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Abstract 

Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due 
to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an 
individualized gene set-based prognostic signature for gastric cancer (GPSGC) and further explored 
survival-related regulatory mechanisms as well as therapeutic targets in GC. 
Methods: By implementing machine learning, a prognostic model was established based on gastric cancer gene 
expression datasets from 1699 patients from five independent cohorts with reported full clinical annotations. 
Analysis of the tumor microenvironment, including stromal and immune subcomponents, cell types, 
panimmune gene sets, and immunomodulatory genes, was carried out in 834 GC patients from three 
independent cohorts to explore regulatory survival mechanisms and therapeutic targets related to the GPSGC. 
To prove the stability and reliability of the GPSGC model and therapeutic targets, multiplex fluorescent 
immunohistochemistry was conducted with tissue microarrays representing 186 GC patients. Based on 
multivariate Cox analysis, a nomogram that integrated the GPSGC and other clinical risk factors was 
constructed with two training cohorts and was verified by two validation cohorts. 
Results: Through machine learning, we obtained an optimal risk assessment model, the GPSGC, which 
showed higher accuracy in predicting survival than individual prognostic factors. The impact of the GPSGC 
score on poor survival of GC patients was probably correlated with the remodeling of stromal components in 
the tumor microenvironment. Specifically, TGFβ and angiogenesis-related gene sets were significantly 
associated with the GPSGC risk score and poor outcome. Immunomodulatory gene analysis combined with 
experimental verification further revealed that TGFβ1 and VEGFB may be developed as potential therapeutic 
targets of GC patients with poor prognosis according to the GPSGC. Furthermore, we developed a nomogram 
based on the GPSGC and other clinical variables to predict the 3-year and 5-year overall survival for GC 
patients, which showed improved prognostic accuracy than clinical characteristics only. 
Conclusion: As a tumor microenvironment-relevant gene set-based prognostic signature, the GPSGC model 
provides an effective approach to evaluate GC patient survival outcomes and may prolong overall survival by 
enabling the selection of individualized targeted therapy. 
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Introduction 
Gastric cancer (GC) remains one of the most 

prevalent malignant diseases worldwide and was the 
third leading cause of cancer mortality in 2019 [1, 2]. 
The incidence rate of gastric cancer highly varies 
among regions, with more than 70% of cases 
occurring in developing countries and more than 50% 
of cases occurring in Eastern Asia [3]. Although the 
prevention and treatment of Helicobacter pylori and 
Epstein-Barr virus (EBV) infection have decreased its 
incidence and mortality rates, the 5-year survival rate 
of GC patients is still lower than 30% [3, 4]. Due to the 
genetic heterogeneity and difficulty in early-stage 
screening, the prognosis of GC patients is adversely 
affected by the limited therapeutic effects in both 
locally advanced and metastatic settings [5, 6]. 
Chemotherapy and targeted drugs do not achieve 
precise treatment, often leading to poor outcomes [4]. 
The detection and analysis of tumor prognostic 
markers are of great significance to evaluate tumor 
progression, predict therapeutic efficacy, reduce the 
recurrence rate and mortality, and prolong survival. 

Strategies to identify the subset of GC patients 
likely to have poor survival and high mortality are 
needed for additional clinical therapy. TNM staging 
has been widely used for determining GC prognosis 
[7-9] but is limited by the variations among patients 
with the same tumor stage. Studies have shown that 
the treatment response and survival rate of GC 
patients depend not only on tumor staging but also on 
heterogeneous and epigenetic molecular features 
[10-12]. Biomarkers, especially gene expression in 
tumor tissues, are reliably related to cancer prognosis 
and survival [13-16]. Nevertheless, further analysis 
and validation in larger, independent cohorts in 
combination with more potential markers are 
essential prior to application in a clinical setting. The 
availability of large-scale public cohorts with gene 
expression data and well-developed biological 
databases provide opportunities to identify a more 
generalized prognostic signature for gastric cancer. 
Recently, machine learning, as a branch of artificial 
intelligence (AI), has been employed to establish 
prognostic classification models for outcome and 
therapy prediction in individual cancer patients 
[17-20]. For example, via machine learning, Tang et al. 
demonstrated that gene expression data can be used 
for valid predictions of nasopharyngeal carcinoma 
distant metastasis and survival [21]. Therefore, 
applying machine learning and statistical techniques 
to GC prognostication and outcome prediction based 
on large and comprehensive datasets may provide a 
novel strategy for applying personalized medicine in 
gastric cancer. 

