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Abstract 

Immune-checkpoint blockades (ICBs) have been routinely implemented to treat metastatic urothelial 
cancer (mUC), whereas robust biomarkers are urgently warranted. Herein, we explored latent 
promising biomarkers based on 348 pretreatment mUC samples from IMvigor210.  
Methods: The genome, transcriptome, immunome, and metabolome were systemically analyzed using 
the external TCGA dataset for validation. Kaplan-Meier and ROC curve analyses were performed to 
estimate the predictive capacity of M1-macrophage infiltration. Chi-square/Spearman/Mann Whitney U 
test are used to determine its correlation to genetic, biochemical, and clinicopathological parameters.  
Results: M1 frequency is a robust biomarker for predicting the prognosis and response to ICBs, which is 
non-inferior to tumor mutation burden (TMB) or tumor neoantigen burden (TNB), and exceeds CD8 T 
cells, T cell inflamed gene expression profile (GEP), and PD-L1 expression. Moreover, M1 infiltration is 
associated with immune phenotypes (AUC = 0.785) and is negatively correlated with immune exclusion. 
Additionally, transcriptomic analysis showed immune activation in the high-M1 subgroup, whereas it 
showed steroid and drug metabolism reprograming in the M1-deficient subset, which characterized the 
limited sensitivity to ICB therapy. Notably, investigation of the corresponding intrinsic genomic profiles 
highlighted the significance of TP53 and FGFR alterations. 
Conclusions: M1 infiltration is a robust biomarker for immunotherapeutic response and 
immunophenotype determination in an mUC setting. Innate immunity activation involving macrophage 
polarization remodeling and anti-FGFR mutations may be promising strategies for synergy with anti-PD-L1 
treatments and may help prolong the clinical survival of patients with mUC. 
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Introduction 
Advances in immunotherapy over the past few 

decades have revolutionized the clinical treatment 
landscapes of metastatic urothelial cancer (mUC) [1, 
2], with six novel Food and Drug Administration 
approved agents, five immune checkpoint blockades 

(ICBs), and one FGFR-targeted agent [3, 4]. While 
chemotherapy remains the routine clinical treatment, 
second-line therapy has shifted from single-agent 
chemotherapy to ICBs, owing to their durable 
response in a certain fraction of patients and their 
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manageable safety profile [3], which was confirmed in 
a multicenter phase 3 randomized controlled trial 
(IMvigor211) [5]. Additionally, ICBs have been 
adopted in the first-front treatment for patients with 
mUC in PD-L1-positive and platinum-ineligible 
settings [3]. 

Nevertheless, the beneficial and durable 
responses only occurred in a proportion of patients 
with mUC. Thus, applicable and reliable biomarkers 
to assess ICB therapeutic sensitivity are urgently 
warranted. To elucidate the underlying determinants 
of response and resistance, previous efforts have 
explored corresponding biomarkers, including PD-L1 
expression levels [6, 7], tumor microenvironment 
gene signatures [8, 9], tumor mutation burden (TMB) 
[7, 8], T cell inflamed gene expression profile (GEP) 
[10], molecular subtypes [11], transforming growth 
factor β (TGFβ) signaling in fibroblasts [8], and 
fibroblast growth factor receptor 3 (FGFR3) alterations 
[12]. Intriguingly, a recent study found FGFR3 
mutation status is not a biomarker of resistance to 
ICBs, despite its significant association with T-cell 
exclusion [13]. Moreover, biomarkers for ICBs also 
interact with each other. For instance, high PD-L1 and 
CD8 expression had a significantly higher TMB or 
neoantigens in bladder urothelial carcinoma [14]. 
Ongoing endeavors to investigate predictors of ICB 
therapeutic response shed new light on the 
complexity and significant role of tumor 
microenvironment (TME) [15-17]. Apart from T cells, 
other infiltrating immune cells, such as neutrophils, 
natural killer cells, and macrophages are also 
potential candidates for cancer treatment response in 
several malignancies [18-20]. 

Preclinical research of TME has indicated the 
dual disparate role macrophages play in anti- 
neoplasia effect and in response to immunotherapy in 
various advanced-stage cancers [21, 22]. Distinct 
macrophage profiles may exert diverse implications 
in the prediction of ICB sensitivity in advanced 
malignancies. Additionally, previous studies have 
also revealed metabolic pathways reprograming 
macrophage polarization (M1/M2) [23]. Conversely, 
Anti-PD-L1 treatment also functionally remodels the 
macrophage compartment [24]. TGF-β inhibition, 
combined with cytotoxic nanomedicine significantly 
improved immunostimulatory M1 macrophage 
content and boosted the efficacy of ICBs in breast 
cancer [25]. However, translations of these preclinical 
investigations into clinical utility, and the functions 
that macrophages exert in mUC, have yet to be 
addressed. Here, by analyzing 348 patients with mUC 
treated with anti-PD-L1, we highlighted the robust 
predictive capacity of M1-infiltrating level in selecting 
patients that favorably respond to Atezolizumab and 

verified its crucial role in immunophenotype 
determination. Moreover, the corresponding 
immunome, transcriptome, genome, and metabolome 
are comprehensively discussed. We observed 
upregulated immune activation pathways in the 
high-M1 subset which identified favorable response 
to ICBs agents. In the low-M1 subset, we detected 
elevated expression of steroid metabolic and drug 
metabolic pathways, which characterize a poor 
immunotherapeutic sensitivity. 

