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Abstract 

Acute rejection (AR) remains a significant problem that negatively impacts long-term renal allograft 
survival. Numerous therapies are used to prevent AR that differ by center and recipient age. This 
variability confounds diagnostic methods.  
Methods: To develop an age-independent gene signature for AR effective across a broad array of 
immunosuppressive regimens, we compiled kidney transplant biopsy (n=1091) and peripheral blood 
(n=392) gene expression profiles from 12 independent public datasets. After removing genes differentially 
expressed in pediatric and adult patients, we compared gene expression profiles from biopsy and 
peripheral blood samples of patients with AR to those who were stable (STA), using Mann-Whitney U 
Tests with validation in independent testing datasets. We confirmed this signature in pediatric and adult 
patients (42 AR and 47 STA) from our institutional biorepository.  
Results: We identified a novel age-independent gene network that identified AR from both kidney and 
blood samples. We developed a 90-probe set signature targeting 76 genes that differentiated AR from 
STA and found an 8 gene subset (DIP2C, ENOSF1, FBXO21, KCTD6, PDXDC1, REXO2, HLA-E, and 
RAB31) that was associated with AR.  
Conclusion: We used publicly available datasets to create a gene signature of AR that identified AR 
irrespective of immunosuppression regimen or recipient age. This study highlights a novel model to 
screen and validate biomarkers across multiple treatment regimens. 
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Introduction 
Despite advancements in clinical care for kidney 

transplant patients, long term outcomes remain 
sub-optimal [1-3]. The reported incidence of acute 
rejection (AR)—including antibody mediated 
rejection (ABMR) and T cell mediated rejection 
(TCMR)—in the first year after transplantation varies 
depending on the immunosuppression utilized. It is 
typically higher with steroid and calcineurin inhibitor 
minimization or Belatacept-based regimens, though 
these regimens are often preferred for younger 
recipients as the reduction in long-term side effects is 

thought to offset the increased risk of early, treatable 
AR [4-6]. Regardless, AR has been associated with 
decreased long-term allograft survival in both 
pediatric and adult studies [7-9]. Additionally, TCMR 
has been correlated with formation of de novo donor 
specific antibody (dnDSA) [10] which is strongly 
associated with premature allograft loss [11]. Finally, 
AR is often associated with inflammation within areas 
of interstitial fibrosis and tubal atrophy (i-IFTA) [12] 
at one year that is also correlated with decreased 
allograft survival [13]. Immune monitoring to detect 
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AR allows for early intervention and decreased graft 
damage, but diagnostic methods, particularly those 
relying on molecular signatures, are likely 
confounded by differences in the immunosuppressive 
strategies used, and these differences are 
non-uniformly distributed by recipient age. 

Recently, immune monitoring has focused on the 
development of gene signatures for AR in kidney 
transplantation derived from both renal parenchymal 
samples and from peripheral blood. Examination of 
the transcriptome from renal parenchymal tissue has 
more fully characterized events occurring within the 
kidney in order to subclassify acute rejection events 
and help adjudicate difficult to interpret biopsies 
[14-17]. In a related but distinct way, attempts to 
create a peripheral gene expression signature of AR 
have also progressed to obviate the need for allograft 
biopsy and improve the logistics of graft surveillance 
[18-21]. Recent multi-center studies have utilized a 
peripheral blood signature to discriminate between 
stable grafts and those undergoing AR [22].  

Interestingly, the combination of data from renal 
parenchymal and peripheral blood signatures to 
define a more complete signature of AR has been 
infrequently pursued [23-25]. Although there are 
likely differences in gene expression between the two 
compartments, local events often mediate systemic 
changes. Moreover, the non-invasive nature of a 
peripheral test is clinically more attractive, given 
complications associated with percutaneous biopsy 
[26]. Additionally, most studies separate adult and 
pediatric patients, meaning that signatures may not 
be broadly applicable. Many of these prior studies 
were performed on a common microarray platform 
and have all been uploaded into the publicly acces-
sible Gene Expression Omnibus (GEO) [27]. Given 
this wealth of information and the opportunity to 
combine datasets, we aimed to create a new peripher-
al signature of AR that would be able to detect both 
TCMR and ABMR in pediatric and adult patients, 
regardless of immunosuppression regimen utilized. 