The tumor microenvironment (TME), consisting 
of extracellular matrix (ECM), stromal cells, 
immune/inflammatory cells, and secreted factors, has 
been revealed to be highly correlated with cancer 
progression and therapeutic responses [22-24]. 
Evaluation of all TME components based on machine 
learning has been utilized to predict survival in 
gastric cancer and develop an effective therapeutic 
strategy. By estimating TME cell infiltration patterns 
in gastric cancer patients, Zeng et al. defined three 
TME phenotypes and developed a quantifiable 
TMEscore as a prognostic biomarker to predict 
immunotherapeutic benefits [25]. In another study, 
Kim et al. revealed that survival outcomes were better 
in GC patients with a higher density of CD3(+) cells 
within the TME than in those with a lower density of 
CD3(+) cells [26]. Therefore, TME-related gene 
set-based prognostic signatures have potential to be 
applied in gastric cancer. 

In this study, we integrated multiple cohorts 
with gene expression data to develop and validate an 
individualized gene set-based prognostic signature 
for gastric cancer (GPSGC). Furthermore, the 
relationship between the GPSGC risk score and the 
tumor microenvironment was analyzed to explore 
survival mechanisms and therapeutic targets related 
to the GPSGC score. Finally, we used gastric cancer 
tissue microarrays for experimental verification to 
prove the stability and reliability of the GPSGC model 
and therapeutic targets. 

Methods 
GC gene expression data 

We systematically searched for gastric cancer 
gene expression datasets that were publicly available 
and reported full clinical annotations. As the 
mortality of patients with an overall survival (OS) of 
<30 days may be due to other factors, these patients 
and those without survival information were 
excluded from further evaluation. For this study, we 
gathered five cohorts with a total of 1699 patients with 
gastric cancer (Table S1): TCGA-STAD, ACRG/ 
GSE62254, GSE15459, GSE26253 and GSE84437. 

Gene expression data (FPKM normalized) and 
the corresponding clinical datasheets for GC tissue 
samples and adjacent normal tissue samples of 342 
patients in The Cancer Genome Atlas (TCGA) were 
downloaded from Genome Data Commons (https:// 
portal.gdc.cancer.gov) (up to April 1, 2019). For the 
TCGA dataset, RNA-sequencing data (FPKM values) 
were transformed into transcripts per kilobase million 
(TPM) values, and then z-score normalization was 
performed. 
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The raw data from the microarray datasets 
generated by Affymetrix and Illumina platforms were 
downloaded from Gene Expression Omnibus (GEO; 
https://www.ncbi.nlm.nih.gov/geo/) (up to April 1, 
2019). We obtained four additional datasets, 
GSE62254/ACRG, GSE15459, GSE26253, and 
GSE84437, which contained more than 80 gastric 
cancer patients with survival information in each 
cohort. The raw data for the dataset derived from an 
Affymetrix platform were processed using the RMA 
algorithm for background adjustment in the Affy 
software package. RMA was used to perform 
background adjustment, quantile normalization, and 
final summarization of oligonucleotides per transcript 
using the median polish algorithm. The raw data from 
Illumina were processed using the lumi software 
package. Finally, z-score normalization was 
performed for all the gene expression data. 
Prognostic model establishment 

The gene expression differences between gastric 
cancer tissues and adjacent normal tissues were 
compared using the limma package in R software 
3.3.1, and genes with |log fold change| > 1 and 
Benjamini-Hochberg-adjusted P < 0.01 were 
considered to be significant differentially expressed 
genes (DEGs). Survival analysis associated with these 
DEGs was performed by Kaplan-Meier analysis, and 
univariate Cox regression analysis using the 
‘survidiff’ function in the survival package of R 3.3.1 
was performed with P < 0.05 as the significance 
threshold (Table S2). Subsequently, stepwise Cox 
regression was used to calculate the results of the 
model by adding one gene at a time, so as to 
determine whether the newly added gene could 
significantly improve the accuracy of the results. 
Stepwise Cox regression can not only remove the 
collinear genes but also find the best combination of 
genes and establish the multivariate Cox regression 
model. Finally, an optimal risk assessment model was 
constructed utilizing the regression coefficients 
derived from stepwise Cox regression multivariate 
analysis to multiply the expression level of each 
marker gene. X-tile 3.6.1 software (Yale University, 
New Haven, CT, USA) was employed to determine 
the best cutoff for GC patients classified as low risk 
and high risk. The log-rank test and Kaplan-Meier 
survival analysis were used to assess the predictive 
ability of the prognostic model. 
TME characterization analysis 

For TME subcomponent analysis, ESTIMATE, a 
method that uses gene expression signatures to infer 
the fraction of stromal and immune cells in GC 
samples, was utilized to determine stromal and 

immune scores via ssGSEA (Table S3). 
For TME cell type analysis, xCell, a method that 

uses gene expression signatures to infer the 
proportions of 64 immune and stromal cell types in 
samples, was utilized to determine the enrichment 
score of each cell type via ssGSEA (Table S4). 

For panimmune gene set analysis, gene set 
variation analysis (GSVA) was used to estimate the 
enrichment scores of 110 immunoregulation-related 
pathways in GC samples (Table S5). 

