependent and independent 
pathways [252, 253].  

CD8+ cytotoxic T lymphocytes are the key 
players involved in killing cancer cells. For this 
reason, T cells need to sufficiently accumulate in the 
TME, efficiently infiltrate, and physically contact 
CSCs. Furthermore, T cells should adequately 
respond to tumor antigens and activation signals from 
cells. However, T cells become dysfunctional after 
arriving at the tumor milieu. This acquired 
dysfunction of T cells is due to the induction of 
multiple inhibitory receptors (IRs), including 
cytotoxic T lymphocyte antigen 4 (CTLA-4), 
programmed cell death 1 (PD-1), T-cell 
immunoglobulin domain and mucin domain-3 
(Tim-3), T cell immunoreceptor with Ig and ITIM 

domains (TIGIT), lymphocyte activation gene 3 
(LAG-3) and others, wherein the severity of 
dysfunction depends on the type and number of IR 
co-expression. These IRs bind to their respective 
ligands, which are typically expressed on antigen 
presenting cells or tumor cells. These ligands then 
deliver an inhibitory signal to T cells attenuating their 
proliferation and effector functions [254]. Several 
other factors cause the dysfunction of T cells in the 
TME including presence of inhibitory cells, 
suppressive soluble mediators, metabolic pathways, 
and epigenetic and transcriptional regulation which 
also cause T cell dysfunction in the TME [254] (Figure 
2). Various treatment strategies are aimed at 
inhibiting the repression on T cell activity in the TME 
[255]. The key function of T cells in tumor 
immunology is demonstrated by a positive correlation 
between T cell infiltration and better clinical outcome 
as described in melanoma, colorectal, and breast 
cancers [256]. Cytotoxic T cell activity in tumors is 
inhibited directly by CSCs through engagement of IRs 
such as PD-1 and CTLA-4 on T cells, and by 
up-regulation of their ligands on antigen-presenting 
cells [257]. Checkpoint inhibitor drugs which target 
CTLA-4, PD-1, and its ligand PD-L1 have been 
successful in clinical trials for treating metastatic 
melanoma, non-small cell lung cancer, and renal 
cancer, among others. However, mixed results are 
emerging for the expression of PD-L1 on CSCs, with 
high expression in CSCs in head and neck, breast, and 
colon cancers, and low or undetectable expression in 
other types of cancers [201]. In low-grade glioma, 
GBM, prostate adenocarcinoma, and lung squamous 
cell carcinoma, stemness features identified from 
TCGA datasets correlated negatively with PD-L1 
expression [201]. Thus, checkpoint inhibitors might be 
less efficient for targeting CSCs and investigation of 
other immune invasive mechanisms is required. 

CSC in therapy resistance 
Resistance to broad chemotherapeutic agents 

and selective targeted therapies is a leading cause of 
cancer deaths [14]. Cells that survive treatment are 
able to expand and can lead to recurrence of disease 
or metastatic spread, both of which dramatically 
decrease patient overall survival [258, 259]. CSCs have 
been suggested to be the major part of this 
therapy-resistant cell population within the tumor 
due to their defined phenotype of quiescence, EMT, 
multi-drug resistance (MDR), and resistance to DNA 
damage-induced apoptosis [260, 261]. 

Quiescence 
CSCs have been thought to exist in a dormant 

state, or G0 phase, after tumors have formed [262]. A 
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cell lineage study showed that serial xenograft 
passages of colorectal cancer cells in mice gave rise to 
distinct subpopulations of cells whereas 
chemotherapy largely eliminated the rapidly 
proliferating clones, but enhanced the dominance of 
the dormant clones [184]. This depicts the challenge of 
eradicating a dormant cell with common 
chemotherapeutic agents that target rapidly dividing 
cells. In a mouse glioma model, a Nestin- 
∆TK-IRES-GFP transgenic mouse was created to label 
quiescent stem cells and glioma tumor cells. In these 
animals, temozolomide (TMZ) treatment efficiently 
ablated dividing cells, but increased the expansion of 
the GFP-labeled quiescent cells [263]. In a bladder 
cancer model, combination of gemcitabine and 
cisplatin also induced rapid cell division of previously 
quiescent cells to repopulate the tumor in a way 
similar to that of normal stem cells, post wound 
formation [184].  