Methods 
Data source and preprocessing  

Genomic, transcriptomic, and matched clinical 
data from patients with metastatic urothelial cancer 
treated with an anti-PD-L1 agent (atezolizumab) [8] is 
available under the Creative Commons 3.0 license and 
can be downloaded from http://research-pub.gene. 
com/IMvigor210CoreBiologies. Data from The 
Cancer Genome Atlas (TCGA) were downloaded 
from the TCGA data portal (https://portal.gdc. 
cancer.gov/) in April 2019. RNA-seq count data were 
transformed into Transcripts Per Million (TPM) [26] to 
calculate gene signature scores. Updated clinical and 
pathological information for TCGA samples were 
obtained from GDC, using the R package 
TCGAbiolinks [27]. Genomic data were analyzed 
using R (version 3.5.0) and R Bioconductor packages. 
Associated accessible codes of current work were 
merged into an R repository that is available at 
https://github.com/DongqiangZeng0808/mUC-M1.  

Genomic and clinical data sets with 
immune-checkpoint blockade  

Five genomic and transcriptomic data sets from 
patients with metastatic urothelial cancer treated with 
an anti-PD-L1 agent (atezolizumab) [8], patients with 
metastatic melanoma and non-small-cell lung cancer 
treated with MAGE-3 agent-based immunotherapy 
[28], patients with advanced melanoma treated with 
various types of immunotherapy [29], a mouse model 
treated with anti-CTLA-4 from TCGA-SKCM cohort 
[30], and patients with metastatic gastric cancer 
treated with PD-1 inhibition (pembrolizumab) [10] 
were downloaded and analyzed to determine the 
predictive capacity of M1 macrophage and its 
comparison to its counterparts. 

Inference of immune cell infiltration and 
signature score  

We integrated several computational tools 
[31-35] (Supplementary Methods) to estimate 
immune infiltration in the IMvigor210 and TCGA 
RNA-seq cohorts. Using the gsva algorithm, GO [36], 
KEGG [37], REACTOME [38], and HALLMARK [39] 
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gene sets were employed to estimate pathway 
enrichment scores for each sample. Other prevalent 
gene signature scores with respect to tumor 
microenvironment, tumor intrinsic pathway, and 
metabolism were calculated for each sample using the 
PCA algorithm [9, 39] (see the detailed procedure in 
the Supplementary Methods).  
Lasso Cox model construction  

The samples treated with atezolizumab in the 
IMvigor210 cohort were randomly separated into 
training/validation (6:4) sets for identifying and 
evaluating the predictors (see detailed patient 
characteristics in Table S1). All variables, including 
binary cell fractions and signature scores, were 
calculated separately using individual methods. The 
Supplementary Methods comprise all the methods 
used. Thereafter, these 7556 acquired features were 
merged into the feature matrix. A flow chart of the 
training lasso cox model was applied to depict the 
workflow of this study (Figure S1). Feature 
engineering was conducted to filter response- 
irrelevant and outcome-unrelated variables (see 
detailed patient features in Table S2). The penalized 
Cox regression model with LASSO penalty was 
applied to select the most powerful combination of 
prognostic markers based on 786 gene signatures after 
the procedure of feature engineering (Supplementary 
Methods). The optimal values of the penalty 
parameter lambda were determined through 10-times 
cross-validations [40]. We then constructed a risk 
score model based on the level of the selected 
signatures using Cox regression coefficients in the 
training cohort. The same coefficients of each 
parameter were used to calculate the risk score in the 
validation set. This study was conducted and 
reported in line with the Transparent Reporting of a 
multivariate prediction model for Individual 
Prediction or Diagnosis (TRIPOD) guidelines [41]. 
Differentially expressed gene (DEGs) analysis  

All differential gene analyses were conducted 
using the DESeq2 package [42]. Differential expressed 
gene analysis was performed using a generalized 
linear model with the Wald statistical test, with the 
assumption that the underlying gene expression 
count data were distributed per a negative binomial 
distribution with DESeq2. DEGs were considered for 
further analysis, with an adjusted p-value < 0.05. The 
adjusted p-value for multiple testing was calculated 
using the Benjamini-Hochberg correction [43]. 

Functional and pathway enrichment analyses  
Gene annotation enrichment analysis was 

performed using the R package clusterProfiler [44]. 
Gene Ontology (GO) [36] and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) [37] terms were 
identified with a strict cutoff of p < 0.01 and a false 
discovery rate (FDR) lower than 0.05. We also 
identified pathways that were up- and downregu-
lated among groups by running a gene set enrichment 
analysis (GSEA) [45] of the adjusted expression data 
for all transcripts (Supplementary Methods). 

Statistics  
The normality of the variables was tested using 

the Shapiro-Wilk normality test [46]. For comparisons 
of two groups, statistical significance for normally 
distributed variables was estimated using unpaired 
Student’s t-test, and non-normally distributed 
variables were analyzed using the Mann-Whitney U 
test. For comparisons of more than two groups, 
Kruskal-Wallis and one-way ANOVA tests were used 
for non-parametric and parametric methods, 
respectively [47]. The correlation coefficient was 
computed using Spearman and distance correlation 
analyses. Two-sided Fisher’s exact tests were used to 
analyze contingency tables. The cutoff values of each 
dataset were evaluated based on the association 
between survival outcome and signature score in each 
separate dataset using the survminer package. The 
Kaplan-Meier method was used to generate survival 
curves for the subgroups in each data set, and the 
log-rank (Mantel-Cox) test was used to determine 
statistically significant differences. The hazard ratios 
for univariate analyses were calculated using the 
univariate Cox proportional hazards regression 
model. The multivariate Cox regression model was 
used to determine independent prognostic factors. All 
statistical analyses were conducted using R 
(https://www.r-project.org/), and the p-values were 
two-sided. p values lower than 0.05 were considered 
statistically significant.  
Results 
M1 macrophage holds promise in predicting 
therapeutic response to PD-L1 blockade 