For immunomodulatory gene analysis, the list of 
78 immunomodulator genes summarized by experts 
in immune oncology in the TCGA immune response 
working group was utilized, and the expression levels 
of 60 detectable immunomodulatory genes were 
obtained in this study (Table S6). 
Multiplex fluorescent immunohistochemistry 
(mfIHC) 

Tissue microarrays from 186 GC patients 
(HStmA180Su11, HStmA180Su13) were purchased 
from Shanghai Outdo Biotech Co., Ltd. (Shanghai, 
China). The studies were conducted in accordance 
with the International Ethical Guidelines for 
Biomedical Research Involving Human Subjects 
(CIOMS), and the research protocols were approved 
by the Clinical Research Ethics Committee of 
Zhongshan Hospital of Xiamen University. 

For mfIHC staining, the Opal 7-color manual 
IHC kit (PerkinElmer, USA) was used according to 
the manufacturer’s instructions. First, the 
concentration and order of the five antibodies were 
optimized, and the antibody panel was built based on 
single antibody-stained slides (VCAN antibody, 
1:5000 dilution, Novus Biologicals, cat. no. 
NBP1-85432; CLIP4 antibody, 1:200 dilution, Abcam, 
cat. no. ab243532; MATN3 antibody, 1:200 dilution, 
Abcam, cat. no. ab238893; TGFβ1 antibody, 1:250 
dilution, Abcam, cat. no. ab27969; and VEGFB 
antibody, 1:500 dilution, Absin, cat. no. abs136375). 
The slides were first baked at 63°C for 1 hour. 
Deparaffinization with xylene for 10 minutes in 
triplicate was followed by rehydration in 100%, 90%, 
and then 70% ethanol for 10 minutes each. Antigen 
retrieval was performed with a microwave. After 
incubation with 3% H2O2 (freshly made) for 10 min, 
the tissues were blocked in blocking buffer for another 
10 min at room temperature. After antigen retrieval, 
slides were stained with antigen-specific primary 
antibodies followed by Opal Polymer (secondary 
antibody). Application of the Opal TSA fluorophore 
created a covalent bond between the fluorophore and 
the tissue at the site of the HRP. Each antigen retrieval 
step was performed using AR6 antigen retrieval 
buffer, which allowed for the removal of prior 
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primary and secondary antibodies while the 
fluorophore remained covalently bonded to the tissue 
antigen. This allowed for the use of the same host 
species antibody while also amplifying the signal. 

Imaging was completed using the Vectra Polaris 
Automated Quantitative Pathology Imaging System 
(PerkinElmer, USA). One image per core was 
captured at ×20 magnification. All cube filters were 
used for each image capture (DAPI, Opal 520, Opal 
570, Opal 620, Opal 650, and Opal 690). The 
incorporated saturation protection feature was set at 
an exposure time of 250 ms. 

The stained sections were scored by three 
pathologists who were blinded to the clinical 
characteristics of the patients. The scoring system was 
based on the intensity and extent of the staining. The 
staining intensity was classified as 0 (negative), 1 
(weak), 2 (moderate) or 3 (strong). The staining extent 
was dependent on the percentage of positive cells 
(examined in 200 cells): 0 (< 5%), 1 (5%-25%), 2 
(26%-50%), 3 (51%-75%) or 4 (>75%). According to the 
staining intensity and extent scores, the fluorescent 
immunohistochemistry results were classified as 0-1, 
negative (-); >1-4, weakly positive (+); >4-8, 
moderately positive (++) and >8-12, strongly positive 
(+++). To calculate the GPSGC risk score, the protein 
expression scores of VCAN, CLIP4 and MATN3 were 
normalized with a z-score (Table S7). 
Nomogram construction and evaluation 

To validate whether the predictions of the 
prognostic model were independent of traditional 
clinical features for patients with GC, multivariate 
Cox regression analyses were conducted. We further 
used the coefficients of the multivariable Cox 
regression model and formulated nomograms using 
the rms package in R. Calibration curves were 
assessed graphically by plotting the observed rates 
against the nomogram predicted probabilities and a 
concordance index (C-index) was calculated to 
determine the discrimination of the nomogram via a 
bootstrap method with 1000 resamples. 

Statistical analysis 
Statistical analyses were performed with R 

(version 3.3.1) and GraphPad Prism 8.0. Pearson 
correlation analysis was performed to determine the 
correlation between two variables. Survival analysis 
was performed using a log-rank test. P < 0.05 was 
considered statistically significant. 

Results 
Development and identification of the GPSGC 
in TCGA and ACRG training cohorts 

In this study, we performed three major steps to 

establish accurate and reliable prognosis and 
treatment guidance for gastric cancer (GC): prognostic 
model establishment, survival mechanism 
determination and experimental verification. A total 
of 1699 patients with gastric cancer from 5 
independent gene expression datasets (Table S1) and 
186 GC patients with data from tissue microarrays 
and available clinical information were used for the 
analysis (Figure 1). 