Nevertheless, research is being conducted to 
specifically target these quiescent CSCs. Genetic 
ablation of the F-box protein Fbxw7 induced LSC 
proliferation, which could then be successfully 
targeted by imatinib [264]. Quiescent cells have also 
shown a dependence on autophagy in colorectal [265], 
liver [156], brain [266], and melanoma [267] CSCs. 
Therefore, recent studies targeting both autophagy 
[268] and the overarching metabolic state have shown 
pre-clinical promise [105]. Moreover, the opposing 
idea of maintaining cells in a quiescent state has been 
tested as well. A recent study shows that retinoic acid 
and NR2F1 signaling work together to induce a 
dormancy-like epigenetic state [269]. Fenretinide 
treatment in lung and colorectal cancers also induced 
a quiescent state along with inhibition of the mTOR 
pathway, cell cycle block, and a mixed death pathway 
with both autophagic and apoptotic qualities [270].  

Epithelial-to-mesenchymal transition 
(EMT) 

CSCs express many of the markers of normal 
stem cells, including their ability to survive in a 
de-differentiated state [271]. Experimental evidence 
shows that induction of EMT or de-differentiation of 
immortalized human mammary epithelial cells leads 
to an increase in their local invasion and metastatic 
burden [272, 273]. Further characterization of breast 
epithelial cells that have been induced to undergo 
EMT mimic characteristics of mesenchymal stem cells. 
Specifically, they show enhanced wound-homing 
abilities and are able to differentiate into multiple 
distinct lineages [274]. There is also a relationship 
between a more EMT-like phenotype and multi-drug 
resistance [275]. Markers of stemness, like OCT4, 
NANOG, and SOX2, have been associated with 

resistance to chemotherapy [276-279]. Another 
example is ZEB1, a transcription factor associated 
with EMT. ZEB1 is able to regulate both self-renewal 
and therapy resistance in GSCs through regulation of 
O-6-methylguanine methyltransferase (MGMT) via 
miR-200c and c-MYB [280]. Additionally, cancer cells 
that undergo EMT can go into a dormant state. The 
Wnt pathway also plays a dominant role in both EMT 
and stemness since Wnt-1 stimulation induces EMT in 
breast cancer [281, 282]. In lung cancer cells, gefitinib 
treatment activates NOTCH-1 signaling, which allows 
for an acquired EMT phenotype and resistance to the 
therapy [283]. Among a list of other factors including 
those of invasive potential and tumorigenicity, EMT 
markers have often been used to predict resistance to 
the anti-EGFR antibody cetuximab in urothelial 
carcinoma cells [284]. 

As EMT is an important feature of stem cells, and 
a pivotal stage in metastasis, inhibitors of EMT have 
been developed and exploited [285]. TGF-β signaling 
is one of the major pathways associated with EMT, as 
one and a half days of TGF-β treatment induced the 
reprogramming of mouse embryonic fibroblasts 
(MEFs) into iPSCs [286]. For this reason, inhibitors 
targeting TGF-β signaling have been developed and 
are currently undergoing clinical trials [287]. Lastly, 
natural compounds have also been tested to inhibit 
EMT. Curcumin, an abundant compound in turmeric 
and an HGF inhibitor, induced the epithelial marker 
E-cadherin and inhibited tumor growth [287].  