To determine the optimal biomarkers for 
predicting ICB therapeutic sensitivity and to identify 
latent predictors, we explored the gene expression 
profile of 348 samples from Phase II Clinical Trial with 
signature deconvolution and developed a predictive 
model (Figure 1A, Figure S1; Table S2 and S3). The 
constructed risk score model of the training cohort 
demonstrated that M1 macrophage and metabolic 
pathways, including cholesterol homeostasis, played 
significant roles in clustering the high-risk group and 
the low-risk group, which corroborated the validation 
cohort (Figure 1A). Analysis of the validation cohort 
corroborated these findings (Figure 1B). Kaplan- 
Meier survival analysis confirmed the survival 
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discrepancy between the two risk groups (Training 
cohort: p < 0.0001, Hazard Ratio = 0.2, 95% CI: 0.13 − 
0.33; Validation cohort: p = 0.0015, Hazard Ratio = 
0.47, 95% CI: 0.29 − 0.75; Figure 1C-D), and the results 
of the ROC curve analysis validated the predictive 
value of the established risk model (Figure 1E-F).  

Notably, subsequent bootstrapping indicated M1 
macrophage as a promising biomarker surpassing 
more-than-7500 counterparts covering the TME, 
metabolic pathways, tumor intrinsic pathways, and 
hallmarks of cancer (Figure 1G). Kaplan-Meier 
survival analysis verified that patients with higher 
pretreatment M1 infiltrating frequency exhibited 
longer overall survival (M1: p = 2e-7, Hazard Ratio = 
0.25, 95% CI: 0.14 − 0.44; Figure 1H; Table S1).  

Predictive robustness of M1 macrophage is 
non-inferior to that of TMB and TNB but 
superior to CD8+ T cell and PD-L1 expression  

Current tissue-based biomarkers for anti-PD-L1 
therapy commonly involve TMB, TNB, PD-L1 IHC, 
and T cell-inflamed GEP. The correlation of M1 
macrophage with established modalities and 
robustness comparison requires further investigation 
(Figure 2). Significant association between M1 
frequency and favorable response to Atezolizumab 
treatment were indicated, despite the significant but 
modest correlations between M1 macrophage, TMB, 
and tumor neoantigen burden (TNB), respectively 
(Kruskal Wallis; M1: p = 1e-6; Figure 2A-C). M1 
infiltrating density displayed non-inferior predictive 
value for atezolizumab treatment, in comparison with 
TMB and TNB (M1: AUC = 0.706; TMB: AUC = 0.718; 
TNB: AUC = 0.778; M1: TMB: p = 0.811; M1: TNB: p = 
0.134; Figure 2D; Table S4), and functioned similarly 
but slightly better in estimating the overall survival 
outcome (M1: 12-month AUC = 0.647; 24-month AUC 
= 0.707; TMB: 12-month AUC = 0.644; 24-month AUC 
= 0.666; TNB: 12-month AUC = 0.647; 24-month AUC 
= 0.704; Figure S2A-C). Intriguingly, combining 
infiltrating M1 elevated the predictive accuracy of 
TMB and TNB even more than either of them alone 
(M1+TMB: AUC = 0.765; M1+TNB: AUC = 0.781; M1: 
M1+TMB: p = 1.2e-02; M1: M1+TMB: p = 1e-04; 
M1+TMB: M1+TNB: p = 0.438; Figure 2D; Table S4) 
and facilitated survival assessment (Kaplan–Meier 
analysis, M1+TMB binary: p < 0.0001; M1+TNB 
binary: p < 0.0001; Figure 2E, Figure S2D). Moreover, 
its predictive capacity exceeded the CD8+T effector, T 
cell-inflamed GEP, and expression of PD-L1 (TC or 
IC) (M1: AUC = 0.701; CD8 T effector: AUC = 0.627; 
GEP: AUC = 0.574; IC: AUC = 0.618; TC: AUC = 0.513; 
M1: CD8: p = 3e-3; M1: GEP: p = 1.1e-05; M1: IC: p = 
1.1e-2; M1:TC: p = 9.5e-6; Figure 2F; Table S4), which 
collectively indicated that future improvements in 

diagnostic accuracy are likely to be made by including 
M1-macrophage signatures estimation via a 
computational algorithm that embraced a more 
favorable unbiased efficiency than PD-L1 IHC and by 
developing multiplex approaches combined with 
established biomarkers, TMB or TNB. Intriguingly, 
further exploration of varied cancer settings, other 
than bladder cancer, also supported the favorable 
predictive value of M1, but negated its superiority 
over CD8+ T effector and GEP in patients with 
metastatic melanoma and non-small-cell lung cancer 
treated with MAGE-3 agent based immunotherapy 
[28] (GSE35640: M1: AUC = 0.656; CD8+ T effector: 
AUC = 0.743; GEP: AUC = 0.726, M1: CD8: p = 0.241; 
M1: GEP: p = 0.405; CD8: GEP: p = 0.463; Figure 2G), 
cutaneous melanoma adopted various types of 
immunotherapy [29] (TCGA-SKCM: M1: AUC = 
0.609; CD8+ T effector: AUC = 0.639; GEP: AUC = 
0.63; M1: CD8: p = 0.681; M1: GEP: p = 0.800; CD8: 
GEP: p = 0.822; Figure 2H), mouse model treated with 
anti-CTLA4 [30] (GSE63557: M1: AUC = 0.0.98; CD8 T 
effector: AUC = 1; GEP: AUC = 1; M1: CD8: p = 0.954; 
M1: GEP: p = 0.921; CD8: GEP: p = 0.956; Figure 2I) 
and patients with metastatic gastric cancer cohort 
derived from Kim et al. [48] treated with PD-1 
inhibition (pembrolizumab) (Kim et al.: M1: AUC = 
0.732; CD8 T effector: AUC = 0.859; GEP: AUC = 0.836; 
M1: CD8: p = 0.048; M1: GEP: p = 0.077; CD8: GEP: p = 
0.469; Figure 2J). Additionally, despite the limited 
interobserver consistency, PD-L1 IHC is still the most 
well-established biomarker for anti-PD-L1 therapy 
[49], and patients with higher PD-L1 expression 
levels, either IC or TC, were observed with higher M1 
infiltration (Kruskal Wallis, TC: p = 1.8e-3; IC: p < 
2.2e-16; Figure 2K-L).  

