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Abstract 

Sirtuin 3 (SIRT3) is one of the most prominent deacetylases that can regulate acetylation levels in 
mitochondria, which are essential for eukaryotic life and inextricably linked to the metabolism of multiple 
organs. Hitherto, SIRT3 has been substantiated to be involved in almost all aspects of mitochondrial 
metabolism and homeostasis, protecting mitochondria from a variety of damage. Accumulating evidence 
has recently documented that SIRT3 is associated with many types of human diseases, including 
age-related diseases, cancer, heart disease and metabolic diseases, indicating that SIRT3 can be a potential 
therapeutic target. Here we focus on summarizing the intricate mechanisms of SIRT3 in human diseases, 
and recent notable advances in the field of small-molecule activators or inhibitors targeting SIRT3 as well 
as their potential therapeutic applications for future drug discovery. 
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Introduction 
Sirtuins, a family of NAD+-dependent protein 

deacetylases, contain seven members (SIRT1-7) in 
mammals while bacteria and archaea possess only one 
or two members [1]. Sirtuins are divided into five 
subclasses based on the conserved catalytic core 
domain. Class I is comprised of SIRT1, 2, and 3, which 
exhibit robust deacetylase activity. SIRT4, a class II 
Sirtuin, functions predominantly as an 
ADP-ribosyltransferase in mitochondria. SIRT5 
belongs to Class III, while SIRT6 and 7 are assigned to 
Class IV. The U class sirtuins have only been observed 
in bacteria. Although subcellular localization and 
functions are different, mammalian sirtuins have 
different divisions of labor from regulating genome 
stability and energy metabolism to responding to 
cellular stress, working together to regulate the fate of 
cells as well as participating in various disease 
processes (Table 1) [2-4]. Among them, SIRT3 
localizes mainly to the mitochondrial matrix and 
plays an important role in regulating mitochondrial 

metabolism, including the tricarboxylic acid (TCA) 
cycle, the urea cycle, amino acid metabolism, fatty 
acid oxidation, ETC/oxidative phosphorylation 
(OXPHOS), ROS detoxification, mitochondrial 
dynamics and the mitochondrial unfolded protein 
response (UPR) [5, 6]. 

The SIRT3 protein is widely expressed in 
mitochondria-rich tissues, such as kidney, heart, brain 
and liver tissue [12]. The acetylation modifications 
that are regulated by SIRT3 are essential for 
maintaining mitochondrial function in these tissues. 
Given the crucial role of mitochondria in energy 
generation, metabolism, apoptosis and intracellular 
signaling [13], these highly metabolic tissues are more 
sensitive to mitochondrial dysfunction. Not 
surprisingly, SIRT3 has been verified to regulate 
aging, neurodegeneration, liver disease, kidney 
disease, heart disease and other metabolic diseases 
(Figure 1) [13]. Moreover, the dual role SIRT3 plays in 
cancer development is intriguing [14]. Therefore, 
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SIRT3 has been proposed to be a promising 
therapeutic target for multiple human diseases, and a 
series of small-molecule compounds targeting SIRT3 
have displayed favorable therapeutic effects [15, 16]. 
In this review, we focus on summarizing the intricate 
mechanisms of SIRT3 in human diseases, the 

development of small molecule compounds targeting 
SIRT3 as well as their potential applications, and the 
potential superiorities and shortcomings regarding 
future drug discoveries with SIRT3 as a potential 
druggable target. 

 

 
Figure 1. The pros and cons of SIRT3 in type 2 diabetes, aging, neurodegeneration, liver disease, inflammatory disease, cardiovascular disease, cancer, kidney disease and obesity. 

 

Table 1. Classification, function and characteristics of mammal sirtuins 

Sirtuin Class Enzymatic activity Subcellular localization Function Disease Reference 
SIRT1 I Deacetylase Cytoplasm & Nuclear a. Metabolism regulation 

b. Regulation of chromatin and 
transcription 
c. DNA repair 
d. Inflammation suppression 

a. Aging 
b. Neurodegeneration 
c. Metabolic disease 
d. Cardiovascular disease 
e. Cancer 

[1, 7] 

SIRT2 I Deacetylase Cytoplasmic & Nuclear a. Cell differentiation 
b. Metabolism regulation 
c. Cell cycle regulation 
d. Microtubule dynamics 
e. Inflammation regulation 

a. Cancer 
b Neurodegeneration 

[1, 7, 8] 

SIRT3 I Deacetylase Mitochondria & Nuclear a. Metabolism regulation 
b. Inflammation suppression 
c. Inhibition of oxidative stress 
d. Apoptosis regulation 
e. Autophagy regulation 

a. Aging 
b. Neurodegeneration 
c. Metabolic disease 
d. Cardiovascular disease 
e. Cancer 

[1, 7] 

SIRT4 II a. ADP-ribosyltransferase 
b. Lipoamidase 
c. Deacetylase 

Mitochondria Metabolism regulation a. Metabolic disease 
b. Cancer 
c. Neurodegeneration 

[1, 7] 

SIRT5 III a. Deacetylase 
b. Desuccinylase 
c. Demalonylase 
d. Deglutarylase 

Mitochondria a. Metabolism regulation 
b. Immune response modulation 

a. Metabolic disease 
b. Cancer 

[1, 7, 9] 

SIRT6 IV a. ADP-ribosyltransferase 
b. Deacylase 
c. Deacetylase 

Nuclear a. Chromatin and DNA repair 
b. Metabolism regulation 

a. Aging 
b. Cancer 
c. Metabolic disease 
d. Cardiovascular disease 

[1, 4, 7, 10] 

SIRT7 IV Deacetylase Nuclear a. Transcription regulation 
b. Chromatin remodeling 
c. Metabolism regulation 

a. Cancer 
b. Metabolic disease 
c. Cardiovascular disease 

[1, 7, 11] 
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Figure 2. Structure and function of SIRT3. (A) The conserved enzymatic core of SIRT3 contains a NAD+ binding domain, a zinc binding motif and the binding sites of SIRT3 
substrates. (B) The modification by SIRT3 is deacetylate its substrate with a NAD+ dependent manner. (C) Typical SIRT3 regulated biological function. SIRT3 assists mitochondria 
to maintain metabolic stability including the homeostasis of TCA cycle, Urea cycle, Amino acid metabolism, Fatty acid oxidation, ETC/OXPHOS, ROS detoxification and 
mitochondrial dynamics. Moreover, SIRT3 is closely related with oxidative stress, apoptosis, autophagy and inflammation. 

 

Structure and function of SIRT3 
As a typical sirtuin, SIRT3 has a conserved 

enzymatic core (aa126-399) undertaking the 
deacetylation function and acts in an NAD+ 
dependent manner. The core region contains a large 
Rossmann fold domain for NAD+ binding and a 
smaller domain comprising of a helical bundle and a 
zinc-binding motif which is formed by two loops 
extending from the large domain. The remainder of 

the enzymatic core is composed of the binding sites 
for SIRT3 substrates (Figure 2A) [14]. Strictly 
speaking, the NAD+-dependent SIRT3 deacetylation 
reaction process includes four steps. First, the 
acetylated substrate and the NAD+ co-substrate bind 
in a cleft between the Rossmann-fold and zinc- 
binding domains, thereby inducing closure of the 
active site and stabilization of the NAD+ binding loop. 
Then the nicotinamide moiety of NAD+ is induced 
and buried in the nearby highly conserved 
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hydrophobic pocket in a productive conformation. 
Subsequently, this conformation orients the α-face of 
NAD+ toward the acyl substrate, exposing the C1 
atom of the ribose ring for direct nucleophilic attack 
from the carbonyl oxygen of acyl substrate. The acetyl 
group consequently transfers from the substrate to the 
ADP-ribose moiety of NAD+ coupled with cleavage of 
the nicotinamide from NAD+. Next, the C1’-O- 
alkylamidate intermediate converts to the bicyclic 
intermediate with the aid of the conserved His 224, 
which induces a nucleophilic attack of the 2’-OH 
group of the ribose onto the iminium carbon of the 
O-alkylamidate intermediate. Finally, the bicyclic 
intermediate is disrupted by an activated water 
molecule to produce the deacetylated protein and 
2’-O-acetyl-ADP-ribose (Figure 2B). SIRT3 not only 
removes acetyl groups, but also crotonyl and 
myristoyl groups. However lysine acetylation is the 
most extensively studied modification [17]. 
Mitochondrial proteins are relatively highly 
acetylated (nearly 20%) [18] and acetylation 
modification is involved in all aspects of mitochondria 
function. Therefore, acetylation modification is 
pivotal to mitochondrial destiny. In a recent report, 
the most important mitochondria sirtuin, SIRT3, can 
directly interact with at least 84 mitochondria 
proteins. These proteins are involved in all aspects of 
mitochondria biological function, including 
mitochondrial mitosis (CHCHD3, IMMT), 
transcription (TFAM, MTIF2, etc.), translation 
(MRPL11, MRPS34, etc.), DNA processing (POLB, 
POLDIP2,etc.), RNA processing (PNPT1, RNMTL1, 
etc.), lipid metabolism (ACADM, AGK , etc.), ETC/ 
OXPHOS (NDUFA5, ATP5B and etc.), the TCA cycle 
(OGDH, DLST and etc.), as well as amino acid 
metabolism (GLUD1, OAT, etc.) [19]. Together, SIRT3 
supports the maintenance of mitochondrial 
homeostasis by regulating the acetylation levels of its 
substrates (Figure 2C). 