Multi-drug resistance 
Aldehyde dehydrogenase (ALDH) is a potential 

selective marker for CSCs in breast, bladder, 
embryonal rhabdomyosarcoma, head and neck 
squamous cell carcinoma, and lung cancer [288, 289]. 
As a cytosolic enzyme that oxidizes intracellular 
aldehydes, ALDH protects cells from elevated 
reactive oxygen species (ROS) levels. Decreasing or 
maintaining a low ROS level is critical to a cell, as ROS 
accumulation causes cell death [290]. Higher 
expression of ALDH, as compared to ALDH-negative 
lung cancer cells, has been shown to confer resistance 
to multiple chemotherapeutic agents like cisplatin, 
etoposide, fluorouracil, and gefitinib [291]. ALDH+ 
pancreatic CSCs also showed therapy resistance, but 
also an increase in phosphorylated STAT3 which 
could be targeted with STAT3 inhibitors [292]. In 
ovarian CSCs, ALDH1A2 was shown to be directly 
regulated by NF-κB signaling via the transcription 
factor RelB. Loss of RelB inhibited CSC spheroid 
formation, ALDH expression, tumorigenesis, and 
chemoresistance [293]. As expected, an inhibitor of 
ALDH, diethylaminobenzaldehyde, has been shown 
to re-sensitize breast CSCs to chemotherapy [294].  
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The ATP-binding cassette (ABC) transporter 
family has been implicated in the multi-drug 
resistance of CSCs. This family is made up of 49 
family members that have 7 gene sub-families [295]. 
The major function of ABC transporters is to pump 
substrate proteins and drugs across the plasma 
membrane powered by ATP hydrolysis [296]. 
However, considerable numbers of ABC transporters 
are often overexpressed in cancers, particularly in 
CSCs [297]. Moreover, OCT4 has been shown to 
control the gene expression of multiple ABC proteins 
[298]. Many oncogenes have been implicated in 
regulating ABC functions as well. For examples, MYC 
plays a dual role in ABC expression. MYC activation 
can increase the expression of ABCC1 and ABCC4, 
while attenuating levels of ABCC3 [299]. The 
PI3K/AKT pathway, but not mTOR, regulates 
ABCG2 in GSCs via its localization to the plasma 
membrane. This phenotype is exaggerated with PTEN 
loss and TMZ treatment, which is representative of 
clinical presentation and treatment of gliomas [300]. 
Inhibition of BCR-ABL and its downstream target 
pathway PI3K/AKT can also lead to downregulation 
of ABCG2 in CML cells [301]. Treatment of breast 
cancer cells with an EGFR/HER2 inhibitor lapatinib, 
resulted in a decrease in ABCB1 and ABCG2 
expression, thereby sensitizing breast cancer cells to a 
chemotherapeutic agent doxorubicin [302]. Although 
ABC transporters have been implicated in CSC 
resistance to therapies, therapeutically targeting ABC 
transporters will target normal stem cells and brain 
ECs that make up the blood brain barrier [229]. 
Therefore, identification of CSC-specific ABC 
transporters is necessary. One example is the breast 
cancer resistance protein (BCRP), which is 
overexpressed in mitoxantrone-resistant cancer cells. 
Treatment with fumitremorgin C (FTC) efficiently 
reverses drug resistance in these 
mitoxantrone-resistant breast cancer cells and in other 
types of cancer cells transfected with exogenous BCRP 
[303].  

Resistance to DNA damage-induced 
death 

CSCs have an altered DNA damage response 
(DDR) and repair pathways which closely mimic that 
of normal stem cells [304]. As normal stem cells are 
needed to repopulate normal tissue post-damage, 
their DDR must be error-free to preserve normal 
tissue DNA [305]. In CSCs, this efficient DDR leads to 
radio- and chemoresistance [272]. In GSCs, multiple, 
sometimes contradicting, studies have described 
CD133+ progenitor cells and DNA repair. CD133+ cells 
were shown to efficiently repair DNA damage [306]. 
However, changes in γ-H2AX foci resolution, DNA 