Materials and Methods 
Human genomic data collection 

A total of 1091 renal gene expression profiles 
were collected from 7 independent NCBI Gene 
Expression Omnibus datasets: GSE21374, GSE22459, 
GSE36059, GSE50058, GSE7392, GSE9493, and 
GSE25902 (pediatric) [13,15,18,28-31]. In addition, we 
obtained 392 gene expression profiles of peripheral 
blood cells derived from 5 GEO datasets: GSE14346, 
GSE15296, GSE24223, GSE46474, and GSE20300 
(pediatric) [21,32-35]. Complementing the raw 
expression data, we also obtained clinical data from a 

subset of the samples with AR, including both ABMR 
and TCMR, stable (STA), borderline rejection, chronic 
allograft nephropathy (CAN), and interstitial 
fibrosis/tubular atrophy (IF/TA).  

Normalization of gene expression data 
Gene expression profiles of all datasets were 

measured using Affymetrix U133A or U133 Plus 2.0 
expression array. Each dataset selected for this study 
contained clinical outcome data and patients' unique 
IDs were also collected from series matrix files (GEO) 
to ensure there was no redundancy in the sample set. 
Raw Affymetrix expression CEL files from each 
dataset were robust multi-array average normalized 
independently using Expression Console Version 1.1 
(Affymetrix, Santa Clara, CA). All data were filtered 
to include those probes on the HG-U133A platform. 
Batch effects were mitigated using surrogate variable 
analysis (SVA) [36]. 

Selection and analysis of institutional cohort 
To further develop a gene signature of early AR, 

a total of 89 pediatric and adult patients age 1 to 78 
transplanted between July 2009 to July 2017 were 
selected from our institutional biorepository. They 
were characterized as AR (39 TCMR, 1 ABMR, and 2 
Borderline)—with samples within the 30 days 
preceding the rejection event—or STA without 
rejection during the first year after transplantation. 
Immunosuppression protocols included induction 
with basiliximab, daclizumab, or rabbit anti- 
thymocyte globulin, while maintenance regimens 
included use of tacrolimus, cyclosporine, azathio-
prine, belatacept, sirolimus, and/or mycophenolate 
mofetil with or without steroids, including some 
patients on full steroid withdrawal regimens. 
Cryopreserved peripheral blood mononuclear cell 
mRNA expression of genes identified in our 
microarray data was measured using Applied 
Biosystems™ TaqMan™ Array Cards and Plates 
(Thermo Fisher, Waltham, MA). All samples were 
collected from patients with informed consent and all 
related procedures were performed with the approval 
of the Duke Institutional Review Board (Pro00093938).  

Statistics analyses 
Mann-Whitney U Tests were used to identify 

genes that were differentially expressed between AR 
and STA groups. We also used a multivariable 
Cox-regression survival analysis for risk of AR (with 
the multiple variables being different gene expression 
values) to identify genes associated with freedom 
from AR. Shotgun Stochastic Search in Regression 
(SSS) was used for assigning coefficients to genes that 
were identified in our previous step [37]. Receiver 
operating characteristic (ROC) curves were used to 
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assess the diagnostic ability of our signatures in a 
binary classification system. Gene set enrichment 
analysis was performed using Enrichr [38]. A gene 
network was created using STRING v11 [39], Reactome 
pathway analysis and GO Biological Process analysis 
were also completed [40-42]. To assess if the 
expression of selected 8 genes was truly an 
independent risk factor of AR, we performed a 
multivariable logistic regression analysis using 
generalized linear models (glm) including the clinical 
variables of race, gender, age, and treatment (use of 
depletional induction, and/or use of belatacept based 
maintenance immunosuppression) with a p<0.05 
considered significant. Statistical analyses were 
performed using Prism 6 (GraphPad, San Diego, CA), 
Matlab 2014a (Mathworks, Natick, MA), R 3.4.0 
(Project for Statistical Computing Vienna, Austria), 
STATA 15 (STATA Corp, College Station, TX) or 
STATISTICA 7 (Dell, Round Rock, Tx). 

Results 
Sample normalization 

To capture the heterogeneity of renal allograft 
rejection, we compiled a large collection of gene 

expression profile data from either kidney allograft 
parenchymal biopsy specimens (n=1091) or 
peripheral blood (n=392) obtained from 12 
independent public datasets. Allograft and peripheral 
blood gene expression profiles showed expression 
differences among samples obtained from different 
data sets (Figure 1A and 1C). All the gene expression 
data were combined and batch effects in the combined 
data were corrected using SVA. (Figure 1B and 1D). 