To develop the gene expression-based 
prognostic signature for gastric cancer (GPSGC), the 
gene expression differences between gastric cancer 
tissues and adjacent normal tissues in the 
TCGA-STAD training dataset were compared using 
the limma package, as removal of genes not detected 
in the ACRG training dataset, detectable differentially 
expressed genes (DEGs) were identified with the 
cutoffs |log fold change| > 1 and 
Benjamini-Hochberg-adjusted P < 0.01. Survival 
analysis via the Kaplan-Meier method and univariate 
Cox regression revealed that the expression levels of 
22 DEGs were significantly associated with prognosis 
in the TCGA-STAD and ACRG cohorts, (P < 0.05; 
Table S2). Stepwise Cox regression multivariate 
analysis was further used to screen the best 
combination of genes and then construct an optimal 
multivariate Cox regression model, the GPSGC 
(Figure 1). A risk score was calculated for each patient 
using a formula derived from the expression levels of 
three genes weighted by their regression coefficient: 
risk score = (0.14121 * expression of VCAN) + (0.19095 
* expression of CLIP4) + (0.13633 * expression of 
MATN3). 

The optimal cutoff point (0.15) obtained from 
X-tile 3.6.1 software served as the cutoff to assign 
patients in the TCGA-STAD and ACRG cohorts into 
high- and low-risk groups. As shown in Figure 2A, 
patients with high risk scores (22.8%) had shorter 
overall survival (OS) (HR = 2.296; 95% CI: 1.513-3.485; 
P < 0.0001) than patients with low risk scores (77.2%) 
in 342 GC patients from the TCGA-STAD cohort. 
Consistently, the high-risk patients (30.7%) had a 
shorter OS than their low-risk counterparts (69.3%) 
(HR = 2.659; 95% CI: 1.836-3.849; P < 0.0001) in the 
ACRG cohort including 300 GC patients (Figure 2B). 
Also in line with these findings, the GPSGC score was 
more accurate for predicting short-term and 
long-term survival than individual prognostic factors 
(VCAN, CLIP4 or MATN3 expression level) in both 
cohorts (Figures 2A-B, S1A-F). The relationships 
between the expression of the three prognostic genes 
and GPSGC risk score distribution with survival 
status in the TCGA-STAD and ACRG cohorts are 
shown in Figure 2C and Figure 2D, respectively. 
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Figure 1. Study flowchart. DEGs: differentially expressed genes; GPSGC: gene expression-based prognostic signature for gastric cancer; KM: Kaplan-Meier; mfIHC: multiplex 
fluorescent immunohistochemistry; TME: tumor microenvironment. 

 

Validation of the GPSGC in multiple GEO 
gastric cancer cohorts 

To determine whether the GPSGC was robust, 
the performance of the GPSGC was assessed in three 
independent GEO GC cohorts, which totally consisted 
of 1057 GC patients. For the GSE15459 validation 
cohort, GPSGC successfully categorized 82 patients 
(42.7%) into the high-risk group and 110 patients 
(57.3%) into the low-risk group in terms of OS (HR = 
2.382; 95% CI: 1.578-3.596; P < 0.0001; Figure 3A). 
Similar analyses showed that 132 high-risk patients 
(30.6%) had poorer recurrence-free survival (RFS) 
than 300 low-risk patients (69.4%) in the GSE26253 
validation cohort (HR = 2.388; 95% CI: 1.710-3.335; P < 
0.0001; Figure 3B), and 146 high-risk patients (33.7%) 
had poorer OS than 287 low-risk patients (66.3%) in 
the GSE84437 validation cohort (HR = 1.687; 95% CI: 
1.254-2.268; P = 0.0005; Figure 3C). Consistent with the 
outcomes of the training cohorts, GC patients who 
were assigned to the high-risk group according to the 
GPSGC had significantly worse OS or RFS than those 

who were assigned to the low-risk group in multiple 
GEO validation cohorts. 
Association of TME subcomponents with 
GPSGC risk score and outcome in patients 
with gastric cancer 

The tissue distribution and cell location of 
VCAN, CLIP4 and MATN3 proteins suggest their 
relevance to the tumor microenvironment (TME) 
[27-29]. Increasing evidence has elucidated the 
clinicopathological significance of TME 
characterization in predicting outcomes and 
therapeutic efficacy. To further explore the potential 
survival mechanisms related to the GPSGC, we first 
divided the TME into stromal and immune 
subcomponents based on the ESTIMATE algorithm 
and determined the stromal and immune scores by 
performing ssGSEA in the entire cohort of 834 
patients (TCGA-STAD (n = 342), ACRG (n = 300), and 
GSE15459 (n = 192)). Pearson’s correlation analysis 
revealed that the stromal score was strongly 
positively correlated with the GPSGC risk score in the 
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entire cohort (r = 0.645; P < 1.0×10-6; Figure 4B); 
however, a low score was positively correlated with 
the immune score (r = 0.268; P < 1.0×10-6; Figure 4A). 
In addition, survival analysis was performed on the 
entire cohort of 834 patients with the median stromal 
score and median immune score utilized as the cutoff 
values. We found no significant difference in the OS 
of patients with high or low immune scores (HR = 
1.069; 95% CI: 0.877-1.305; P = 0.51; Figure 4C), while 
GC patients with a high stromal score had worse 
overall survival than those with a low stromal score 
(HR = 1.351; 95% CI: 1.107-1.647; P = 0.0031; Figure 
4D). Taken together, the above results suggest that the 
relationship of the GPSGC score with the poor 
survival of GC patients is probably related to the 
remodeling of stromal components in the tumor 

microenvironment. 