Moreover, a previous study indicated that 
neuronal subtype (N = 8) had a considerably high 
objective response rate (complete response rate: 25%, 
partial response rate: 75%) [50]. However, the low 
occurrence of neuronal subtypes and other prevalent 
molecular subtypes estimated by the BLCA subtyping 
package may cripple the predictive capacity [11, 51] 
(Table S4). Although previous studies have provided 
evidence that molecular subtypes impacted prognosis 
and therapeutic response of mUC patients [52-54], 
modest or bare statistical correlation between 
molecular subtypes and immunotherapeutic 
response, as well as a varied distribution of M1 levels 
among different subtype classifications were 
observed in the current study (Figure 2M, Figure 
S2E-F; Table S5). Multi-variate Cox regression also 
recognized infiltrating M1 macrophage as a 
prognostic factor that collaborated with TMB and 
TCGA subtypes (M1: p = 0.0006; TMB: p = 0.0004; 
Figure S2G; Table S5). 
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Figure 1. Signature profile of training and validation cohort highlights M1 macrophage as latent biomarker. (A-B) Establishment of a prognosis-predictive model 
dividing patients into high and low risk groups (A) and its validation (B). M1 macrophages and other metabolic pathways crucially contributed to the model were shown. Risk 
score and cutoff value on the top; Survival statues on the Middle; Gene expression heatmap (red: high expression; blue: low expression) of varying signatures selected by Lasso 
algorithm on the bottom. Feature selection processes and Feature matrix used to develop lasso model are displayed in Figure S1 and Table S2 and S3. (C-D) Risk score derived 
from the constructed model was significantly correlated with overall survival (Kaplan-Meier survival analyses, Training cohort: p < 0.0001, Hazard Ratio = 0.2, 95% CI: 0.13 − 0.33; 
Validation cohort: p < 0.0001, Hazard Ratio = 0.42, 95% CI: 0.27 − 0.63). (E-F) The established model held promise in predicting 12-month and 24-month survival. (Training 
cohort: 12-month AUC = 0.769, 24-month AUC = 0.821; Validation cohort: 12-month AUC = 0.663, 24-month AUC = 0.782). (G) Frequency of gene signatures selected by 
Lasso-bootstrapping highlighted the prominence of M1 macrophage contributing to predictive model. (H) M1 microphage infiltration was positively correlated with overall 
survival (p = 2e-7, Hazard Ratio = 0.25, 95% CI: 0.14 − 0.44). 
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Figure 2. Comparison and associations of published predictors with M1 macrophage. (A-B) Modest but significant correlations of M1 macrophage were shown with 
TMB (A) and TNB (B) (Spearman, TMB: p = 3.833e-05, r = 0.247; TNB: p = 1.696e-07, r = 0.327). TMB: tumor mutation burden; TNB: tumor neoantigen burden. (C) 
M1-macrophage density is positively associated with response (Kruskal Wallis test, p = 1e-06), with association driven by the complete response group (CR versus PR, p = 
6.1e-02; CR versus SD, p = 2.7e-04; CR versus PD, p = 2.4e-06). PD, progressive disease; SD, stable disease; PR, partial response. (D) Predictive value of M1 macrophage was 
comparable to TMB and TNB and elevated when combined with either TMB or TNB (M1: AUC = 0.706; TMB: AUC = 0.718; TNB: AUC = 0.778; M1+TMB: AUC = 0.765; 
M1+TNB: AUC = 0.781; M1: TMB: p = 0.811; M1: TNB: p = 0.134; M1: M1+TMB: p = 1.2e-02; M1: M1+TMB: p = 1e-04; M1+TMB: M1+TNB: p = 0.438). (E) M1 macrophage was 
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statistically associated with favorable survival outcome in either high or low TMB subset (Kaplan-Meier survival analyses, p < 0.0001). A similar plot for tumor neoantigen burden 
is shown in Figure S2D. (F) Predictive efficacy of M1 macrophage were superior to CD8+T effector, T cell inflamed GEP, PD-L1 expression levels (TC/IC). PD-L1 expression on 
immune cells (IC) and tumor cells (TC) are assessed by SP142 immunohistochemistry assay and scored as IC0 (< 1%), IC1 (≥ 1% and < 5%), or IC2 (≥ 5%). (M1: AUC = 0.701; 
CD8: AUC = 0.627; IC: AUC = 0.618; TC: AUC = 0.513; M1: CD8: p = 3e-03; M1: GEP: p = 1.1e-05; M1: IC: p = 1.1e-02; M1:TC: p = 9.5e-06). (G-J) Predictive capacity of M1 
macrophage was supported but not exceeding CD8+T effector and T cell inflamed GEP in various malignances cohorts under immunotherapy setting. (GSE35640: M1: AUC = 
0.656; CD8+ T effector: AUC = 0.743; GEP: AUC = 0.726, M1: CD8: p = 0.241; M1: GEP: p = 0.405; CD8: GEP: p = 0.463; (G); TCGA-SKCM: M1: AUC = 0.609; CD8+ T 
effector: AUC = 0.639; GEP: AUC = 0.63; M1: CD8: p = 0.681; M1: GEP: p = 0.800; CD8: GEP: p = 0.822; (H); GSE63557: M1: AUC = 0.0.98; CD8 T effector: AUC = 1; GEP: 
AUC = 1; M1: CD8: p = 0.954; M1: GEP: p = 0.921; CD8: GEP: p = 0.956; (I); Kim et al: M1: AUC = 0.732; CD8 T effector: AUC = 0.859; GEP: AUC = 0.836; M1: CD8: p = 0.048; 
M1: GEP: p = 0.077; CD8: GEP: p = 0.469; (J). (K-L) PD-L1 expression, both TC (K) and IC (L), are associated with M1-macrophage infiltration (Kruskal Wallis test, p = 1.8e-3, 
p < 2.2e-16, respectively). IC0 tumors had a significantly lower M1-macrophage infiltration (p = 4.1e-04, p < 2.2e-16, respectively). Tumor tissue samples were scored through 
immunohistochemistry (IHC) for PDL1 expression on tumour-infiltrating immune cells (IC), which included macrophages, dendritic cells and lymphocytes. Specimens were 
scored as IHC IC0, IC1, IC2, or IC3 if <1%, ≥1% but <5%, ≥5% but <10%, or ≥10% of IC were PD-L1 positive, respectively. An exploratory analysis of PD-L1 expression on 
tumour cells (TC) was conducted. Specimens were scored as IHC TC0, TC1, TC2, or TC3 if <1%, ≥1% but <5%, ≥5% but <50%, or ≥50% of TC were PD-L1 positive, 
respectively. (M) Distribution of M1 macrophages varied between TCGA subtypes (Kruskal Wallis test, p = 8e-11). A similar plot for other molecular subtype classifications are 
shown in Figure S2F-G. (N) M1 macrophages predominantly enrich in inflamed immune subtypes defined by computational tools as well as IHC modality (Kruskal Wallis test, p 
< 2.2e-16). “Desert”: the prevalence of CD8+ cells was low (< 10 CD8+ cells in an area of tumour and tumour-associated stroma at a magnification of 200×; in larger specimens, 
this was calculated as the average of 10 representative fields of view). “Excluded”: CD8+ cells were exclusively seen in stroma immediately adjacent to or within the main tumour 
mass. “Inflamed”: CD8+ cells were seen in direct contact with malignant epithelial cells either in the form of spilling over of stromal infiltrates into tumour cell aggregates or of 
diffuse infiltration of CD8+ cells in aggregates or sheets of tumour cells.  