Endogenous regulators of SIRT3 
SIRT3 is important in mitochondria, and 

therefore it is regulated in various ways. There are 
several studies on endogenous regulators of its 
expression, as well as transcriptional and post- 
translational modifications on this protein (Table 2). 
SIRT3 is a sensor of mitochondrial energy, thus levels 
of the metabolic co-factor (NAD+) and the byproduct 
nicotinamide are direct regulators of its activity. As 
the co-factor of SIRT3, NAD+ promotes the 
deacetylation process [20] while nicotinamide inhibits 
this process through accelerating the reverse reaction 
by binding to the reaction product [17, 21]. In 
addition, caloric restriction (CR) is another crucial 
factor that can obviously stimulate the expression of 

SIRT3, which is also a biological self-protection 
strategy. In response to CR, the up-regulated SIRT3 
activates mitochondrial isocitrate dehydrogenase 2 
(IDH2) by deacetylation, thus increasing the NADPH 
level to reduce oxidative damage and enhance the 
mitochondrial antioxidant defense system [20]. SIRT3 
is transcribed in the nucleus and full-length SIRT3 
(FLSIRT3) has no enzyme activity. FLSIRT3 is 
imported into the mitochondria, then its NH2 
terminus is proteolytically cleaved in the 
mitochondrial matrix to become the active form, 
SIRT3 (an approximately 28kDa product). During this 
process, matrix processing peptidase (MPP) acts as 
“scissors” to accomplish this post-translational 
modification [22]. SUMOylation is another post- 
translational modification on SIRT3, which further 
inhibits its activity. SUMO specific protease SENP1 
can de-SUMOylate and activate SIRT3 to promote 
mitochondria metabolism [23]. SIRT3 can also be 
regulated by covalent modification. 4-Hydroxy-
nonenal (4-HNE) is an endogenous product of lipid 
peroxidation which inhibits SIRT3 activity by 
occupying its zinc-binding residue (Cys 280) [24]. In 
addition, transcriptional modification is another 
major regulation of SIRT3. NF-κB, which is a 
pleiotropic transcription factor, was recently 
identified to bind to the SIRT3 promoter to enhance its 
expression [25]. Peroxisome proliferator-activated 
receptor γ (PPARγ) coactivator 1 (PGC-1α) could bind 
to the SIRT3 promoter to stimulate SIRT3 
transcription [26, 27], while SNAI1 and Zinc finger E- 
box-binding homeobox 1 (ZEB1) negatively regulates 
the SIRT3 promoter activity to inhibit its expression 
[28, 29]. Of note, microRNAs (miRNAs) are mainly 
post-transcriptional regulators that affect mRNA 
stability and protein levels which can also regulate 
SIRT3 activity. As a class of non-coding RNA 
molecules, miRNAs bind to complementary target 
mRNAs, resulting in mRNA translational inhibition 
or degradation [30]. Studies have proven that miR-195 
[31], miR-421 [32], miR-494-3p [33], miR-708-5p [34], 
miR-31 [35], miR-145 [36], miR-298 [37] could directly 
target the 3’UTR of SIRT3, thus inhibiting its gene 
expression and protein levels. In addition, miR-210 
targets and represses the iron-sulfur cluster assembly 
protein (ISCU), which changes the NAD+/NADH 
ratio, indirectly influencing SIRT3 [38]. Long non- 
coding RNA (LncRNAs) play a similar role to 
miRNAs as well. LncRNA TUG1 suppresses the 
mRNA expression of miR-145, which can further 
positively regulate SIRT3 [36], while LncRNA 
DYNLRB2-2 inhibits miR-298 to activate the 
transcription of SIRT3 [37]. The protein-protein 
network is another primary method of regulating 
SIRT3 activity. Profilin1, an actin-associated protein, 
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can interact with SIRT3 and promote its expression 
[39]. β-catenin, a key downstream effector in the Wnt 
signaling pathway, can suppress SIRT3 promoter 
activity thus inhibiting its expression [40]. As 
mentioned above, these endogenous regulators 
modulate the expression and activities of SIRT3 in 
response to cellular stresses, thus maintaining 
homeostasis. 

SIRT3 and human disease 
“Small” modification, “big” function 

The biological function of SIRT3, which is just 
deacetylation of its substrate, seems to be relatively 
simple and limited, but it does participate in 
numerous biological processes and the development 
of various diseases [41, 42]. The most fascinating role 
of SIRT3 is in longevity. It was first reported in 2003 
that SIRT3 is positively associated with longevity [43], 
and much subsequent work has confirmed and 
expanded this result [44-46]. More delightfully, 
studies have proven that SIRT3 protects human heart, 
brain, muscle, liver, kidney and other tissues from 
dysfunction and disease [46]. SIRT3 is also involved in 
the overall progression of cancer. It may function 
differently in various conditions, but it mostly inhibits 
the development of cancer [14]. Here, we will discuss 
how SIRT3 fights against human diseases by 
regulating specific substrate proteins and their 
corresponding signaling pathways. 

SIRT3 in age-related disease 
Age-related disease usually occurs with high 

frequency after a certain point, and these diseases are 
always accompanied by the gradual decline of 
function in various organs. In this section, we mainly 
focus on aging, Alzheimer's disease (AD) [47], 
Parkinson's disease (PD) [48], Huntington's disease 
(HD) [49], amyotrophic lateral sclerosis (ALS) [50] and 
age-related hearing loss (Figure 3). Aging is a complex 
and irreversible process. Although the pathological 
features of aging vary considerably, they all bear the 
common characteristic that the smallest components 
of lesions, such as neuronal or muscle cells, have 
decreased or imbalanced mitochondrial function and 
increased oxidative damage [51]. Under normal 
circumstances, SIRT3 is highly expressed in the brain 
and nervous system, but decreased SIRT3 expression 
is always observed in age-related diseases and this 
age-dependent defect of SIRT3 is a major risk factor of 
pathogenesis [52-54]. 

Another well-studied role of SIRT3 in age- 
related disease is that it can act to resist apoptosis. 
Progressive loss and death of neuronal cells is a 
feature of these diseases, and apoptosis plays an 
important role in this process. P53, the most famous 

tumor suppressor gene, is highly acetylated in 
neurodegenerative diseases. Ac-p53K320 targets 
mitochondria and directly reduces its function, 
inducing mitochondrial dysfunction which leads to 
mitochondrial-dependent apoptosis. SIRT3 
deacetylates p53 to prevent its localization-induced 
releasing of cytochrome c from the mitochondria to 
the cytoplasm [53]. Moreover, SIRT3 activates 
FOXO3α, a transcription factor of the FOXO family 
which is involved in metabolism-regulation and stress 
response, to inhibit Bax-regulated apoptosis [57]. 
SIRT3 can deacetylate CypD, a regulatory component 
of the mitochondrial permeability transition pore 
(mPTP), to inhibit the mitochondrial permeability 
transition to prevent apoptosis and mitochondrial 
dysfunction [58]. In response to age-dependent 
mitochondrial capacity reduction, SIRT3 binds to 
ATP5O, a mitochondrial ATP synthase, strengthening 
the ETC/OXPHOS process to enhance cellular ATP 
production [19]. Recently, studies have shown that the 
activation of SIRT3 and the inhibition of apoptosis 
play an important role in the improvement of age- 
related diseases. For example, celastrol can ameliorate 
age-related macular degeneration via SIRT3 activation 
and apoptosis inhibition [59]. Melatonin decelerated 
age-induced ovarian aging via activating SIRT3- 
regulated mitochondrial function enhancement 
together with apoptosis inhibition [60]. Not 
surprisingly, daily melatonin supplementation 
protects vascular endothelium from aging via SIRT3- 
regulated oxidative stress suppression and apoptosis 
inhibition [61]. Accordingly, up-regulation of SIRT3 
plus apoptosis inhibitors might provide new 
directions for age-related disease treatment. SIRT3 can 
activate autophagy, a notable cellular self-protective 
mechanism. SIRT3 can deacetylate LKB1 to activate 
the AMPK-mTOR autophagy pathway [62]. More 
interesting, deacetylated FOXO3α can activate 
expression of various autophagy genes (ULK1, ATG5, 
ATG7, et al) to protect cells from apoptosis [63]. 
Mitophagy is indispensable for maintaining 
mitochondrial homeostasis and is a specific form of 
autophagy that selectively removes dysfunctional 
mitochondria. When an organ is unable to repair 
dysfunctional mitochondria, mitophagy helps to 
provide for metabolic needs and contributes to 
mitochondrial renewal [64]. SIRT3 induces the 
initiation and activation of the PINK1-Parkin 
mitophagy pathway to inhibit cell death [65]. 
Induction of autophagy is a new hotspot in the 
treatment of neurodegenerative diseases [66, 67]. 
Therefore, SIRT3 activation along with autophagy 
activators (like ULK1 activators [68, 69], rapamycin 
[70]) will be a new candidate method for treatment of 
these diseases. Of note, another major pathogenesis of 
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age-related disease is the aggregation of pathological 
proteins (such as Aβ, tau in AD, and α-synuclein in 
PD) [47-50]. Recently, nicotinamide mononucleotide 
adenylyltransferase 2 (NMNAT2), a substrate of 
SIRT3, was found to be a neuron protector by 
interacting with heat shock protein 90 (HSP90) to 
refold aggregated protein substrates [71]. SIRT3 can 
interact with NMNAT2 and activate it to improve 
mitochondrial function and inhibit apoptosis [72]. 
More interestingly, NMNAT2 is a neuron-specific and 
effective protector which inhibits axonal degeneration 
and dysfunction, and it is very likely that SIRT3 can 
promote this function [73]. It is noteworthy that 
SIRT3-induced autophagy might also be an effective 
method to eliminate these pathological proteins, thus 
SIRT3 activation together with “toxic protein” 
scavenging drugs might be beneficial. Taken together, 
SIRT3 is the nemesis of age-related diseases and it 
fights against almost all the aspects of their 
development. Properly targeting SIRT3 will be 
promising in these diseases. 

SIRT3 in cancer 
Cancer cells exhibit metabolic patterns that are 

distinct from normal cells. The feature of 
mitochondria metabolic reprogramming is the 
“Warburg effect” [74], which is that most cancer cells 
are more dependent on aerobic glycolysis than 
oxidative phosphorylation, regardless of the fact that 
glycolysis produces ATP inefficiently. Glycolysis not 

only provides a rapid energy supply, but also 
provides a number of favorable factors for the 
occurrence and development of tumor 
microenvironments, such as accelerating the 
instability of genome and the positive response to 
multiple cell proliferation signals (PI3K/AKT, c-Myc, 
etc.) [75, 76]. Of course, in some specific cancers or 
specific circumstances (such as brain cancer and acute 
myeloid leukemia), OXPHOS is still their more 
suitable means of energy supply, and the survival of 
these cancers is more dependent on the continued 
activity of OXPHOS [77-79]. The tumor 
microenvironment of different cancers varies 
considerably, and the pressure of survival makes 
them evolve to choose the most suitable metabolic 
pathway. In short, SIRT3 promotes oxidative 
phosphorylation and inhibits glycolysis in the overall 
regulation of mitochondrial metabolism [80, 81]. 
Intriguingly, a recent study found that SIRT3 changes 
to an oncogene to promote HFD-induced 
tumorigenesis in mice [82]. Therefore, the role of 
SIRT3 in cancer appears context-dependent [83]. In 
most cases, it is carcinogenic in some cancers that are 
addicted to OXPHOS [77]. However, it is also a tumor 
suppressor in glycolysis-dependent cancers [80, 81, 
84]. Since the role of SIRT3 in cancer has been widely 
reported and is well summarized, in this part we 
mainly focus on how SIRT3 regulates its substrates to 
play a double-sided role in cancer. 