Association of TME cell types, panimmune 
gene sets and immunomodulatory genes with 
the GPSGC risk score and outcomes in 
patients with gastric cancer 

To further elucidate relevant survival 
mechanisms related to the relationship between the 
GPSGC score and TME components and to explore 
GPSGC-related therapeutic targets, we carried out a 
series of TME characterization analyses at the cellular 
and molecular levels in the entire cohort of 834 
patients (TCGA-STAD (n = 342), ACRG (n = 300), and 
GSE15459 (n = 192)). For TME cell type analysis, we 
inferred the proportions of 64 TME cell types based on 
the xCell algorithm and determined the enrichment 

 

 
Figure 2. Generation of the GPSGC model from TCGA and ACRG training cohorts. (A) Kaplan–Meier curves for the high (n = 78) and low (n = 264) GPSGC risk score patient 
groups in the TCGA-STAD cohort. Log-rank test, P < 0.0001. (B) Kaplan–Meier curves for the high (n = 92) and low (n = 208) GPSGC risk score patient groups in the ACRG 
cohort. Log-rank test, P < 0.0001. (C-D) The relationships between the expression of three prognostic genes (upper) and GPSGC risk score distribution with survival status 
(bottom) in the TCGA-STAD (C) and ACRG (D) cohorts are shown; the X axis is sorted by GPSGC risk scores. Patients were divided into high-risk and low-risk groups with 
GPSGC risk score = 0.15 utilized as the cutoff value. 
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score of each cell type by performing ssGSEA. Among 
the 64 TME cell types, those significantly related to OS 
(log-rank test, P < 0.05) and GPSGC risk score 
(Pearson’s correlation test, |r| ≥ 0.40, P < 0.05) are 
listed in Figure 5A, yielding a total of 9 cell types. 
Remarkably, all the five types of stromal cells with the 
largest proportions were positively correlated with 
prognosis and GPSGC risk score. With the second 
highest proportions were two types of cells belonging 
to hematopoietic stem cells (HSCs), and one of them 
were positively associated with poor outcome and 
GPSGC risk score. In addition, there were one type of 
lymphoid cells and one type of epithelial cells, both of 
which were negatively associated with poor 
prognosis and GPSGC risk score. 

Next, we explored potential GPSGC-associated 
therapeutic targets through TME characterization 
analysis at the molecular level. For panimmune gene 
set analysis, gene set variation analysis (GSVA) was 
used to estimate the enrichment scores of 110 
immunoregulation-related pathways in the entire 
cohort of 834 GC patients. Gene sets that were 

significantly associated with OS (log-rank test, P < 
0.05) and GPSGC risk score (Pearson’s correlation test, 
|r| ≥ 0.40, P < 0.05) we screened out, resulting in 10 
panimmune gene sets, 8 of which were positively 
associated with poor outcome and GPSGC risk score 
(Figure 5B). Interestingly, TGFβ-related gene sets and 
angiogenesis-related gene sets closely associated with 
the remodeling of stromal components in the TME 
were highlighted in this screening. To identify 
GPSGC-associated specific molecular targets, 60 
detectable immunomodulatory genes were analyzed 
in the entire cohort of 834 GC patients and were 
significantly correlated with the GPSGC risk score 
(Pearson’s correlation test, |r| ≥ 0.40, P < 0.05); the 
genes are listed in Figure 5C. OS analysis further 
showed that only three immunomodulatory genes, 
VEGFB, TGFβ1 and ENTPD1, were significantly 
associated with poor outcomes. Taken together, the 
above results highlight the potential survival 
mechanisms and therapeutic targets related to the 
GPSGC. 