 
 Collectively, M1 macrophage and its 

combination with TMB or TNB are promising 
candidates for predicting the response to ICBs among 
patients with mUC to fine-tune the immune response 
and therapeutic strategies. Notably, we found that it 
holds promise in identifying immune exclusion of 
mUC patients, due to its significant correlation with 
immune infiltration (Kruskal-Wallis, p < 2.2e-16, 
Figure 2N). 

M1 macrophage is correlated with 
immunophenotypes and TME landscapes  

To further gain insight into the exact role M1 
macrophage plays in determining the TME profile 
and immunophenotype, we performed unsupervised 
consensus clustering based on the TME-cell 
populations, developing a TME pattern with two 
clusters, TME cluster A and B (Figure 3A). A 
significantly better overall survival outcome was 
observed in the TME cluster A (p = 0.007; Figure 3B), 
which infiltrated with more M1 macrophages, resting 
mast cells, CD8 T cells, T cell gamma delta, and 
activated NK cells (Figure 3A). 

Follow-up analyses of clinicopathological 
characteristics revealed that patients with a better best 
overall response (BOR), higher PD-L1 expression 
level, either on the surface of tumor cells (TC) or 
immune cells (IC), and inflamed phenotypes, were 
allocated more in TME cluster A (Figure 3C, Table 
S1), which was identified to have a lower immune 
exclusion, and therefore, a potentially better anti- 
tumor immune response. In addition, the influence of 
tobacco usage history on the TME pattern was 
excluded due to the balanced distribution (Figure 3C).  

Given the immnunophenotype distribution 
discrepancy, we hypothesized that M1 macrophages 
hold promise in identifying immune phenotype of 
mUC, and subsequently validated its determining 
capacity comparable to monocytes and exceeding 
CD8 T cells (M1: AUC = 0.785; Mon: AUC = 0.785; 
CD8 T: AUC = 0.582; Figure 3D). The prolonged 

survival of TME cluster A (Figure 3B) was correlated 
with a higher M1-macrophage infiltration (Mann 
Whitney U test, p < 22e-16; Figure 3E) and a more 
favorable sensitivity to anti-PD-L1 therapy (Figure 
3F), using the external TCGA dataset reproductively 
vouched for the aforementioned results (Figure S3). 