 
 

Table 2. Endogenous direct regulators of SIRT3 

Name Classification Regulatory Mechanism References 
NAD+ cofactor Promotes the deacetylation process of SIRT3 [20] 
Nicotinamide Deacetylation product Nicotinamide inhibits SIRT3 through rebinding of the reaction product to the enzyme accelerates the 

reverse reaction 
[17, 21] 

Caloric Restriction - Increases SIRT3 expression and activity [20] 
MPP Peptidase Proteolytic processing of FLSIRT3 to active SIRT3 [22] 
SENP1 SUMOspecific protease SENP1 can de-SUMOylates and activates SIRT3 [23] 
4-Hydroxynonenal Endogenous product 4-Hydroxynonenal inhibits SIRT3 activity by occupy its zinc-binding residue Cys(280). [24] 
NF-κB Transcription factor NF-κB binds to the SIRT3 promoter to enhance its expression  [25] 
PGC-1α Transcriptional coactivator PGC-1α bounds to the SIRT3 promoter as its transcription factor to regulate SIRT3 expression [26, 27] 
SNAI1 Transcriptional repressor SNAI1 inhibits SIRT3 promoter activity [28] 
ZEB1 Transcriptional repressor ZEB1 inhibits SIRT3 promoter activity. [29] 
miR-195 MicroRNA miR-195 down-regulates SIRT3 expression through direct 3'-untranslated region targeting [31] 
miR-421 MicroRNA miR-421 targets the 3’UTR of SIRT3 and decreases SIRT3 protein level [32] 
miR-494-3p MicroRNA miR-494-3p targets the 3’UTR of SIRT3 and inhibits SIRT3 expression at mRNA and protein levels [33] 
miR -708-5p MicroRNA MiRNA-708-5p targets the 3’UTR of SIRT3 and decreases SIRT3 protein level [34] 
miR-31 MicroRNA miR-31 directly targets SIRT3 to repress its expression [35] 
miR-145 MicroRNA miR-31 directly targets SIRT3 to reduce its expression [36] 
miR-298 MicroRNA miR-298 directly targets SIRT3 to inhibit its expression [37] 
miR-210 MicroRNA miR-210 targets and represses ISCU to change the NAD+/NADH ratio thus indirectly negative 

regulate SIRT3 
[38] 

TUG1 Long non-coding RNA TUG1 negatively regulates the expression of miR-145 thus indirectly positively regulate SIRT3 [36] 
DYNLRB2-2 Long non-coding RNA DYNLRB2-2 suppresses the mRNA expression of miR-298 thus indirectly activate SIRT3 [37] 
Profilin-1 Protein Profilin-1 interacts with SIRT3 and promotes its expression [41] 
β-catenin Protein β-catenin suppresses SIRT3 promotor activity to negative regulate its expression [40] 
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Figure 3. SIRT3 in age-related disease. Age-related diseases are always accompanied with a decline in mitochondrial function, high oxidative stress and accumulation of 
toxic proteins. SIRT3 activates a range of substrates by deacetylation to promote mitochondrial function, enhance ATP production, accelerate ROS clearance, and maintain 
mitochondrial metabolic homeostasis. In addition, SIRT3 can activate mitophagy to accelerate mitochondrial renewal. It is worth noting that SIRT3 also inhibits the production 
of misfolded proteins and accelerates their clearance. The pink proteins represent the substrates of SIRT3. Gray circles represent acetylation modifications. 

 

Tumor suppressor role of SIRT3 
The most important tumor suppression role of 

SIRT3 is that it hinders cancer metabolism changes. 
The inhibition of hypoxia-inducible factor-1a (HIF1α) 
by SIRT3 is the most studied pathway. HIF1α is a key 
factor that activates a series of glycolysis genes which 
contribute to the “Warburg phenotype”. SIRT3 can 
destabilize HIF1α to prevent its deleterious role of 
“Warburg effect” promotion. Interestingly, HIF1α is 
not the direct substrate of SIRT3. SIRT3 regulates the 
activity of HIF1α by direct deacetylation of prolyl 
hydroxylase (PHD). Activated PHDs then 
hydroxylate HIF1α to affect its stability and decrease 
its tumor promoting effect [81]. The pyruvate 
dehydrogenase complex (PDCs) is another SIRT3 
substrate related to glycolysis. In the process of 
hypoxia and tumor growth, lysine acetylation of PDC 
plays an important role in promoting glycolysis and 
subsequent cancer cell proliferation. SIRT3 is the 
upstream deacetylase of PDC that deacetylates and 
activates PDC to inhibit glycolysis and promote 
apoptosis in cancer cells [85]. In addition, SIRT3 could 
stabilize p53 to inhibit glycolysis in wt-p53 cancer 
cells. During this process, full-length SIRT3 can 
interact with PTEN in the nucleus to increase PTEN 
activity thus inhibiting MDM2 transcription, which is 

responsible for p53 degradation [86]. The stabilization 
of p53 further impedes glycolysis via inhibition of the 
transcription of numerous key glycolytic enzymes 
[87]. Moreover, SIRT3 can inhibit breast carcinoma 
glycolysis through deacetylation and inactivation of 
cyclophilin D. This further inhibits the binding of the 
lactate metabolism enzyme hexokinase II (HK II) to 
mitochondria to obstruct glycolysis [88]. Glutamate 
oxaloacetate transaminase 2 (GOT2), which is a 
limiting enzyme in regulating glycolysis processing, is 
deacetylated at Lys 159, 185, and 404 by SIRT3 thus 
inhibiting GOT2 activity and hindering pancreatic 
tumor growth [89]. Accordingly, in most glycolysis- 
addiction cancers, SIRT3 activation will be beneficial 
and SIRT3 activators might be candidate adjuvants. In 
addition, SIRT3 directly or indirectly inhibits ROS- 
regulated tumorigenesis and metastasis [90]. Of 
which, SIRT3 represses ROS dependent Src/FAK 
signaling and promotes the proliferation, migration 
and metastasis of cancer cells [91]. ROS elimination by 
SIRT3 was also proven to contribute to the growth 
inhibition of lung adenocarcinoma cells [92]. In 
chronic lymphocytic leukemia (CLL), SIRT3 activates 
MnSOD2 to eliminate ROS, thus inhibiting CLL 
progression [93]. Additionally, programmed cell 
death induction is another strategy SIRT3 uses to 
inhibit tumor progression. For instance, SIRT3 can 
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activate glycogen synthase kinase-3β (GSK-3β) to 
promote the Bax-regulated apoptosis pathway [94]. 
SIRT3 up-regulation of MnSOD2 and p53 activity 
further induced Bax- and Fas-regulated apoptosis in 
HCC [95]. Moreover, SIRT3 plays a role in monitoring 
the stability of tumor genomes. Histone H3, which 
participates in the reaction to DNA damage, can be 
deacetylated by SIRT3 at K56 to enhance DNA 
nonhomologous end joining repair [96]. 8- 
oxoguanine-DNA glycosylase 1 (OGG1) is a DNA 
repair enzyme that is important in the inhibition of 
genome damage. SIRT3 binds and blocks the 
degradation of OGG1 to inhibit tumorigenesis [97]. 

Of note, SIRT3 can also inhibit cancer 
progression by deacetylation of its substrate to 
modulate proliferation and migration. The F-box 
protein S-phase kinase associated protein 2 (Skp2) is a 
proto-oncogene which inhibits the activity of 
numerous tumor suppressor proteins (such as p21, 
p27 and E-cadherin) via ubiquitination and 
destruction to positively regulate cell cycle 
progression and migration, and negatively regulate 
apoptosis [98, 99]. Acetylation of Skp2 by histone 
acetyltransferase p300 at Lys 68 and 71 will increase 
its stability and cytoplasmic localization, which 
promotes the degradation of E-cadherin. SIRT3 can 
directly deacetylate Skp2 to prevent this process [100]. 
Similarly, Enoyl-CoA hydratase-1 (ECHS1) is also 
highly acetylated in cancer cells. Acetylation blocks 
the activity of ECHS1 and activates the mTOR- 
regulated proliferation pathway. SIRT3 inhibits this 
hyperacetylation to restore mitochondrial 
translocation and ECHS1 activity [101]. 
Hyperacetylation of Glutamate oxaloacetate 
transaminases (GOT) promotes tumor growth while 
SIRT3 reverses this process [89]. It has been shown in 
recent studies that in some highly malignant tumors, 
the activation of SIRT3 might be a possible treatment 
method, especially for some drug-resistant cancers. 
For example, sorafenib is a well-known drug 
approved for clinical use in hepatocellular carcinoma 
(HCC), but is very prone to drug resistance, which 
makes its treatment of liver cancer less satisfactory. 
Interestingly, studies revealed that sorafenib could 
decrease the expression of SIRT3, which contributes to 
its reduced drug sensitivity, while up-regulation of 
SIRT3 can re-sensitize HCC to sorafenib treatment 
[102-104]. In addition, SIRT3 activation by ABT737 
contributes to ameliorating cisplatin resistance in 
ovarian cancer [105]. 