base excision, or single-strand break repair in 
radiation-treated GSCs were not found [307]. 
However, CD133+ GSCs enriched for the polycomb 
group protein BMI1 have increased radio-resistance, 
in which BMI1 recruits both double-stranded break 
repair and nonhomologous end joining proteins [308]. 
CD133+ GSCs also had an increase in Chk 
1-dependent DNA repair response, and increased 
expression of the Mre11, Rad50, and Nbs1 (MRN) 
complex component NBS1 [309]. CD133+ CSCs in 
breast, lung, and non-small-cell lung cancers also 
showed an increase in DNA damage response and 
repair genes [310]. The homologous repair (HR) 
pathway of DNA damage is vitally important to 
CSCs, as this is less error-prone process for DNA 
repair. HR takes place in S phase, when a homologous 
chromosome template is present [310]. GSCs have 
been shown to overexpress RAD51, the major HR 
DNA repair protein [311]. In head and neck squamous 
cell carcinoma, overexpression of Fanconi anemia 
DNA repair proteins is observed specifically in 
ALDH1+ cells [312]. Genes inducing cell death via 
DDR pathway such as p53 are often dysregulated in 
CSCs. p53 acts as a sensor when detrimental DNA 
damage has occurred. However, p53 is frequently 
mutated or downregulated in CSCs. Therefore, 
restoration of normal p53 function in p53-mutated 
GSCs may provide a new treatment avenue [313].  

Therapies targeting CSC 
The promise of the CSC hypothesis is that an 

in-depth understanding of CSC biology will allow us 
to develop more effective approaches to eradicate 
CSCs in patients. Although the inherent plasticity of 
CSCs presents major challenges for design of 
anti-CSC therapies, some strategies have been tested 
to interfere with CSCs in preclinical models and 
patients, including inhibition of key CSC signaling 
pathways, viral therapy, awakening quiescent CSCs, 
and immunotherapy.  

Targeting of key CSC signaling pathways 
The lysine-specific demethylase (LSD1), also 

known as lysine-specific histone demethylase 1A 
(KDM1A), is a histone demethylase that demethylates 
H3K4me1/2 and has been extensively studied [314]. 
LSD1 represents an attractive therapeutic target for 
LSCs, because LSD1 plays a critical role in 
maintenance of LSCs. Tranylcypromine analogs have 
been used for LSD1 inhibition and induce CSC 
differentiation and suppress LSC expansion and acute 
leukemia development without any notable 
side-effects [315]. Several LSD1 inhibitors are 
currently in phase I/II clinical trials in AML patients 
[316]. Accumulating evidence indicates that 
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autophagy is implicated in CSC maintenance and 
therapy resistance [317]. Suppression of autophagy 
also holds promise for the therapeutic elimination of 
CSCs. In GBM, targeting a key autophagy regulator, 
ATG4B, with a small molecule inhibitor, NSC185058, 
enhanced the efficacy of radiation therapy in 
orthotopic xenograft models [268]. Additionally, 
targeting BMI1 by using a small molecule, PTC-209, 
has also demonstrated efficacy against CSCs in 
models of colorectal cancer through decreasing BMI1 
protein levels [318]. 

Viral therapy 
With the success of modern immunotherapy, 

oncolytic viral therapy has become a novel and 
promising strategy to target cancers and CSCs. 
Oncolytic viruses can effectively replicate within 
cancer cells rather than in normal cells, resulting in 
lysis of the tumor mass [319]. In addition to this 
primary effect, oncolytic viruses are also able to 
stimulate the immune system against cancer cells, in 
which the immune system is silenced by the TME 
[320]. The use of improved oncolytic adenovirus 
treatment regimens has demonstrated therapeutic 
activity in immunocompetent C57BL/6 mouse 
models by stimulating an influx of CD8+ T cells 
specific to tumor-associated antigens [321, 322]. 
Moreover, in human patients, viral treatments have 
been shown to induce a tumor macrophage 
phenotypic shift [323]. Oncolytic viruses also 
represent attractive combination strategies with 
PD-1/PD-L1 blockade therapy, and initial clinical 
studies have suggested promising results [324]. Phase 
I trials of intratumoral inoculation of the recombinant 
nonpathogenic polio-rhinovirus chimera (PVSRIPO) 
have demonstrated some efficacy in the treatment of 
patients with recurrent GBM, with evidence that the 
survival rate among patients treated with PVSRIPO 
immunotherapy gain relatively long-term survival 
benefit [325]. The highly neurotropic flavivirus Zika 
virus expressing an exogenous Endostatin‐
Angiostatin fusion gene (VAE) can infect and 
suppress GSCs in organoid and mouse models, 
indicating that VAE-based gene oncolytic viral 
therapy is a promising strategy for the treatment of 
brain tumors [326]. Similarly, oncolytic retroviruses 
have the potential to inhibit the growth of CSC 
xenograft tumors [327]. Although several clinical 
trials performed in a small population of breast cancer 
patients have demonstrated oncolytic reovirus safety 
[328-330], further investigations with a heterogeneous 
population are necessary for reliable prediction of 
oncolytic viral therapy in cancer patients. 