 

 
Figure 3. Kaplan-Meier curves of overall survival or recurrence-free survival according to GPSGC risk score in different gastric cancer validation cohorts. (A) GSE15459 (n = 
192), (B) GSE26253 (n = 432), and (C) GSE84437 (n = 433). The provided P values are from log-rank tests. Patients were divided into high-risk and low-risk groups with GPSGC 
risk score = 0.15 utilized as the cutoff value. 
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Figure 4. Association of TME subcomponents with GPSGC risk score and outcome in patients with gastric cancer. The 834 gastric cancer patients involved in the analysis were 
from the TCGA-STAD (n = 342), ACRG (n = 300) and GSE15459 (n = 192) cohorts. (A) Scatter plots depicting the low positive correlation between immune score and GPSGC 
risk score in human gastric cancer samples. The fitted curve of the relation between immune score and GPSGC risk score was obtained by locally weighted scatterplot smoothing 
(LOWESS). Pearson’s correlation coefficient is shown in the graphs (P < 1.0×10-6). (B) Scatter plots depicting the strong positive correlation between stromal score and GPSGC 
risk score in human gastric cancer samples. The fitted curve of the relation between stromal score and GPSGC risk score was obtained by LOWESS. Pearson’s correlation 
coefficient is shown in the graphs (P < 1.0×10-6). (C) Kaplan–Meier curves for overall survival of 834 gastric cancer patients according to immune score. Log-rank test, P = 0.51. 
(D) Kaplan–Meier curves for overall survival of 834 gastric cancer patients according to stromal score. Log-rank test, P = 0.0031. 

 

Experimental verification of the GPSGC and 
therapeutic targets in GC tissue microarrays 

As all the proteins associated with the GPSGC 
and therapeutic targets perform important biological 
functions, we further used GC tissue microarrays 
combined with multiplex fluorescent immuno-
histochemistry (mfIHC) for experimental verification 
at the protein level. In tissue microarrays from 186 GC 
patients, the protein expression-modified GPSGC 
effectively categorized 59 patients (31.7%) into the 
high-risk group and 127 patients (68.3%) into the low- 
risk groups in terms of OS (HR = 3.296; 95% CI: 
2.057-5.281; P < 0.0001; Figure 6A). OS analysis also 
proved that GC tissue protein expression of the 
therapeutic targets TGFβ1 and VEGFB was 
significantly associated with poor outcome of the 186 

GC patients (Figure 6B-C). As indicated by the 
representative GC sample in the tissue microarrays in 
Figure 6D, the overall expression levels and 
localization of VCAN, CLIP4 and MATN3 were 
dramatically correlated with the expression of the 
therapeutic targets TGFβ1 and VEGFB. Pearson’s 
correlation analysis revealed that the protein 
expression-modified GPSGC risk score was strongly 
positively correlated with TGFβ1 protein expression 
(r = 0.5763; P < 0.0001; Figure 6E) and VEGFB protein 
expression (r = 0.5855; P < 0.0001; Figure 6F) in the 
tissues of 186 GC patients. Together, these results 
experimental verified the stability and reliability of 
the GPSGC model, which further suggested that 
TGFβ1 and VEGFB may be developed as potential 
therapeutic targets for GC patients with poor 
prognosis according to the GPSGC. 
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Figure 5. Association of TME cell types, panimmune gene sets, immunomodulatory (IM) genes with GPSGC risk score and outcome in patients with gastric cancer. The 834 
gastric cancer patients involved in the analysis were from the TCGA-STAD (n = 342), ACRG (n = 300) and GSE15459 (n = 192) cohorts. (A) Among the 64 TME cell types, those 
significantly related to overall survival (log-rank test, P < 0.05) and GPSGC risk score (Pearson’s correlation test, |r| ≥ 0.40, P < 0.05) are listed. The square data markers indicate 
estimated hazard ratios. The error bars represent 95% CIs. Pearson’s correlation coefficients between 9 TME cell types and stromal scores are also shown (P < 0.05). (B) Among 
the 110 panimmune gene sets, those significantly related to overall survival (log-rank test, P < 0.05) and GPSGC risk score (Pearson’s correlation test, |r| ≥ 0.40, P < 0.05) are 
listed. The square data markers indicate estimated hazard ratios. The error bars represent 95% CIs. Pearson’s correlation coefficients between 10 panimmune gene sets and 
stromal scores are also shown (P < 0.05). (C) Among the 60 immunomodulatory genes, those significantly related to GPSGC risk score (Pearson’s correlation test, |r| ≥ 0.40, P 
< 0.05) are listed. The overall survival analysis of 6 immunomodulatory genes is presented. The numbers marked in red denote estimates with a log-rank test P-value < 0.05. The 
square data markers indicate estimated hazard ratios. The error bars represent the 95% CIs. Pearson’s correlation coefficients between the 6 immunomodulatory genes and 
stromal scores are also shown (P < 0.05). 
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Figure 6. Multiplex fluorescent immunohistochemistry (mfIHC) analysis of the relationship between GPSGC risk score, therapeutic target expression and overall survival with 
GC tissue microarray data. (A) Kaplan–Meier curves for high (n = 59) and low (n = 127) GPSGC risk score patient groups in GC tissue microarray data. Log-rank test, P < 0.0001. 
(B) Kaplan–Meier curves for high (n = 91) and low (n = 95) TGFβ1 expression patient groups in GC tissue microarray data. Log-rank test, P = 0.0006. (C) Kaplan–Meier curves 
for high (n = 97) and low (n = 89) VEGFB expression patient groups in GC tissue microarray data. Log-rank test, P = 0.0018. (D) mfIHC showed the protein expression and 
localization of VCAN (green), CLIP4 (cyan), and MATN3 (yellow) and the therapeutic targets TGFβ1 (orange) and VEGFB (red) in GC tissue. DAPI: blue; scale bar: 50 µm. (E) 
Scatter plots depicting the positive correlation between GPSGC risk score and TGFβ1 expression in GC tissue microarray data. Pearson’s correlation coefficient is shown in the 
graphs (n = 186, P < 0.0001). (F) Scatter plots depicting the positive correlation between GPSGC risk score and VEGFB expression in GC tissue microarray data. Pearson’s 
correlation coefficient is shown in the graphs (n = 186, P < 0.0001). 
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Figure 7. Multivariate Cox analysis evaluating independently predictive ability of the GPSGC and other clinical risk factors for OS. The square data markers indicate estimated 
hazard ratios. The error bars represent 95% CIs. 