Classic adaptive responses of macrophages 
include a wide spectrum of activation states 
compressing M1, M2, or M2-like. Prior researches 
have indicated the significance of myeloid 
intratumoral compartments and macrophage 
plasticity in immunotherapeutics [21, 55]. In the 
current study, lower M2 frequency was statistically 
correlated with more favorable overall survival 
(Figure S4A, p = 0.011), despite its bare statistical 
correlations with M1 frequency, and immunothera-
peutic responses (Figure S4B-C, p = 0.19), which 
suggested that M2 contributed to shaping the immune 
suppressive tumor microenvironment, as previously 
reported [21, 22]. Furthermore, the M1/M2 ratio was 
significantly correlated with a better response to 
immune checkpoint blockade (Figure S4D, p = 4.6e-6). 
However, the M1/M2 ratio did not elevate the 
predictive capacity of M1 alone. In addition, M2 
exerted inferior predictive sensitivity to anti-PD-L1 
response (Figure S4E; Table S4; M1: AUC = 0.701; 
M2: 0.552; M1/M2 ratio: AUC = 0.653), which relies 
more on T cell activation and inflammatory 
microenvironment. In spite of the potential 
coexistence of M1 and M2-state, reeducating 
macrophages polarization toward M1-type state [22] 
may increase the survival rate among patients with 
mUC and collaborate with anti-PD-L1 therapy to 
advance patient response. 

Overall, M1 macrophage infiltrating levels may 
also function as a robust indicator of immunopheno-
type that is significantly correlated with a favorable 
response. Therapy targeting macrophage remodeling 
may hold promise for synergy with ICBs and prolong 
the clinical survival of patients with mUC. 



Theranostics 2020, Vol. 10, Issue 15 
 

 
http://www.thno.org 

7009 

High M1-macrophage infiltration suggests 
immune activation, while low infiltration 
indicates activated steroid and xenobiotic 
metabolism  

To further identify the transcriptomic profiles in 
different M1 macrophage infiltrating settings and 
dissect the underlying mechanism contributing to its 

crucial predictive power in patients with mUC, 4,538 
differentially expressed genes (DEGs) in the 
IMvigor210 cohort (Table S6), corresponding to 
pathway enrichments (Figure 4A-C; Table S7 and S8) 
and gene signatures (Figure 4D and Figure S5; Table 
S9) were comprehensively explored. 

 

 
Figure 3. M1-macrophage infiltration is related to immune phenotype. (A) Heatmap of unsupervised consensus clustering based on the TME-cell signatures (red: high 
expression; blue: low expression) elucidated the TME pattern with two TME clusters A (blue) and B (yellow). Rows of the heatmap show expression of TME-infiltrating cell 
signatures (Z scores) calculated by CIBERSORT. Annotations are displayed on the top compressing tobacco use, immune phenotype, TC and IC levels, binary response and BOR. 
BOR: best overall response. (B) Distribution of clinicopathological parameters in TME cluster A and B with cluster A positively associated with favorable BOR and higher PD-L1 
expression level (IC/TC) while negatively correlated with immune exclusion. Tobacco-use history allocated evenly. Additional clinical and molecular characteristics refer to Table 
S1. (C) TME clusters A statistically associated with better survival (Kaplan-Meier survival analysis, p = 7e-03). (D) Immunophenotype-determine capacity of M1 macrophage was 
similar to monocyte and exceeding CD8+T cell (M1: AUC = 0.785; monocyte: AUC = 0.785; CD8+T: AUC = 0.582). (E-F) TME cluster A was correlated with higher M1 
macrophage (E) (Mann Whitney U test, p < 2.2e-16) which characterized favorable therapeutic response (F). 
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Figure 4. M1 infiltration is correlated with distinct transcriptomic and metabolic traits. (A-B) Gene ontology (GO) (A) and KEGG pathways (B) were significantly 
correlated with M1-macrophage infiltration with activation of steroid metabolism, xenobiotics metabolism in low-M1 subset and immune activation in high-M1 subset. The top 
ten genes per set are shown (ranked by single-gene p value, GO: red: high, blue: low; KEGG: blue: high, green: low); complete lists are given in Table S7. (C) GSEA analyses 
displayed key pathways enriched in high (up) and low (down) M1 subset. Gene sets that are inferred to reflect key underlying biological processes are coloured. (Green: 
metabolism of xenobolics by cytochrome P450; Scarlet: drug metabolism by cytochrome P450; Blue violet: steroid hormone biosynthesis; brick red: PD-L1 and PD-1 checkpoint 
pathway in cancer; Dark violet: Th1 and Th2 cell differentiation; Light blue: natural killer cell meditated cytotoxicity; Navy: antigen processing and presentation). Complete lists 
are given in Table S7. (D) Heatmap of unsupervised clustering different expressing gene signatures elucidated similar results (red: high expression; blue: low expression). Binary 
M1-macrophage infiltration was show as annotation on the top (red: high; green: low). Comprehensive signature information is displayed in Table S9.  

 
Gene Ontology enrichment and KEGG 

enrichment analyses unanimously demonstrated that 
gene sets upregulated in higher M1 level subset were 
prevailingly enriched in immune activating process, 
which commonly indicated a better immuno-
therapeutic response, whereas those overexpressed in 
M1-deficient subset were enriched in steroid hormone 
metabolism, which could induce CD8+T cell exclusion 
in TME [56], xenobiotic metabolism, and drug 
metabolism, which may be collectively responsible for 
the dangerous insensitivity to immunotherapy 
(Figure 4A-B; Table S7). Gene set enrichment analysis 

(GSEA) results interpreted via hallmarks or KEGG 
database among all transcripts shared similar 
conclusions (Figure 4C; Table S7).  