Awakening quiescent CSCs 
The presence of CSCs is a well-recognized 

concept, wherein poorly differentiated and quiescent 
cells within a tumor mass are thought to be the major 
cause of chemotherapy resistance. Thus, targeting 
quiescent CSCs is emerging as a viable treatment 
option [261]. Genetic ablation of the ubiquitin ligase 
FBXW7, a negative regulator of MYC, forces quiescent 
LSCs to re-enter the cell cycle and increases their 
sensitivity to the tyrosine kinase inhibitor (TKI) 
imatinib [331]. CSCs can also reprogram metabolic 
pathways to modulate cancer growth. It has been 
demonstrated that CSCs can switch between oxidative 
phosphorylation and glycolysis even in the presence 
of oxygen to support tumor growth [332]. Several 
studies have shown that quiescent CSCs are 
dependent on oxidative metabolism. Therefore, 
suppression of oxidative phosphorylation reduces the 
ability of self-renewal and tumor initiation of CSCs 
and enhances the response to targeted therapies in 
preclinical mouse cancer models [168, 170, 172, 333]. 

Immunotherapy 
Immunotherapy has gained significant attention 

for its potential to treat and cure various types of 
cancers and represents an alternative option to target 
CSCs. Given that the combination of surface 
expression markers that are used to identify the CSC 
populations in different tumor types, CSC markers 
are therefore an attractive target for cancer 
therapeutics [334]. For example, transmembrane 
glycoprotein CD44 is overexpressed in CSCs of 
various cancer types, including breast, prostate, 
bladder, gastric cancer, and others [335]. A novel 
therapeutic strategy employing near-infrared photo 
immunotherapy (NIR-PIT) targeting CD133 in GBM 
has also been shown to be highly specific and efficient 
for eliminating GSCs [336]. The monoclonal antibody 
(mAb) H90 was first shown to efficiently eradicate 
CD44+ human AML CSCs [337]. Additionally, 
anti-tumor vaccines could be developed to target 
tumor-associated antigens and elicit tumor-specific T 
cell responses. In two early clinical trials, 
administration of personalized vaccines containing 
tumor neoepitopes elicited sustained responses of 
central memory T cells with evidence of immunologic 
memory and tumor-infiltrating capacity [338, 339]. T 
cell receptor (TCR) gene therapy is another kind of 
adoptive cellular immunotherapy where 
patient-derived T cells are engineered to produce a 
CAR selective for a tumor antigen, with subsequent ex 
vivo cell expansion and adoptive transfer back into the 
patient. CAR-T cell therapy against tumor-specific 
targets in CSCs, including CD33 for AML [340] and 
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EGFRvIII for GBM [341], displayed some efficacy in 
treating patients in phase I clinical trials. The 
association of increased expression of immune 
checkpoint ligands with CSC function inspired 
investigators to use inhibitors of these checkpoint 
molecules to target CSCs for cancer treatments. 
Moreover, a preclinical study showed that combined 
inhibition of CTLA-4, PD-L1, and a CSC vaccine 
remarkably suppressed tumor growth in multiple 
mouse models [342]. Therefore, targeting CSCs with 
the immune system for treating cancers remains an 
intriguing and fruitful field of ongoing investigation. 