 

Construction and evaluation of a nomogram 
based on the GPSGC 

To explore whether the prognostic value of the 
GPSGC was independent of other clinical factors, 
multivariate Cox regression analyses were conducted, 
which exhibited that GPSGC could serve as an 
independent predictor of patients’ survival outcome 
after adjusted by clinical characteristics including age, 
gender, and AJCC stage in multiple GC cohorts, thus 
confirming its robustness for independently 
predicting GC prognosis (Figure 7). Based on 
multivariate Cox analysis, a nomogram that 
integrated the GPSGC and other clinical variables was 
generated to predict the probability of 3-year and 
5-year overall survival for GC patients with the 
TCGA-STAD and ACRG training cohorts (Figure 8A). 
The calibration plots for the probability of OS at 3, and 
5 years were predicted well in the GSE15459 

validation cohort (C-index 0.754, 95% CI 0.709-0.798; 
Figure 8B), and the experimental tissue array 
validation cohort (C-index 0.706, 95% CI 0.653-0.759; 
Figure 8C). 

Discussion 
Patients suffering from GC often display 

heterogeneous clinical outcome, with survival 
durations ranging from less than 5 months to over 10 
years [4, 11]. The 5-year overall survival rate of 
patients with early-stage localized GC is more than 
60%, whereas that of patients with distant metastasis 
is less than 5% [30]. When diagnosed at early stages, 
GC can be effectively treated with endoscopic or 
surgical resection with or without adjuvant therapy. 
However, survival outcomes can vary widely among 
patients receiving the same treatment for disease of 
the same stage [31]. In this respect, treatment options 



Theranostics 2020, Vol. 10, Issue 19 
 

 
http://www.thno.org 

8644 

are lacking, with all patients being treated with 
similar drugs. Thus, a prognostic signature beyond 
the current staging system is desired to accurately 
identify those patients likely to develop refractory 
disease and have worse survival and to better guide 
adjuvant treatment. At present, many independent 
studies have found that some gene transcription 
levels are closely related to the outcome of gastric 
cancer [14, 29, 32, 33], but there have been a lack of 
comprehensive bioinformatic, clinicopathological 
factors and machine learning analyses to improve the 
accuracy of prognosis. In this study, using multiple 
well-established public gastric cancer cohorts, we 
developed a robust prognostic signature on the basis 
of gene set enrichment analysis and proved its 
efficacy in three GEO datasets derived from different 
microarray platforms. Furthermore, experimental 
verification was carried out to prove the GPSGC 
model stability and reliability at the protein level 
using tissue microarray data from 186 GC patients. To 
provide clinicians with a quantitative approach to 
predict the prognosis of GC patients, a nomogram 
that integrated the GPSGC and other clinical variables 
was constructed, which is more accurate for 
predicting short-term and long-term survival in GC 
patients than individual prognostic factors. 

The three genes used to assess GPSGC risk 
scores in our study (VCAN, CLIP4 and MATN3) have 
been previously reported to be associated with gastric 
cancer. VCAN (versican), a ubiquitous component of 
the extracellular matrix (ECM), accumulates in both 
tumor stroma and cancer cells and is highly regulated 
by various cytokines [27]. Many investigators have 
proven that high expression of VCAN is an 
independent predictor of poor prognosis in gastric 
cancer and correlates with advanced stage and T 
classification [34, 35]. Furthermore, abnormally 
expressed VCAN functionally participates in the 
progression of gastric cancer [27]. CLIP4, also known 
as UBASH3A or TULA, is a member of the T cell 
ubiquitin ligand family [28]. Some studies have 
shown that CLIP4 expression stimulates tumor 
metastasis and recurrence in certain tumor types, and 
its promoter methylation is associated with an 
increase in GC severity [36-38]. MATN3 (matrilin-3) is 
widely considered to be involved in the formation of 
filamentous networks in the extracellular matrix of 
various tissues [39]. Previous studies have found that 
MATN3 mRNA and protein are highly expressed in 
GC patients, and MATN3 overexpression could be 
used as an independent predictor of poor prognosis in 
GC patients [29, 40]. Although these three genes were 
previously found to be related to the prognosis of 
gastric cancer, our study is the first to our knowledge 
to report the feasibility and accuracy of a risk 

assessment model based on VCAN, CLIP4 and 
MATN3 expression for determining GC prognosis. 