Oncogenic role of SIRT3 
The tumor promoting effect of SIRT3 has also 

been well studied, especially in some hematological 
malignancies that exhibit oxidative phosphorylation 

addiction [77, 106]. IDH2 is a key enzyme acting in the 
forward Krebs cycle and was identified as a hallmark 
of hematological malignancies. SIRT3 can deacetylate 
IDH2 to increase its activity in promoting 
carcinogenesis [107]. In diffuse large B cell 
lymphomas (DLBCLs), SIRT3 was proven to 
accelerate TCA cycle metabolism via enhancing GDH 
activity to promote lymphomagenesis [108]. Not 
surprisingly, SIRT3 has also been found to promote 
tumor progression in some other cancers. In non- 
small cell lung cancer, SIRT3 promotes the oncogenic 
role of NMNAT2 to stimulate cancer cell proliferation 
[72]. Similarly, SIRT3 deacetylates p53 at Lys 320 and 
382 to promote its degradation, thus hindering its 
tumor inhibition role in PTEN-deficient non-small cell 
lung cancer [109]. Therefore, in PTEN-deficient 
tumors, SIRT3 inhibition might be a better treatment 
strategy. Recently, another study demonstrated that 
SIRT3 could promote colorectal carcinogenesis. SIRT3 
deacetylates serine hydroxymethyltransferase 2 
(SHMT2) at Lys 95 and inhibits its lysosome- 
dependent degradation. Acetylated SHMT2 exhibits 
deficient enzymatic activity, which inhibits 
carcinogenesis, while SIRT3 activates SHMT2 to 
promote colorectal cancer cell proliferation [39]. In 
addition, SIRT3 can increase SOD2 activity to 
properly regulate ROS production to prevent 
apoptosis [110]. In ovarian cancer cells, SIRT3 
fine-tunes SOD2 activity to adapt to cellular stress and 
anoikis resistance in order to ensure cell survival 
[111]. Interestingly, the activation of SOD2 mediated 
by SIRT3 can promote epithelial-mesenchymal 
transition (EMT) in triple negative breast cancer 
(TNBC) cells [25]. In cervical cancer cells, SIRT3 
deacetylates Acetyl-CoA carboxylase (ACC1) to 
promote lipid metabolism. This fatty acid metabolism 
reprogramming promotes cancer migration and 
invasion [112]. Pyrroline-5-carboxylate reductase 1 
(PYCR1) is another substrate of SIRT3. Acetylation at 
Lys 228 suppresses tumor proliferation, while 
deacetylation by SIRT3 promotes breast cancer cell 
and lung cancer cell survival [113]. Accordingly, we 
should be thoughtful in trying to regulate SIRT3 for 
cancer therapy. 

Overall, SIRT3 is capable of metabolic 
reprogramming and contributes greatly in the fate of 
cancers (Figure 4). Highly acetylated modifications 
frequently occur in cancer, which is conducive to the 
survival of most tumors. SIRT3 regulates tumor 
progression by changing this excessive modification 
back to a normal condition. The role of SIRT3 in 
cancer is a double-edged sword which to some extent 
increases the confusion and risk of SIRT3 as a target 
for cancer treatment. More regrettably, there are no 
satisfactory SIRT3 activators or inhibitors that have 
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been developed successfully for cancer therapy, 
which makes recognition of SIRT3 as a druggable 
target in cancer more difficult and questionable. Even 
so, we believe it is a promising drug target in cancer if 
we can intelligently regulate it in personalized 
therapy. 

SIRT3 in heart disease 
Heart disease is one of the most common 

diseases and one of the biggest killers in the field of 
human health [97]. The role of the heart is to 
encourage blood flow, provide sufficient blood to 
organs and tissues to supply oxygen and various 
nutrients, and remove metabolic products to maintain 
metabolism and homeostasis. The normal work of the 
heart requires huge amounts of energy production 
and consumption, which is mainly provided by the 
mitochondria [114]. The normal function of 

mitochondria as energy-producing engines is the 
basis of the normal function of the heart. Conversely, 
the dysfunction of mitochondria directly or indirectly 
contributes to the progression of a series of heart 
diseases, among which are heart failure, cardiac 
hypertrophy, atherosclerosis, and dilated 
cardiomyopathy [115, 116]. As an eminent guardian of 
mitochondrial homeostasis, SIRT3 also plays an 
irreplaceable role in heart disease. Loss of SIRT3 
impairs the contractile function of the heart [117], and 
in a later study SIRT3 was found to be 
down-regulated in heart failure. In this process, 
miR-195 targets SIRT3 to inhibit its expression thus 
disturbing oxidative phosphorylation, resulting in the 
myocardial energy metabolism imbalance [31]. 
Another study reported that rarefaction of cardiac 
microvessels and functional hypoxia are more likely 
to occur in SIRT3-KO mice than WT mice. And 

 

 
Figure 4. SIRT3 in cancer. SIRT3 plays a two-sided role in cancer. In most cancers, SIRT3 plays a tumor suppressor role. On the one hand, SIRT3 can maintain the stability 
of the cancer genome and inhibit carcinogenesis. On the other hand, SIRT3 inhibits the Warburg effect of cancer to inhibit the development of tumors. In addition, SIRT3 can 
inhibit tumor proliferation and metastasis. SIRT3 induced apoptosis and autophagy also involved in this progress. However, in some colorectal cancers and lung cancers, SIRT3 
plays an oncogenic role by promoting proliferation and metastasis via deacetylation of specific substrates. The pink protein represents the substrate for SIRT3. Gray circles 
represent acetylation modifications. 
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SIRT3-KO mice exhibit distinct mitochondrial 
dysfunction and enhanced cardiac fibrosis marker 
expression [118]. Moreover, SIRT3-KO mice exhibited 
diastolic dysfunction and decreased angiogenesis 
[119]. Remarkably, SIRT3 deletion mice are more 
susceptible to a high-fat diet and exhibit higher ROS 
production and lower cardiac function [120]. In 
addition, SIRT3 can inhibit arterial thrombosis by 
suppressing neutrophil extracellular traps and 
decreasing plasma tissue factor activity [121]. More 
interestingly, a study found that acetylation of 
mitochondrial proteins mostly occurs non-
enzymatically and SIRT3 just modifies the acetylation 
back to the normal level. A more prominent role of 
SIRT3 is to remove acetylation lesions on its 
substrates, such as at Lys 127 on Glycine N- 
acyltransferase (GLYAT) and at Lys 48 on 
hydroxymethylglutaryl-CoA lyase (HMGCL), to 
protect metabolic fidelity [122]. In this section we will 
mainly discuss how SIRT3 regulates its substrates to 
carry out its heart protector role (Figure 5). 

The first protective effect of SIRT3 on the heart is 
to increase the energy production of mitochondria. 
SIRT3 can activate mitochondrial complex I and 

enhance the ETC function to maintain ATP 
homeostasis [123]. ATP5O and ATP5A1, two 
mitochondrial ATP synthases, can be deacetylated by 
SIRT3 to enhance ATP production [19, 124]. In 
addition, SIRT3 actives the LKB1-AMPK pathway to 
generate ATP [125]. Optic atrophy 1 (OPA1), another 
target of SIRT3, can be triggered by SIRT3 to improve 
cardiac mitochondrial bioenergetics [126]. In addition, 
SIRT3 can regulate a series of substrates to block 
cardiac hypertrophy. Cardiac hypertrophy is a stress 
adaptive response to a range of heart conditions, but it 
also increases mortality and the risk of heart disease. 
Thus, inhibiting hypertrophy may be beneficial to the 
heart. Of note, Rho/Rho kinase signaling, mTOR 
signaling, ROS signaling are three key villains of 
cardiac hypertrophy [127]. Of note, the LKB1-AMPK 
pathway is the upstream negative regulator of mTOR 
signaling, and SIRT3 can active LKB1-AMPK 
signaling to inhibit mTOR regulated protein 
synthesis, which inhibits cardiac hypertrophy [125]. 
More interestingly, the SIRT3 substrate FOXO3α not 
only functions well in regulating apoptosis and 
autophagy, but also it regulates mTOR and Rho/Rho 
kinase signaling [128, 129]. SIRT3 can active the 

 

 
Figure 5. SIRT3 in heart disease. Heart disease often manifests as dysfunction of cardiomyocytes, such as local hypoxia, death of cardiomyocytes, fibrosis, and the like. 
Dysfunction of cardiomyocytes ultimately leads to myocardial ischemia, cardiac hypertrophy, heart failure. SIRT3 can increase the mitochondrial function of cardiomyocytes and 
increase energy production by deacetylating its substrate. In addition, SIRT3 can deacetylate its substrates to inhibit AKT-mTOR/ERK1/2/TGF-β-smad3-induced myocardial 
fibrosis. During this process, SIRT3 can also activate GSK-3β to contribute to myocardial fibrosis inhibition. SIRT3 also directly inhibits cardiomyocytes apoptosis. Last but not 
the least, SIRT3 can eliminate ROS and activate mitophagy to inhibit cardiac remodeling. The pink protein represents the substrate for SIRT3. Gray circles represent acetylation 
modifications. 
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activity and nuclear translocation of FOXO3α, thereby 
inhibiting mTOR and Rho/Rho kinase signaling and 
preventing cardiac hypertrophy. To inhibit ROS 
regulated signaling, SIRT3 can directly deacetylate, 
activate MnSOD2 and oligomycin-sensitivity 
conferring protein (OSCP), inhibiting the synthesis 
and aggregation of ROS, thus preventing cardiac 
hypertrophy [16]. Cyclophilin D (CypD), which is an 
integral part of the mitochondrial permeability 
transition pore (mPTP), can be deacetylated by SIRT3 
at lysine 166 to prevent the opening of mPTP, thus 
inhibiting stress-induced cardiac hypertrophy and 
apoptosis [58]. Hypertrophy-related lipid 
accumulation is another problem of cardiac 
hypertrophy, which will further lead to heart failure. 
SIRT3 could downregulate the acetylation of long- 
chain acyl CoA dehydrogenase (LCAD) to restore 
lipid metabolism homeostasis [130]. In addition, 
Nicotinamide mononucleotide adenylyltransferase 3 
(NMNAT3), can also bind to SIRT3 and be 
deacetylated. Deacetylation of NMNAT3 enhances its 
enzyme activity and in-turn promotes the anti- 
hypertrophic effects of SIRT3 [131]. 