Gene expression differences between adult 
and pediatric samples 

Using all patients (pediatric or adult) we utilized 
45,782, probe sets to define expression levels in one of 
three clinical phenotypes—T Cell Mediated Rejection 
(TCMR), Borderline rejection, or Chronic Allograft 
Nephropathy (CAN)—as compared to STA patients 
(p<0.001, Mann-Whitney U Test). For each of these 
phenotypes, we plotted both adult and pediatric 
samples using the first two principal components of 
differentially expressed probe sets. We observed that 
adult and pediatric gene expression was significantly 
different within the TCMR and CAN clinical groups, 
but not in the borderline group (Figure 2A and 2C). 

 

 
Figure 1. PCA Plots of batch effect normalization. (A & C) PCA plots before and after normalization among renal samples. (B & D) PCA plots before and after 
normalization among blood cell samples. These plots show the gene expression profiles of the samples plotted on the first two principal components. Each point represents a 
sample, and samples from the same data set have the same color. We demonstrate that there are no batch effects. 
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Figure 2. Discordant gene expression profiles between adult and pediatric cases with renal allograft rejection. (A) PCA of TCMR, CAN and borderline rejection 
associated genes reveal significant differences in TCMR and CAN gene profiles between adult and pediatric patients, but not in borderline samples. The upper left panel shows 
PCA of TCMR using first two principle components (PC1 and PC2) of differentially expressed probe sets between TCMR and STA. The bottom left panel shows PCA of 
borderline samples using first two principle components (PC1 and PC2) of differential expressed probe sets between borderline and STA. The upper right panel shows PCA of 
CAN using the first two principle components (PC1 and PC2) of differentially expressed probe sets between CAN and STA. The bottom right panel shows sample distribution 
defined using PC1 of TCMR associated probe sets and PC1 of CAN associated probe sets, colored by sample type. (B) PCA of TCMR, CAN, and borderline rejection after 
removal of Age-related differentially expressed genes. (C) 3D PCA of TCMR, CAN and borderline associated genes prior to removing differentially expressed genes between 
children and adults. (D) 3D PCA of TCMR, CAN and borderline associated genes after removing differentially expressed genes between children and adults yields. 

 
To define the differences between age groups, 

we subsequently compared expression profiles 
between adult and pediatric samples and identified 
25,043 probe sets whose expressions in TCMR and/or 
CAN were significantly different between adult and 
pediatric samples (p<0.001, Mann-Whitney U Test). 
After removing these age-group related probe sets, 
we re-built the principal components of TCMR, CAN 
and borderline using the remaining of 20,739 probe 
sets. In doing so, we saw a minimization of 
differences between adult and pediatric samples 
within the same histologic subtype, indicated by 
clustering of the points for adult and pediatric 
samples of the same histologic type (Figure 2B and 
2D). 

Identification of gene expression differences in 
AR 

To develop an age-independent AR signature, 
we first identified AR associated genes in adult 
samples using the 20,739 probe sets whose expression 

was not significantly different between adult and 
pediatric samples. We compared allograft gene 
expression differences between samples with AR 
within 5 years after kidney transplant to samples 
without any rejection over five years (STA). We also 
determined differences in gene expression between 
adult and pediatric TCMR and CAN. We further 
identified genes whose expression patterns were 
significantly associated with AR-free survival using 
Cox-regression survival analysis. Because there was 
limited long-term follow-up for patients with 
peripheral blood expression data available in public 
databases, we determined differences between 
patients with AR and those that were stable over 2 
years. As shown in Figure 3, these four tests, that 
were independently performed in either kidney tissue 
or peripheral blood, identified 90 probe sets whose 
expression were significantly associated with AR in 
both allograft and peripheral blood samples by either 
Mann-Whitney U-Test compared to STA (p<0.001) or 
by Cox-regression survival analysis (p<0.001) (Table 
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S1). This probe set group (AR90sig) was then utilized 
to train and test multiple models across sample 
groups. 

Biologic Validity of Candidate Genes 
We plotted these genes on a heatmap to define 

their expression between groups which confirmed 
good segregation between AR and STA groups 
(Figure 4A). From the 90 AR associated probe sets, we 
identified 76 genes whose expressions were 
significantly changed in AR. To determine the 
biologic basis of these 76 genes, we performed gene 
set enrichment analysis and found our gene signature 
was significantly associated with immune system and 
interferon signaling (Figure 4B, Table S2). 
Furthermore, we defined a novel gene network using 
STRING v11 that included the pathways noted above 
as well as others (Figure S1). 