The tissue distribution and cell localization of the 
VCAN, CLIP4 and MATN3 proteins suggest their 
relevance to the tumor microenvironment (TME). 
Moreover, the GPSGC risk score was strongly 
positively correlated with the stromal score and 
weakly positively correlated with the immune score 
in the TME subcomponent analysis of our study, 
while a high stromal score was associated with poor 
survival of GC patients, and the immune score was 
not related to survival. Therefore, we infer that the 
effect of VCAN, CLIP4 and MATN3 expression on the 
poor survival of GC patients is probably related to the 
remodeling of stromal components in the tumor 
microenvironment. Our TME cell type analysis also 
fully supports this deduction. Studies have shown 
that the abundance of stromal components as an 
independent prognostic factor was critical to 
prognostication in GC [31, 41], which also provide 
indirect evidence for the close relationship between 
GPSGC and survival of GC patients. Taken together, 
these results provide new insights for cell omics 
research on the mechanism by which VCAN, CLIP4, 
and MATN3 regulate the survival of GC patients. 

To explore potential therapeutic targets for 
gastric cancer patients with poor prognosis based on 
the GPSGC, we further performed panimmune gene 
set analysis and immunomodulatory gene analysis 
using gene expression data of GC. The results of the 
panimmune gene set analysis showed that the 
TGFβ-related gene set and the angiogenesis-related 
gene set were significantly correlated with the GPSGC 
risk score and poor survival. In addition, the 
immunomodulatory gene analysis accurately 
indicated that TGFβ1 and VEGFB may be developed 
as potential therapeutic targets of GC patients with 
poor prognosis according to the GPSGC. Our 
experimental verification in GC tissue microarrays 
also confirmed this conclusion at the protein level. At 
present, galunisertib and M7824 are targeted drugs 
that have been used in the clinical treatment of gastric 
cancer and key function by blocking the TGFβ 
signaling pathway [42-45]. There is increased 
expression of VEGFB in gastric cancer, and clinical 
drugs such as apatinib and Zaltrap can effectively 
block its function [46-50]. Therefore, these drugs 
targeting TGFβ1 or VEGFB may be developed to be 
combined with our prognosis signature to achieve 
accurate treatment for GC patients. 

Our study has several strengths. First, the GC 
cohorts had large sample sizes and were 
systematically analyzed in multiple ways in this 
study. All detectable genes were included in the 
analysis, and machine learning was used to explore 
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the optimal prognosis model. Second, we further 
performed a comprehensive TME characterization 
analysis to explore the GPSGC-related survival 
mechanisms and potential therapeutic targets of GC. 
Moreover, we carried out experimental verification to 

prove the GPSGC model stability and reliability at the 
protein level using tissue microarray data, and a 
significant correlation between GPSGC risk score and 
the protein expression of therapeutic targets was 
identified. 

 

 
Figure 8. Construction and evaluation of a nomogram based on the GPSGC to predict the 3-year and 5-year overall survival for GC patients. (A) Nomogram was constructed 
with the TCGA-STAD and ACRG training cohorts (n = 642) for predicting the probability of 3-year and 5-year OS for GC patients. (B) Calibration plot of the nomogram for 
predicting the probability of OS at 3, and 5 years in GSE15459 validation cohort (n = 192). (C) Calibration plot of the nomogram for predicting the probability of OS at 3, and 
5 years in the experimental tissue array validation cohort (n = 186). The grey line represents the ideal nomogram, and the red line represents the observed nomogram. 
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Despite the significant results obtained in the 
present study, there were several shortcomings. First, 
although large sample-sized GC cohorts were 
included in our study to establish a well-validated 
prognostic model, sampling bias due to the use of 
different platforms may result in some subjectivity of 
the gene expression values. Second, our study 
provided new insights into the GC stromal 
microenvironment and related therapy targets. 
However, it has limitation because it was 
retrospective. Thus our findings should be further 
confirmed by prospective studies. Third, the 
biological mechanisms by which the three genes 
(VCAN, CLIP4 and MATN3) integrated into the 
GPSGC model in our study contribute to GC 
progression and poor survival remain elusive, and 
further in-depth investigations into their functions 
might provide novel targets and treatment strategies. 

In conclusion, this study identified a 
TME-relevant gene set-based prognostic signature 
that can effectively predict GC patient survival 
outcomes. The GPSGC model can be clinically used to 
improve GC patient OS and to develop individualized 
therapy based on GPSGC-related targeted drugs. 
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