Cardiac fibrosis is another pathological 
manifestation of cardiac remodeling in heart disease. 
SIRT3 can ameliorate cardiac fibrosis through 
blocking the TGF-β/Smad3 pathway [132]. SIRT3 can 
deacetylate glycogen synthase kinase 3β (GSK3β) at 
residue Lys 15 to promote GSK3β activity. The 
activation of GSK3β thereby resists TGF-β/Smad3 
regulated fibrotic genes expression [133]. Moreover, 
signal transducer and activator of transcription 3 
(STAT3) can be deacetylated by SIRT3 to inhibit 
STAT3-NFATc2 regulated fibrosis [134]. Also the role 
of SIRT3 in eliminating ROS also helps the SIRT3/ 
ROS/ERK1/2 cascade inhibit cardiac remodeling 
[135]. In addition, the role of SIRT3-induced 
autophagy and apoptosis inhibition in heart disease 
should not be ignored. Parkin-dependent mitosis 
induced by SIRT3 can clear damaged mitochondria 
and prevent the remodeling of hypertensive heart and 
the death of myocardial cells [65]. Ku70, another 
substrate of SIRT3, can be deacetylated and activated 
by SIRT3. After deacetylation, Ku70 interacts with Bax 
to inhibit the apoptosis of cardiomyocytes [136]. 
SIRT3 can protect cardiomyocytes by inhibiting 
apoptosis through deacetylating p53. As mentioned 
above, SIRT3 has a wide protective role in heart 
disease, and targeting SIRT3 can be a new strategy for 
the treatment of heart disease. It is gratifying that the 
SIRT3 activator honokiol has been proven to have 
cardioprotective effects [16, 137], which also provides 
evidence for SIRT3 as a druggable target for 
improving heart disease. 

SIRT3 in metabolic disease 
Metabolic diseases generally have a long course 

over which energy metabolism, glycometabolism, 
fatty acid metabolism, and amino acid metabolism 
gradually become out of balance. Eventually this 
leads to obesity, diabetes, liver disease, and kidney 
disease [138]. The kidney is a highly energy- 
consuming organ because it not only removes 
metabolites from the body by generating urine, but 
also maintains the balance between water and 
electrolytes. Additionally, it secretes some active 
substances, such as erythropoietin and active vitamin 
D3 to promote the growth and development of the 
body [139]. The kidney is rich in mitochondria in 
order to satisfy its energy needs, and the 
mitochondrion is a highly mobile organelle that can 
change its position and numbers as needed [140]. 
SIRT3, as a key regulator of mitochondrial dynamics, 
plays an important role in the energy supply of renal 
cells [141]. The overexpression of SIRT3 can improve 
kidney function, attenuate oxidative injury, and 
suppress the inflammatory damage and apoptosis of 
renal tubular epithelial cells [142]. The absence of 
SIRT3 expression will aggravate acute renal injury 
(AKI), and increase ROS levels and apoptosis. 
Activation of SIRT3 decreases the acetylation of 
CypD, thereby inhibiting mitochondrial damage of 
AKI, and thus protecting the kidneys [143, 144]. 
Activation of SIRT3 also inhibits the acetylation of p53 
which blocks apoptosis in AKI [145]. In addition, 
SIRT3 deacetylates PGC1-α and mitochondrial 
complex I to enhance mitochondrial biogenesis and 
energy generating for resisting AKI [139]. 
Nephrolithiasis is a form of kidney metabolic disease 
and its main cause is damage to renal epithelial cells 
from calcium oxalate. A recent study found that 
nephrolithiasis-afflicted mice always exhibit a 
significant reduction in SIRT3 expression. SIRT3 could 
deacetylate FOXO3a thus activating it. After 
deacetylation, FOXO3a binds with the promoter of 
LC3 to induce autophagy and suppress renal tubular 
epithelial cell injury [146]. Additionally, the SIRT3 
regulated NRF2/HO-1 pathway may also contribute 
to inhibiting the formation of kidney stones [147]. 
Furthermore, SIRT3 can inhibit renal fibrosis. 
Endothelial-to-mesenchymal transition (EndoMT) has 
emerged as an important contributor to renal fibrosis. 
Mice with SIRT3 loss more easily develop renal 
dysfunction with increased ROS production and 
EndoMT. Interestingly, SIRT3 can activate FOXO3a to 
inhibit this progress [148]. SIRT3 can also inhibit renal 
fibrosis by deacetylation and activation of GSK3 β to 
inhibit the expression of fibrosis genes [133]. 
Liraglutide can protect the kidney from diabetic 
nephropathy, while deletion of SIRT3 abrogated its 
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kidney protection effect [31]. Optic atrophy 1 (OPA1), 
a regulator of mitochondrial fusion, can be up- 
regulated by SIRT3, which subsequently enhances the 
fusion of renal mitochondria and improve the 
production of kidney energy [142]. In short, SIRT3 can 
protect the kidney from metabolic disease. 

Liver is the main metabolic organ of the human 
body. It governs the metabolism of glucose, protein, 
fat and carbohydrates. Also, it is also the largest 
detoxification organ in the human body. Abnormal 
liver metabolism will induce a series of hepatic 
metabolic diseases, of which fatty liver is the most 
common. SIRT3 is always down-regulated in patients 
with fatty liver [149-151]. SIRT3 overexpression can 
restore liver function, inhibit inflammation and 
apoptosis, and alleviate liver fibrosis. SIRT3 activates 
ERK-CREB signaling to promote BNIP3 activity, thus 
inducing BNIP3 regulated mitotic resistance to 
nonalcoholic fatty liver disease [31]. SIRT3-induced 
autophagy can also protect the liver from alcohol- 
induced injury [152]. However, there are often two 
sides to complex issues. Another study demonstrated 
that, in contrast, SIRT3 could be a negative regulator 
of autophagy, which can lead to NAFLD induced by 
lipotoxicity [153]. More interestingly, SIRT3 can 
repress hepatitis caused by infection with the 
Hepatitis B virus (HBV). In a recent study, SIRT3 was 
found to aggregate in the covalently closed circular 
DNA (cccDNA) of HBV and deacetylate Lys 9 of 
Histone H3, inhibiting HBV transcription and 
replication [154]. As it does in other organs, SIRT3 can 
enhance ROS clearance to protect liver from oxidative 
damage by activating MnSOD2 and FOXO3a. Also 
SIRT3 protects hepatocytes by inhibiting 
mitochondrial damage and apoptosis through 
deacetylation of Ku70 [155, 156]. In addition, SIRT3 
can alleviate liver fibrosis. The deacetylation and 
activation of GSK3β at Lys 15 by SIRT3 inhibit the 
expression of fibrosis genes in the liver [133]. ROS 
promotes liver fibrosis through AKT-mTOR and 
ERK1/2 signaling, while SIRT3 resists liver fibrosis by 
eliminating harmful ROS. SIRT3 is definitely a liver 
protector by safeguarding metabolic stability. 

Obesity and diabetes are becoming ever more 
common around the world and are now trending with 
younger people. Although a recent study suggests 
that SIRT3 is dispensable in adipocyte metabolism 
and obesity-induced metabolic complications [157], 
SIRT3 in fact is important in obesity and diabetes. Of 
note, insulin resistance and vascular dysfunction are 
common in obese patients, which are exacerbated by 
SIRT3 deficiency [158, 159]. SIRT3 can regulate 
endothelial cell glycolytic metabolism, and mice 
lacking the expression of SIRT3 will increase insulin 
resistance because of the dysfunction of glucose 

uptake and mitochondrial function [119, 160]. In 
addition, SIRT3 can protect endothelial cells from 
mitochondrial ROS damage and increase NO release 
to benefit vasodilatation [159]. Moreover, SIRT3- 
mediated SOD2 deacetylation also contributes to 
maintaining the escape of endothelial progenitor cells 
(EPCs) from dysfunction and injury as well as 
decreased vascular inflammation [161, 162]. Maternal 
obesity is another key problem in human beings. The 
resulting high oxidative stress and meiotic defects of 
oocytes will damage reproductive health. Activation 
7of SIRT3 can attenuate oxidative damage and 
improve the oocyte quality in obese woman [163]. Of 
note, the deficiency of SIRT3 causes pancreatic beta 
cells to be more sensitive to cellular stress and 
oxidative damage, impairs their function and 
promotes the development of diabetes [164]. 
Activation of SIRT3 can also regulate skeletal muscle 
metabolism and activate insulin signaling to improve 
diabetes. In this process, SIRT3 removes ROS to 
inhibit the activation of JNK and ISR-1 [165]. 
Interestingly, activation of pro-inflammatory 
macrophages is fateful in the pathogenesis of insulin 
resistance in diabetes. Loss of SIRT3 leads to the 
increasing expression of inflammatory cytokines and 
high risk of diabetes [166]. Pyruvate dehydrogenase 
(PDH) is a key regulator in the TCA cycle and glucose 
oxidation. SIRT3 can deacetylate its E1α subunit to 
increase its enzymatic activity [167]. SIRT3 also 
promotes HKII-VDAC-ANT complex formation to 
improve glucose control [168]. As it does in other 
diseases, SIRT3 activates MnSOD2 and IDH2 to 
remove harmful ROS and activates FOXO3a to induce 
cell-protective autophagy to improve obesity and 
diabetes. Thus, SIRT3 protects human from metabolic 
diseases (Figure 6), and SIRT3 modulators will shine 
in the prevention and early treatment of metabolic 
diseases. 

SIRT3 in other diseases 
In addition to several major diseases, SIRT3 

offers protection from other common diseases and 
improves the quality of human life. SIRT3 can 
maintain bone metabolism by enhancing the 
AMPK-PGC-1β axis [169]. SIRT3 can also protect 
microvasculature from LPS-induced damage. LPS 
upregulates Ang-2, leading to vascular leakage, while 
SIRT3 inhibits the expression of Ang-2 to maintain 
vascular integrity [170]. Up-regulation of SIRT3 can 
attenuate endothelial cellular senescence to decrease 
the risk of atherosclerosis [171]. In addition, activation 
of SIRT3 can suppress osteoarthritis by maintaining 
mitochondrial metabolism stability [172]. Overall, 
SIRT3 is very important in maintaining human health 
and proper regulation of SIRT3 will be beneficial to 
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human health. 

Targeting SIRT3 for potential therapies 
As a result of the importance of SIRT3 in various 

diseases, several SIRT3 regulatory compounds have 
been discovered or designed synthetically. These 
compounds can deacetylate SIRT3 or regulate its 
expression level through different mechanisms. Based 
on their influence on SIRT3, these compounds were 
divided into two broad categories, SIRT3 activators 
(strictly speaking, “positive modulators”) and 
inhibitors. In this section we will discuss these 
compounds, the related mechanisms and potential 
therapeutic implications. 