Conclusions and future perspectives 
Decades of accumulating evidence shows the 

significant progress that has been made in our 
understanding of CSCs at the transcriptional, 
posttranscriptional, epigenetic, metabolic, and 
microenvironmental regulatory levels. These findings 
have been driven by the implementation of new 
technologies, such as single cell multi-omics 
technology, and have provided further insight into 
our understanding of the evolution and heterogeneity 
of human cancers, as well as the TME [343]. The 
advent of CRISPR–Cas9 screening technologies has 
also greatly accelerated cancer research in many 
aspects, including robust site-specific gene editing, 
generation of animal cancer models, and functional 
genetic screening. The potential role of 
CRISPR-Cas9-based gene editing has received a lot of 
attention and has become a critical tool in the 
development of cancer therapeutics [344, 345]. The 
role of the TME as a critical regulator of CSC 
properties and an essential target for CSC elimination 
has now come into sharper focus. With the advances 
in the immunotherapy and TME fields that have been 
made in recent years, we can also expect to see big 
landmark developments of more efficient approaches 
to eliminate these highly tumorigenic and 
therapy-resistant cells. 

Despite the optimism resulting from these 
marked advances, intense ongoing research is 
attempting to address many of the remaining 
unanswered questions. In this review, we focused on 
several outstanding challenges, which include 
approaches for investigating and the therapeutic 
targets of CSCs. First, a large proportion of cancer 
research continues to use in vitro sphere formation in 
serum-free medium as a surrogate CSC assay. These 
studies are frequently performed in hypoxic, 
hyperglycemic, and non-physiologic conditions. In 
addition, the in vitro culture conditions used for CSCs 
may not include key factors that are essential for the in 
vivo fundamental properties of most CSCs. Therefore, 
these experiments likely fail to recapitulate the clinical 

presentation seen in human cancers, illustrating the 
need for direct CSC detection approaches that better 
mimic physiological conditions. Recently, organoid 
model systems and other tools have gained 
appreciation in CSC research and their use in 
high-throughput and high-fidelity tumor modeling 
may be beneficial in overcoming these challenges 
[346]. Second, immunodeficient mouse models have 
been used effectively to identify the capacity of CSCs 
to reconstruct tumor heterogeneity that resembles the 
parent tumor in vivo. This powerful strategy is very 
useful for detection and quantification of CSCs in 
various types of human cancers. However, a major 
shortcoming of the immunodeficient mouse model is 
the lack of an intact TME. This is an important 
consideration, given that components of TME have an 
important role in supporting tumor generation, 
progression, and therapeutic response [347]. 
Human-severe combined immunodeficient (SCID) 
mouse chimeric models have been developed for the 
engraftment of human tumor cells that recapitulate 
the native tumor microenvironment, allowing 
researchers to evaluate the role of microenvironment 
components, such as tumor-infiltrating leukocytes 
and other human stromal cells [348]. Third, increasing 
evidence has revealed that both CSCs and non-CSCs 
represent a very plastic and dynamic population, 
which is capable of changing cell types in response to 
certain environmental stimuli. This is exemplified by 
a study in which subpopulations of cells purified for a 
given phenotypic state (i.e. stem cell, basal-, or 
luminal-like phenotypes) have equal tumorigenic 
potency. Each subpopulation of cancer cells 
effectively initiated tumor growth in mouse models, 
and eventually returned to equilibrium proportions 
with sufficient time [23]. Given that the plasticity of 
CSCs may present major challenges in the 
development of efficient therapies, it is essential to 
improve our insights into the molecular mechanisms 
underlying tumor cell plasticity and develop more 
effective therapies to target these cells.  

Finally, despite the intense focus on uncovering 
important molecular targets as potential strategies for 
therapeutic intervention of CSC function, very few 
targets have been effectively translated into clinical 
care, and the failure rate of clinical trials remains high. 
It is likely that inefficient drug delivery and drug 
intervention in advanced stages of disease may be 
impeding their impact on tumor growth. Improving 
approaches of delivery through advanced 
biomaterials and drug delivery systems represent 
another important space to explore and may improve 
the efficacy of targeted therapies for cancer 
treatments. 
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