Consistently, heatmap suggested that high 
M1-infiltration closely correlated with gene signatures 
featuring immune activation, including overexpres-
sion of CD8 T effectors and interferons combined with 
other signatures characterizing favorable 
immunotherapy response in advanced cancers, such 
as expression of immune checkpoints and TME score 
[9] (Figure 4D). In contrast, patients with lower 
M1-infiltration are associated with endogenous 
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metabolism activation, especially those involving 
steroids and drugs (Figure 4D and S4; Table S9). 
Comparable results were obtained via exploration of 
the TCGA dataset (Figure S6 and S7; Table S8 and 
S9). Taken together, the well-reproductive results 
intrigued the reasonable inference that immune 
activation in high M1-infiltration subsets and 
enhanced drug metabolism in the lower subset may 
intrinsically contribute to its robust predictive value 
to ICB therapeutic sensitivity. 

Tumor-intrinsic genomic alterations were 
related to the high M1 macrophage profile 

Intensive investigation into the genetic profile 
demonstrated that M1-macrophage levels were 
significantly elevated in FBXW7 and TP53 mutation 
settings (Mann Whitney U test, p = 3.2e-5, p = 6.9e-4, 

respectively; Figure 5A-B; Table S6). FBXW7 is a vital 
tumor suppressor and commonly deregulated 
ubiquitin-proteasome system protein in human 
cancer [57], which affects the tumor 
microenvironment and inhibits tumor metastasis by 
augmenting the activation of chemokine CCL2 
expression, which recruits monocytic myeloid- 
derived suppressor cells and macrophages to the 
tumor site [58]. Additionally, the TP53 gene 
suppresses tumorigenesis by determining DNA 
damage repair or apoptosis of damaged cells, 
promoting a tumor-inhibiting microenvironment 
through modulating macrophage polarization 
towards M1-state [59] and remodeling myeloid-T cell 
crosstalk [50]. However, a decrease in 
M1-macrophage infiltration was observed in patients 
with FGFR mutation, compared with that in the wild 

 

 
Figure 5. M1 macrophage relevant intrinsic mutation profiles. (A-B) TP53 (A) and FBXW7 (B) mutation were significantly associated with higher M1 infiltration 
compared with wild type (Mann Whitney U test, p = 3.2e-05, p = 6.9e-04, respectively). (C) Patients with FGFR3 alteration, other than lack thereby, correlated with lower M1 
infiltration (Mann Whitney U test, p = 1e-03). (D) Distribution of immune phenotypes in FGFR pathway mutation subset with more inflamed phenotype rate versus mutation 
deficiency. (E-F) FGFR pathway mutations were correlated with lower Immunoscore (Mann Whitney U test, p = 3.1e-11) and higher tumor purity (Mann Whitney U test, p = 
9.9e-13) versus wild type. (G) Heatmap of different gene signatures expression profile via unsupervised clustering in FGFR mutated setting versus mutation deficiency. FGFR 
pathway mutation were associated more with steroid metabolisms while wild type with expression of immune cell signature and immune checkpoints. (red: high expression; blue: 
low expression; annotation: red: mutated; green: wild type). 
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type (Mann Whitney U test, p = 0.001; Figure 5C). 
Further analysis of the TCGA dataset externally 
supported the significance of these mutations (Figure 
S8). FGFR alterations have been recognized as a 
biomarker of resistance to ICBs [12] with anti-FGFR 
agents approved by the FDA [4]. However, a recent 
study denied its response-predictive value, despite 
supporting its significant association with T-cell 
exclusion [13]. In line with this, the current work 
demonstrated that FGFR mutated cases had a more 
deserted immune phenotype than the wild type 
(Figure 5D), as well as a lower Immunoscore and 
higher tumor purity (Mann Whitney U test, p = 
3.1e-11, p = 9.9e-13, respectively; Figure 5E-F). 
Consistent with previous studies [60], FGFR pathway 
alteration was associated with alternative immune 
mechanisms, such as downregulated immune 
checkpoint pathways and elevated drug-resistance 
metabolism, especially steroid metabolism (Figure 
5G, S8A-B), which collectively suggest that 
combination of FGFR inhibition and PD-L1 blockade 
may hold promise in elevating antitumor immunity. 
(Figure 5G, S8A-B; Table S10-11). However, a trend 
toward a better response to anti-PD-L1 therapy was 
observed in FGFR mutated patients, although 
statistical significance was not attained (Figure S8 
C-D; p = 0.1399, p = 0.2691, respectively). 
Additionally, external validation of M1 macrophage 
related DEGs mutations (comprising FGFR3, TP53, 
and FBXW7) versus wild type in TCGA were also 
described (Figure S8 E-G). 

Discussion 
Treatment with ICBs has revolutionized cancer 

therapy. To date, predictive biomarkers and strategies 
to augment clinical response to ICB therapy have 
largely focused on the T cell compartment [9, 10, 61, 
62]. However, other immune subsets and tumor 
intrinsic characteristics may also contribute to 
anti-tumor immunity or resistance to ICBs. Gene 
signatures derived from transcriptome hold great 
promise in personalized therapeutics [9, 10, 61-64]. To 
gain insight into the mechanisms of the therapeutic 
response and resistance, 7,586 gene signatures (tumor 
and tumor microenvironment relevant), and 
infiltrated cell types were deconvoluted, followed by 
the integration of a machine learning algorithm [40] 
and a bootstrapping method. Our results suggest the 
promising value of M1 macrophage as a predictor of 
ICB therapy for mUC patients. 