Positive modulators of SIRT3 
SIRT3 dysfunction is closely related to the 

occurrence and development of various diseases, and 
activation of SIRT3 appears to be an effective strategy 
for the treatment of many diseases. Unfortunately, to 
date SIRT3 agonist has ever been reported to date. 
Several positive modulators of SIRT3 were reported, 
which can stimulate SIRT3 by elevating SIRT3 
expression. By upregulating SIRT3, they have 
displayed promising therapeutic effects in some 
diseases such as cardiac hypertrophy, acute kidney 
injury, and others (Table 3). Of note, most positive 
regulators of SIRT3 are derived from natural 
products. For instance, Honokiol is one of the most 
studied SIRT3 activators and is a natural lignan 

 

 
Figure 6. SIRT3 in metabolic disease. The body's energy metabolism, glycometabolism, fatty acid metabolism, and amino acid metabolism are generally imbalanced in 
metabolic diseases. SIRT3 can regulate a series of substrates to maintain the metabolic balance and stability of different organisms, and inhibit the occurrence and development 
of metabolic diseases. In addition, SIRT3 can inhibit the fibrosis of each organ and protect its normal function. It is worth noting that SIRT3 is also involved in the fight against viral 
infections and inflammatory responses. The pink protein represents the substrate for SIRT3. Gray circles represent acetylation modifications. 
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derived from the bark of Magnolia. Honokiol could 
increase SIRT3 expression and deacetylation activity, 
which have a favorable effect on heart disease [16, 
137], renal disease [173], surgery/anesthesia-induced 
cognitive decline [174] and Vitiligo [175]. For heart 
disease, Honokiol activation of SIRT3 further 
decreases the acetylation levels of MnSOD2 and 
OSCP, resulting in improved mitochondrial rate of 
oxygen consumption and inhibition of ROS synthesis. 
In addition, Honokiol suppresses cardiac 
hypertrophy and fibrosis via SIRT3-regulated AKT 
and ERK1/2 inhibition in mice with cardiac 
hypertrophy [16]. Furthermore, in mice with 
doxorubicin-induced cardiomyopathy, Honokiol 
activated SIRT3 to promote mitochondrial fusion and 
inhibit apoptosis. More intriguingly, activation of 
SIRT3 by Honokiol can protect against doxorubicin- 
induced cardiotoxicity in tumor-xenograft mice 
without affecting the anti-tumor effect of doxorubicin. 
This makes it possible for Honokiol to contribute to 
adjuvant therapy of chemotherapy [137]. In renal 
disease, Honokiol stimulates SIRT3 activity to block 
the NF-κB-TGF- β1/Smad regulated inflammation 
and fibrosis signaling in renal fibrosis mice model 
[173]. Surprisingly, Honokiol can ameliorate surgery- 
induced or anesthesia-induced cognitive decline in 
mice via SIRT3 activation mediating ROS elimination 
and apoptosis inhibition [174]. Interestingly, honokiol 
could improve vitiligo via melanocyte apoptosis 
inhibition through SIRT3-OPA1 axis activation [175]. 
These studies suggest that Honokiol may be helpful in 
the treatment of various diseases, whether used alone 
or as an adjunct therapy. Silybin is another natural 
plant-derived SIRT3 activator. It is isolated from the 
seeds of blessed milkthistle (Silybum marianum) and 
is used as a hepatoprotectant in traditional Chinese 
medicine. It was reported that Silybin can improve 
kidney mitochondrial function via activating SIRT3 in 
a mouse model of cisplatin-induced acute kidney 
injury. Up-regulation of SIRT3 eliminates ROS and 
inhibits apoptosis to protect kidney cells from death. 
It is noteworthy that this protective effect can decrease 
cisplatin-induced renal toxicity and may contribute to 
clinical adjuvant treatment in cisplatin chemotherapy 
[176]. Resveratrol, a famous SIRT1 activator (although 
resveratrol-mediated activation of sirtuins has been 
repeatedly shown to be an experimental artifact, it 
does have biological activity in vivo), can also increase 
the expression of SIRT3 to attenuate acute kidney 
injury [177]. Fascinatingly, Dihydromyricetin has a 
similar chemical structure to Resveratrol and it can 
elevate the expression of SIRT3 through SIRT3 
mediated cytoprotection and inflammatory resistance, 
thus treating osteoarthritis [172]. Polydatin, a 
polyphenolic compound isolated from Polygonum 

cuspidatum, can initiate SIRT3-regulated mitochon-
drial autophagy to protect cardiomyocytes from 
myocardial infarction [178]. Moreover, in a mouse 
model of sulfur mustard-induced hepatic injury, this 
natural product exerts its hepatoprotective effects via 
SIRT3 [179]. Pyrroloquinoline quinone, another 
natural product, can improve liver metabolic diseases 
through increasing the expression of SIRT3 [180]. 

Importantly, a growing number of reports show 
that some “old drugs” have a capacity of activating 
SIRT3 with a clear action mechanism. Metformin is a 
known AMPK activator which applied as the first-line 
drug for type 2 diabetes. Metformin can improve 
atherosclerosis aroused by type 2 diabetes via up- 
regulating SIRT3 [181]. Hearing loss is a common age- 
related disease with cell degeneration. The Cl- channel 
blocker, Adjudin, prevents gentamicin-induced hair 
cell loss via SIRT3 [182]. Interestingly, a hormone 
named Melatonin, which targets the melatonin 
receptor to play a role in sleep, now has been found to 
be a SIRT3 activator that plays a protective role in 
heart disease [183], liver injury [184] and 
atherosclerosis [185]. In a mouse model of myocardial 
ischemia/reperfusion (MI/R) injury, melatonin also 
increases SIRT3 expression and activity to inhibit 
apoptosis of cardiomyocytes and maintain the 
stability of mitochondrial metabolism [183]. In 
addition, in cadmium-induced hepatotoxicity in vitro 
and in vivo models, melatonin enhances the activity of 
SIRT3 to inhibit both ROS production and 
cadmium-triggered autophagic cell death [184]. 
Additionally, in a mouse model of atherosclerosis, 
melatonin activates SIRT3-FOXO3a-Parkin regulated 
mitophagy to prevent inflammation and 
atherosclerotic progression [185]. 

Another type of SIRT3 activator is a 
substrate-dependent activator. 7-hydroxy-3-(4'- 
methoxyphenyl) coumarin (C12) is a compound that 
promotes the deacetylation of MnSODK68AcK 
(MnSOD acetylated at Lys 68) through SIRT3. C12 
was identified based on the crystal structure of 
MnSODK68AcK. C12 binds to the MnSODK68AcK- 
SIRT3 complex and promotes the deacetylation and 
activation of MnSOD. The Kd value of C12 binds to 
SIRT3 is 3.9 μM and the 50% activation concentration 
is 75.78 μM towards MnSODK68AcK [15]. Of note, 
among all these SIRT3 activators, C12 is closest to the 
real SIRT3 activator. 

As a fascinating target for disease treatment, 
SIRT3 has always been a research hotspot. Although 
these positive modulators of SIRT3 have certain 
therapeutic potentials for disease, the design of 
targeted small-molecule activators of SIRT3 still faces 
significant challenges. 
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Table 3. Positive modulators of SIRT3 

Compound Chemical Structure Target/Pathways Disease/cell Biological Activity Reference 
Honokiol 

 

Honokiol increases SIRT3 
expression and activity 

a. Cardiac Hypertrophy  
b. Renal disease 
c. Surgery/ 
anesthesia-induced 
cognitive decline 
d. Vitiligo 

/ [16, 137, 
173-175]  

Silybin 

 

Silybin Increases SIRT3 
expression 

Acute Kidney Injury / [176] 

Resveratrol 

 

Resveratrol increases SIRT3 
expression 

Acute Kidney Injury / [177] 

Polydatin 

 

Polydatin increases SIRT3 
activity 

a. Myocardial 
infarction 
b. Ulfur 
mustard-induced 
hepatic injury 

/ [178, 179] 

Dihydromyricetin 

 

Dihydromyricetin increases 
the expression and activity of 
SIRT3 via activation of 
PGC-1α 

Osteoarthritis / [172] 

Pyrroloquinoline 
quinone 

 

Pyrroloquinoline quinone 
increases the expression and 
activity of SIRT3 

Liver metabolic 
diseases 

/ [180] 

Metformin 

 

Metformin increases SIRT3 
expression 

Atherosclerosis / [181] 

Adjudin 

 

Adjudin increase the 
expression of SIRT3 

Hearing loss / [182] 

Melatonin 

 

Melatonin activates SIRT3 
signaling pathway 

a. myocardial ischemia 
reperfusion injury 
b. liver injury 
c. atherosclerosis  

/ [183-185] 

7-hydroxy-3-(4'- 
methoxyphenyl)  
coumarin (C12) 

 

C12 binds to the 
MnSODK68AcK-SIRT3 
complex and promotes the 
deacetylation and activation 
of MnSOD 

unclear (SIRT3)Kd=3.9μM; 
IC50(MnSODK68 
AcK)= 75.78 μM 

[15] 
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The design of SIRT3 activators, which control the 
SIRT3 catalytic activity level by some exact 
mechanism, lacks a theoretical and structural basis. At 
present, allosteric activators have attracted much 
attention in the design of targeted activators of SIRTs 
(such as SIRT1 and SIRT6). Further elucidation of the 
structure and biological function of SIRT3 will 
promote the development of small molecule 
activators targeting SIRT3. 

SIRT3 inhibitors 
Compared with the discovery of SIRT3 

activators, the development of SIRT3 inhibitors has 
been much easier. The deacetylation process of SIRT3 

(Figure 7) logically suggests a series of methods to 
inhibit this chemical reaction. In addition, as the 
crystal structure of the SIRT3 protein has been 
identified, another strategy for the discovery of SIRT3 
inhibitors is structure-based design. Last but not least, 
chemical library screening is another common way to 
discover SIRT3 inhibitors [17]. Of note, another type 
of SIRT3 inhibitor has been found fortuitously, which 
can inhibit SIRT3 expression or activity [186, 187]. 
Through these strategies, a variety of SIRT3 inhibitors 
have been developed and they have shown good 
viability in a variety of diseases (Table 4), especially in 
cancer. 

 

 
Figure 7. The NAD+-dependent SIRT3 deacetylation reaction process, SIRT3 activators and SIRT3 inhibitors. The NAD+-dependent SIRT3 deacetylation 
reaction process is roughly divided into four steps. I, The acetylated substrate and the NAD+ co-substrate binding to SIRT3. II, the acetyl group consequently transfer from 
substrate to ADP-ribose moiety of NAD+. III, Generation of bicyclic intermediates. IV, Produce the deacetylated protein. SIRT3 inhibitors are divided into five types. Substrate 
competitive SIRT3 inhibitors, Nicotinamide competitive SIRT3 inhibitors, chemical library screening-based SIRT3 inhibitors, structure-based SIRT3 inhibitors and other SIRT3 
inhibitors. The chemical structures of representative SIRT3 inhibitors and activators are displayed in the figure. 

 

Table 4. SIRT3 Inhibitors 

Compound Chemical Structure Type Disease/cell Biological Activity Reference 
4'-Bromo-Resveratrol 

 

Substrate 
competitive SIRT3 
inhibitor 

Melanoma SIRT3 IC50=143.0 ± 3.6 μM [188, 189] 
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Compound Chemical Structure Type Disease/cell Biological Activity Reference 
/(4- [(2-Hydroxy-6- 
phenylnaphthalen-1-yl) 
methyl]-5- (4-methylphenyl) 
-2,3-dihydro-1H-pyrazol-3-one) 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=6 μM [190] 

(2S,5S,8S)-5-(4-ethanethio-
amidobutyl)-2-(naphthalen-2- 
ylmethyl)-3,6,13,20-tetraoxo-1,4,7,
12-tetraazacycloicosane-8-carbox
amide 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=1.94 μM [190] 

(3S,6S,9S)-9-butyl-6-(4-ethanethio
amidobutyl)-5,8,11,18-tetraoxo-1,
4,7,10-tetraazacyclooctadecane-3-
carboxamide 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=1.06 μM [191] 

(2S,5S,8S)-2-butyl-5-(4-ethanethio
amidobutyl)-3,6,12,19-tetraoxo-1,
4,7,11-tetraazacyclononadecane-8
-carboxamide 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=1.48 μM [191] 

(2S,5S,8S)-2-butyl-5-(4-ethanethio
amidobutyl)-3,6,13,20-tetraoxo-1,
4,7,12-tetraazacycloicosane-8-carb
oxamide 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=1.82 μM [191] 
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Compound Chemical Structure Type Disease/cell Biological Activity Reference 
(2S,5S,8S)-2-butyl-5-(4-ethanethio
amidobutyl)-3,6,14,21-tetraoxo-1,
4,7,13-tetraazacyclohenicosane-8-
carboxamide 

 

Substrate 
competitive SIRT3 
inhibitor 

Cancer SIRT3 IC50=0.47 μM [191] 

(S)-2-((S)-4-([1,1'-biphenyl]-4-yl)-2
-acetamidobutanamido)-N-((S)-6-
acetamido-1-amino-1-oxohexan-2
-yl)-6-ethanethioamidohexanami
de 

 

Substrate 
competitive SIRT3 
inhibitor 

/ SIRT3 IC50= 0.48 μM [192] 

N,N'-((S)-6-(((S)-1-(((S)-4-acetami
do-1-amino-1-oxobutan-2-yl)ami
no)-6-ethanethioamido-1-oxohexa
n-2-yl)amino)-6-oxohexane-1,5-di
yl)diacetamide 

 

Substrate 
competitive SIRT3 
inhibitor 

/ SIRT3 IC50= 0.36 μM [192] 

N,N'-((S)-6-(((S)-1-(((S)-1-amino-1
-oxohexan-2-yl)amino)-6-ethanet
hioamido-1-oxohexan-2-yl)amino
)-6-oxohexane-1,5-diyl)diacetami
de 

 

Substrate 
competitive SIRT3 
inhibitor 

/ SIRT3 IC50=0.48 μM [192] 
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Compound Chemical Structure Type Disease/cell Biological Activity Reference 
N,N'-((S)-6-(((S)-1-(((S)-1-amino-4
-(naphthalen-2-yl)-1-oxobutan-2-
yl)amino)-6-ethanethioamido-1-o
xohexan-2-yl)amino)-6-oxohexan
e-1,5-diyl)diacetamide 

 

Substrate 
competitive SIRT3 
inhibitor 

 SIRT3 IC50=2.1 μM [192] 

YC8-02 

 

Substrate 
competitive SIRT3 
inhibitor 

Lymphoma SIRT3 IC50=0.53 μM [108] 

JH-T4 

 

Substrate 
competitive SIRT3 
inhibitor 

Lymphoma SIRT3 IC50=2.5 μM [108] 

3-TYP 

 

Nicotinamide 
competitive SIRT3 
inhibitors 

Tool medicine SIRT3 IC50=16 nM [193] 

EX-527 

 

Nicotinamide 
competitive SIRT3 
inhibitors 

Cancer SIRT3 IC50=49 μM [194] 

4-(4-(acetamidomethyl)piperidin-
1-yl)thieno[3,2-d]pyrimidine-6-ca
rboxamide 

 

Structure-based 
SIRT3 inhibitors 

/ SIRT3 IC50=5.36 μM [195] 

4-(4-(2-pivalamidoethyl)piperidin
-1-yl)furo[3,2-d]pyrimidine-6-car
boxamide 

 

Structure-based 
SIRT3 inhibitors 

/ SIRT3 IC50=5.89 μM [195] 

7-(4-(2-pivalamidoethyl)piperidin
-1-yl)thieno[2,3-c]pyridine-2-carb
oxamide 

 

Structure-based 
SIRT3 inhibitors 

/ SIRT3 IC50=5.68 μM [195] 
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Compound Chemical Structure Type Disease/cell Biological Activity Reference 
4-(piperidin-1-yl)thieno[3,2-d]pyr
imidine-6-carboxamide 

 

Structure-based 
SIRT3 inhibitors 

/ SIRT3 IC50=5.07 μM [195] 

77-39 

 

Chemical library 
screening-based 
SIRT3 inhibitor 

/ SIRT3 IC50=4.5 μM; Kd 
=2.14 µM 

[196] 

11c 
(N2-(2-(1-(6-carbamoylthieno[3,2-
d]pyrimidin-4-yl)piperidin-4-yl)e
thyl)-N5-ethylthiophene-2,5-dicar
boxamide) 

 

Chemical library 
screening-based 
SIRT3 inhibitors 

/ SIRT3 IC50=4nM [197] 

Tenovin-6 

 

other Cancer SIRT3 IC50=67 μM [186] 

LC-0296 

 

other Head and Neck 
Cancer 

SIRT3 IC50=3.6μM [198] 

Trimethylamine-N-oxide 
(TMAO) 

 

other Vascular 
Inflammation 

/ [199] 

Albendazole 

 

other leukemia U937 
and HL60 cells 

/ [187] 

2-methoxyestradiol 

 

binding to both 
the canonical and 
allosteric inhibitor 
binding sites 

Osteosarcoma 
Cancer 

/ [200] 
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Catalytic Mechanism-based SIRT3 Inhibitors 
The deacetylation of SIRT3 is a multi-step, 

continuous and complex process involving the 
coenzyme NAD+ and the acetylated substrate. 
Targeting the dynamic process of deacetylation is an 
effective strategy for the design of SIRT3 inhibitors. 
On one hand, structural analogues of endogenous 
acetylated substrates can effectively and 
competitively inhibit the deacetylation activity of 
SIRT3. On the other hand, NAD+ coenzyme 
competitive inhibitors can accelerate the reverse 
reaction of deacetylation to inhibit the progress of the 
deacetylate reaction. Notably, it is easy to achieve 
considerable satisfactory inhibition efficiency and 
selectivity with the catalytic mechanism-based 
inhibitors. This is the fascinating characteristic of this 
type of SIRT3 inhibitor and, of course, why it is one of 
the most studied. 

Substrate Competitive SIRT3 Inhibitors 
The most common and effective inhibitor design 

strategies use substrate competitive inhibitors. 
4’-bromo-resveratrol is an ACS2 peptide substrate 
competitive inhibitor discovered in 2013 [188]. 
Recently, 4’-bromo-resveratrol was found to inhibit 
melanoma progression via SIRT3 mediated 
mitochondrial metabolic reprogramming. In this 
process, 4’-bromo-resveratrol was also confirmed to 
induce apoptosis and G0/G1 cell cycle arrest [189]. 
Simon et al. discovered a peptide substrate 
competitive SIRT1/2 inhibitor, cambinol, which has a 
potential effect on cancer treatment. After that, they 
designed a series of cambinol analogues and 
discovered the SIRT3 selective inhibitor 4- [(2- 
Hydroxy-6-phenylnaphthalen-1-yl) methyl]-5-(4- 
methylphenyl) -2, 3-dihydro-1H-pyrazol-3-one (SIRT3 
IC50 = 6 μM) that has good anti-cancer potential [190]. 
Analogs of NƐ-acyl-lysine are important substrate 
competitive SIRT3 inhibitors. Peptide-based SIRT3 
inhibitors are one of the analogs of NƐ-acyl-lysine with 
excellent proteolytic stability and cell permeability. 
Chen et al. designed a series of peptides containing 
NƐ-thioacetyl-lysine that exhibit SIRT1/2/3 inhibition 
effects. Their effects vary from 0.47 μM to 10.8 μM and 
the most potent one can efficiently inhibit SIRTs 
activity in HCT116 human colon cancer cells. 
Unfortunately, despite its acceptable SIRT3 inhibitory 
activity, this one is not a selective SIRT3 inhibitor 
(SIRT3 IC50 = 0.22 μM; SIRT3 IC50 = 0.24 μM; SIRT3 
IC50 = 0.47 μM) [191]. This also suggests that if we 
want to develop specific substrate-competitive SIRT3 
inhibitors, we may need to select SIRT3-specific 
substrate action sites for targeted design. Zheng et al. 
also designed a variety of potent SIRT3 tripeptidic 

inhibitors containing NƐ-thioacetyl-lysine. However, 
their selectivity was generally not strong [192]. 
SIRT3-selective inhibitors can be obtained from other 
SIRT inhibitors by classical medicinal chemistry 
methods [108]. One case in point is the thioacyl lysine 
compound TM reported by Hui Jing et al. It was 
identified as targeting SIRT2 with little SIRT3 
inhibition. 3-hydroxy substitution (generating JH-T4) 
remarkably enhances SIRT3 inhibition with an IC50 of 
2.5 μM. Considering the fact that SIRT3 is abundant in 
mitochondria, researchers modified JH-T4 by 
replacing the benzyl carbamoyl group with a 
triphenylphosphonium (TPP) mitochondrial targeting 
moiety to obtain the compound YC8-02, which 
achieved superior penetration into mitochondria. 
Accordingly, the SIRT3 IC50 was further increased to 
0.53 μM. YC8-02 not only exhibits strong SIRT3 
inhibition effects, but also inhibits lymphomagenesis 
by selectively inhibiting SIRT3 (Figure 8A) [108]. 