The comprehensive evaluation of genomic, 
transcriptomic, cellular, and molecular factors 
associated with response and resistance to anti-PD-L1 
therapy in this large cohort of mUC patients revealed 
that M1 macrophage was not inferior to TMB, but was 

statistically superior to PD-L1 immunohisto-
chemistry, CD8+ T cell signature [8], and T 
cell-inflamed GEP [10, 63]. Recently, some clinical 
evidence indicated that tumor mutation burden has 
yet to prove its predictive or prognostic value for 
overall survival in order to become a reliable 
biomarker [65]. Furthermore, some tumors with virus 
infection had a low mutation burden, but exhibited 
comparable immune infiltration, which subsequently 
facilitated patients to benefit from ICB 
immunotherapy [48, 66], suggesting a promising 
value of tumor microenvironment evaluation [9]. As 
to PD-L1 IHC, several limitations were reported: 
multiple different assays are available, the scoring of 
immune cell PD-L1 expression by pathologists has 
poor interobserver reproducibility, and the PD-L1 
expression is commonly reduced to a digital readout 
(+ vs -) without assessing its expression in the greater 
context of the TME [67]. Discordances between assays 
and cutoff values based on tumor type of 
immunotherapy plague the biomarker field. With the 
utility of a computational algorithm [31], a 
standardized scoring system can be more efficient, 
unbiased, and cost effective. Molecular-subtype 
taxonomy has been widely investigated with respect 
to mUC, but with inconsistent results, as previously 
reported [8, 13]. In another study [68], mUC patients 
with neuronal subtype (N = 8) had a considerably 
high objective response rate (complete response rate: 
25%, partial response rate: 75%). However, few 
patients can be identified using this methodology, 
indicating that molecular subtypes are not capable of 
serving as a biomarker to guide immunotherapy. Our 
data also demonstrated that the distribution of M1 
macrophages varied between molecular subtypes, but 
associations between molecular subtypes and 
treatment response were modest.  

Notably, the combination of TMB or TNB with 
M1-macrophage signature evaluation statistically 
elevated the prognostic and predictive value of 
anti-PD-L1 efficacy, when compared with TMB, TNB, 
or M1 macrophages, indicating that there are some 
potential mechanisms beyond T cell anti-tumor 
immune processes mediated by mutations and tumor 
neoantigens. Our results provide evidence that M1 
macrophages are predominantly enriched in inflamed 
immune subtypes defined using computational tools, 
as well as IHC modalities. Kim et al. corroborated 
these findings for triple-negative breast cancer and 
reported the same pretreatment trend in 
macrophage-enriched subtypes [23]. Furthermore, 
DEGs, gene set enrichment analysis (GSEA), and gene 
set variation analysis (GSVA) demonstrated that 
tumors with M1-deficient subtype have dramatically 
higher activation in steroid metabolism, xenobiotics 
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metabolism, and TGF-β signaling pathway, which 
were previously reported to develop 
immunosuppressive activity [8, 9, 55]. The TCGA 
dataset of bladder cancer reproductively supported 
the aforementioned results. Taken together, the 
promising predictive value of M1 macrophage might 
contribute to a high accuracy in immune subtype 
prediction and potential interplay with stromal 
activation, exclusion of T cells, and tumor metabolism 
reprograming. 

Macrophages are among the most abundant 
normal cells in the tumor microenvironment. A large 
number of preclinical studies [23, 69] revealed that 
macrophages undergo different activation and 
polarization processes: the classically activated 
subsets potentiate anti-tumor immunity, whereas the 
alternatively activated subsets promote tumor 
progression through multiple mechanisms. In line 
with our findings, Xiong et al. demonstrated that 
macrophage polarization was associated with the 
response of ICBs [24]. As previously reported, 
simultaneous blocking of innate (CD47) and adaptive 
(PD-L1) checkpoints on tumor cells limits immune 
evasion and boosts anti-PD-L1 response [70, 71], 
suggesting that harnessing the innate immune system 
is a promising strategy to prolong survival outcomes 
of patients treated with ICB immunotherapy. 

Our data revealed that a TP53 mutation was 
associated with a more pro-inflammatory phenotype 
of macrophages in the IMvigor210 and TCGA cohorts. 
Conversely, the infiltration of M1 macrophages was 
markedly lower in tumors with FGFR pathway 
deficiency. Consistently with previous research [13], 
FGFR pathway mutations were not statistically 
correlated with anti-PD-L1 response, but were 
markedly enriched in desert-immune subtype and 
high tumor purity [72]. The observation that FGFR 
pathway mutation is significantly associated with 
steroid metabolism activation, insulin receptor 
signaling pathway upregulation, cell cycle activation, 
and immune exclusion phenotype, inspired a rational 
hypothesis that anti-FGFR mutation may offer a way 
to tackle immune cell exclusion (including cytotoxic T 
cells and M1 macrophages) from the tumor center to 
boost tumor destruction via immunotherapy. 
Palakurthi et al. corroborated this theory for a 
non-small cell lung cancer mouse model, and 
reported the same immunological changes to support 
enhanced antitumor immunity [60]. 

Although the comprehensive evaluation of 
multi-omics data has yielded several important 
conclusions, the results of our study should be further 
validated in a prospective cohort of patients receiving 
immunotherapy to more precisely define the cutoff 
values for clinical application. The deficiency of this 

study is that the cutoff of M1 was derived from big 
dataset research, which is insufficient for clinical 
transformation, because the abundance of M1 was 
normalized within the dataset and cannot be 
evaluated individually. To tackle this challenge, we 
are working to generate a panel that can apply M1 
signature genes and NanoString technology to 
estimate the fraction of M1 individually and 
normalize gene expression using housekeeping genes. 
Furthermore, our research observed a markedly close 
interaction between macrophages and anti-tumor 
immunity, such as cytotoxic T cells, as well as tumor 
intrinsic genomic alterations. The underlying 
mechanism of these observations should be 
systematically elucidated in vitro and in vivo to boost 
anti-tumor immunity optimally. 
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