Nicotinamide Competitive SIRT3 Inhibitors 
Nicotinamide is an endogenous inhibitor of 

SIRTs, but the one major drawback is that it has no 
selectivity for SIRTs. However, it is undeniable that 
nicotinamide analogues are an important component 
of SIRT3 inhibitors. 3-TYP is essentially a 
nicotinamide analogue which is a widely used tool in 
medicine with high selective SIRT3 inhibition (SIRT3 
IC50=16 nM) [193]. EX-527 is a selective SIRTs 
inhibitor that functions by occupying the 
nicotinamide site and neighboring pocket contacting 
NAD+. EX-527 always been defied as a SIRT1 
inhibitor, but it can also inhibit SIRT3 with weak 
activity (SIRT3 IC50=49 μM) [194]. Interestingly, the 
discovery of EX-527 revealed a new SIRT inhibition 
mechanism, namely, the formation of trimer Sirtuin 
complex with a NAD+-derived coproduct. 

Structure-based SIRT3 Inhibitors 
Docking and binding free energy calculations are 

methods to discover novel SIRT3 inhibitors based on 
its reported structure. In this way, Berin et al. 
discovered a fair number of compounds that exhibit 
fine SIRT3 inhibition effects. Unfortunately, their 
biological activity has not been detected, so their 
application may require more work to support [195]. 

Chemical Library Screening-based SIRT3 Inhibitors 
Chemical library screening is an effective way to 

discover novel SIRT3 inhibitors. Recently, the novel 
SIRT3 inhibitor 77-39 (SIRT3 IC50 = 4.5 μM) was 
discovered through the DNA-encoded Dynamic 
Chemical Library (Figure 8B). 77-39 also exhibits 
excellent cellular SIRT3 inhibition activity, which 
increases the global mitochondrial acetylation level of 
HeLa cells. Moreover, 77-39 showed only little 
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cytotoxicity [194]. Encoded Library Technology 
screening is another efficient strategy to identify novel 
SIRT3 inhibitors. Through this strategy, the potent 
SIRT3 inhibitor 11c ((N2-(2-(1-(6-carbamoylthieno [3, 
2-d] pyrimidin-4-yl) piperidin-4-yl) ethyl)-N5- 
ethylthiophene-2, 5-dicarboxamide)) (SIRT3 IC50 = 4.0 
nM) was discovered (Figure 8C) [197]. 

Other SIRT3 Inhibitors 
Tenovin-6 is a p53 activator with biological 

activity that later was also found to be a SIRT3 
inhibitor (SIRT3 IC50 = 67 μM) with anti-tumor 
activity. The inhibitory effect on SIRT3 was unclear, 
but it has been proven to act as a non-competitive 
inhibitor [186]. LC-0296 is a synthetic SIRT3 inhibitor 
with good inhibitory effect (SIRT3 IC50 = 3.6 μM) and 
its mechanism is also unclear. Judging by its structure, 

LC-0296 might be a NAD+ competitive inhibitor. It 
has good activity against squamous cell carcinoma of 
the head and neck through inhibiting proliferation 
and promoting apoptosis [198]. Trimethylamine-N- 
oxide (TMAO) is a choline metabolite that can 
promote vascular inflammation through SIRT3 
inhibition-induced ROS-NLRP3 activation [199]. 
Albendazole is an anthelmintic drug with 
microtubule-targeting ability. Recently, albendazole 
was found to induce SIRT3 degradation to inhibit 
leukemia cell survival [187]. 2-methoxyestradiol 
(2-ME) is an anti-cancer drug, which has been found 
to bind to the typical and allosteric inhibitor binding 
sites on SIRT3 to inhibit its activity. By inhibiting 
SIRT3, 2-ME can disturb normal mitochondrial 
functions and kill osteosarcoma cells [200]. 

 
 

 
Figure 8. Potential therapeutic strategies of representative SIRT3 inhibitors. (A) SIRT3 inhibitor discovered by classical pharmaceutical chemical method. (B) SIRT3 
inhibitor discovered by DNA-encoded dynamic chemical library screen strategy. (C) SIRT3 inhibitor discovered by encoded library technology screen method. 
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Although the design and discovery of SIRT3 
inhibitors are easier than activators, the development 
of proprietary and highly efficient SIRT3 inhibitors 
remains a challenge. The application of SIRT3 
inhibitors is something that requires more attention. 
Given the cytoprotective role of SIRT3 in multiple 
organs, inhibition of SIRT3 in certain cancers should 
be carefully evaluated and discussed. Therefore, how 
to develop a highly efficient SIRT3 inhibitor without 
organ toxicity is widely expected. In addition, the 
introduction of new drug delivery methods, such as 
target organ delivery, may open a new door for the 
application of SIRT3 inhibitors. 

Conclusions 
SIRT3, the major deacetylase in mitochondria, 

has been well-established to be involved in all aspects 
of mitochondrial metabolism as well as the synthesis 
and movement of mitochondria. Mitochondria play a 
very important role in cells, and their disorders 
induce a variety of diseases. The dysregulation of 
SIRT3 has been confirmed in many mitochondria- 
related diseases. 

An accumulation of current evidence has 
gradually revealed the mysteries of the inherent 
biological functions of SIRT3 and medicinal 
applications in human diseases. SIRT3 has been 
attracting extensive attention from its original role as 
the longevity gene to being a potential “superstar” 
target in many diseases. Several studies have 
demonstrated that the improved role of SIRT3 in 
many diseases is mainly due to its scavenging effect 
on ROS. Excessive accumulation of ROS is often an 
important factor in the development of age-related 
diseases, heart disease, cancer and metabolic diseases. 
SIRT3 activates its substrates such as MnSOD2, IDH2 
and PHD by deacetylation and then removes excess 
ROS. On the other hand, SIRT3 regulates TCA, 
OXPHOS, fatty acid and amino acid metabolism to 
maintain mitochondria homeostasis in normal or 
slightly damaged mitochondria to influence cell 
fitness and survival. However, when the 
mitochondria are too damaged to be repaired, SIRT3 
can deacetylate and activate FOXO3a to induce 
mitophagy, thus eliminating and circulating 
mitochondria. Interestingly, regarding to its inherent 
complexity, SIRT3 has been demonstrated to play the 
Janus role in cancer, indicating that SIRT3 activators 
or inhibitors would be utilized as anti-tumor agents in 
specific types of cancers, respectively. For instance, it 
cannot be ignored that the application of SIRT3 
inhibitors in some OXPHOS-addiction cancers seems 
very promising, but in regarding to the protective 
effects of SIRT3 on various human organs, inhibition 
of SIRT3 might partially bring multiple organ 

toxicities. On the other hand, the excessive pursuit of 
SIRT3 activation might also lead to unpredictable 
carcinogenesis under some circumstances. Thus, 
considering either up-regulation or down-regulation 
expression of SIRT3 seems to be so limited for the 
discovery of new small-molecule inhibitor or activator 
in the treatment of different types of diseases. Maybe, 
the combination of SIRT3 activator/inhibitor and the 
other drug in a new delivery system targeting specific 
human organ would be an alternative potential 
therapeutic strategy. 

Hitherto, no specific SIRT3 activators or potent 
inhibitors have been successfully discovered and thus 
being utilized for potential therapeutics. But still, 
several small-molecule compounds with therapeutic 
potential have been reported. For example, the most 
famous SIRT3 activator, Honokiol, exhibits some 
therapeutic effects in heart disease, inflammation- 
related diseases, cancer and metabolic diseases. 
However, its beneficial effects are not entirely 
attributed to the activation of SIRT3. The structural 
characteristics of its polyphenols determine its 
outstanding antioxidant capacity, which is also the 
key to its therapeutic activity. Similarly, although the 
highly selective SIRT3 inhibitor 3-TYP has good 
properties, it is only used as a probe with almost no 
therapeutic applications. 

Therefore, how to develop an effective SIRT3 
activator or inhibitor for therapeutic purposes 
remains to be an enigma. In this regard, scientific drug 
design strategy is particularly important. For the 
design of SIRT3 activators, there is still a lack of 
effective and scientific design methods at present. 
Because the mechanism of the interaction between 
small molecule agonists and SIRT3 is still a black box, 
there is no basis for structure-based drug design. At 
present, allosteric agonists are one of the most 
convincing methods for the design of SIRT3 agonists. 
Recently, artificial intelligence has been applied in the 
field of drug design, which has opened a new era of 
revolutionary drug design. However, much effort still 
needs to be made to elucidate the molecular 
mechanism of SIRT3 allosteric activation. 

As a plan for SIRT3 inhibitor design, structure- 
based drug design is a mature and effective strategy, 
including receptor- and ligand-based technology. 
Among them, basing this on the binding 
characteristics of the substrate and SIRT3 complex is a 
better choice for selective SIRT3 inhibitors. Co- 
enzyme structure-based design is more likely to lose 
selectivity, resulting in serious side effects. 
Additionally, PROTAC technology is a new strategy 
to design potent targeted inhibitors. Taken together, 
SIRT3, from a mitochondrial metabolic regulator to a 
promising therapeutic target, would shed new light 
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on exploiting more candidate drugs for fighting 
human diseases in the near future. 
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