Developing a 90-probe set identifier of acute 
rejection 

Using SSS modeling, we next created a 90-probe 
set predictor using a training set of 298 adult kidney 
allograft samples and validated this in independent 
sets of adult (n=316) and pediatric (n=33) samples 
(Figure 5A). All three analyses showed high 
sensitivity and specificity for the signature to identify 
AR. Because the kidney tissue and peripheral blood 

samples were normalized differently (as they are from 
different tissue compartments with different 
background variability), we built and validated renal 
tissue and peripheral blood models independently. 
Therefore, we next created a separate signature in 
adult peripheral blood (n=196) samples, and 
validated this model using an independent set of 
pediatric peripheral blood (n=24) samples (Figure 
5B). Though the two signatures contained the same 
genes, SSS was run on allograft and peripheral blood 
samples independently, yielding different 
coefficients. Of note, the 90-probe set signature 
performed well on ROC analysis with a minimum 
area under the curve (AUC) of 0.79 when considering 
both analyses.  

Furthermore, we created a cut-off gene 
expression level at maximum sensitivity and 
specificity in training data to define high vs. low risk 
of AR and applied this cut-off to validation sets. The 
positive predictive value (PPV) in the adult renal 
validation set was 30%, while the negative predictive 
value (NPV) was at 98%. The model also successfully 
delineated AR event-free survival between high vs. 
low risk cases (p<0.0001, Mantel-Cox test) (Figure 
5C). In peripheral blood, a similar analysis was 
performed which showed a PPV of 85% and NPV of 
70% in the pediatric validation dataset (Table S3). 

 

 
Figure 3. Workflow for developing age-independent signature of AR using both renal and blood cell samples. (A) Description of clinical samples used in creation 
of our initial 90 probe set signature (B) Workflow showing the multiple comparisons made to identify our initial 90 probe sets. (C) Workflow for identifying early AR predictor. 
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Figure 4. An AR associated gene set. (A) Heatmap of 90 probe set expressions in renal and blood training sets. (B) Reactome pathway analysis and GO Biological Processes. 

 
Table 1. Demographics of institutional cohort 

Characteristic-n(%) Rejection- 
42(39) Stable- 

47(44) P-Value 
Age-mean(SD) 41(17) 39(21) 0.63 
Pediatric-n(%) 8(19) 15(32) 0.23 
Female Sex-n(%) 17(41) 20(43) 1.0 
Race-n(%)   0.054 
African American 24(57) 13(28)  
Asian 0(0) 2(4)  
White 16(38) 30(64)  
Other 2(5) 2(4)  
Transplant Type-n(%)   0.162 
Living Donor 13(38) 8(25)  
Deceased donor 21(62) 24(75)  
Induction Type-n(%)    
Basiliximab 14(33) 7(15) 0.049 
Anti-Thymocyte Globulin 9(21) 9(19) 0.79 
No Induction 19(46) 31(66) 0.058 
Maintenance Therapy-n(%)    
Prednisone 40(95) 39(82) 0.095 
Tacrolimus 35(83) 46(98) 0.024 
Mycophenolate Mofetil 42(100) 46(98) 1.0 
Cyclosporine 0(0) 1(2) 1.0 
Azathioprine 1(2) 2(4) 1.0 
Sirolimus 2(5) 4(9) 0.67 
Belatacept 7(17) 0(0) 0.004 

 

Creating an age-independent 8 gene signature 
of early onset AR  

In order to monitor early AR events, we obtained 
blood samples from AR (n=42) and STA (n=47) 
patients available from our institutional 
biorepository. All samples were from patients 

monitored for one year post transplant, with STA 
defined as no rejection during that time. All AR 
samples were obtained within 30 days prior to an AR 
event. Patients were excluded from the AR group if 
they experienced another event (e.g. an infection) up 
to 14 days after the rejection event. Patients in the two 
groups were demographically similar except with 
regards to immunosuppressive management. More 
patients in the AR group received basiliximab 
induction and/or belatacept maintenance, while 
patients in STA group received tacrolimus (Table 1).  

After removing genes located on the X 
chromosome and probe sets related to microRNA, a 
total of 76 genes corresponding to our original 90 
probe sets were interrogated by Real 
Time-Polymerase Chain Reaction (RT-PCR). 8 genes 
(DIP2C, ENOSF1, FBXO21, KCTD6, PDXDC1, REXO2, 
HLA-E, and RAB31) were found to be differentially 
expressed in AR and this signature retained its 
significance after adjusting for multiple clinical 
variables, including as race, gender, age, and 
treatment (use of depletional induction, and/or use of 
belatacept based maintenance immunosuppression) 
(Table S4). Using these 8 genes, PCA was again 
employed to create a model to identify AR. The ROC 
curve AUC was found to be 0.71(Figure 6A). Finally, 
we applied this signature of early AR events to 
patients the microarray data that we samples in the 
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GEO we had initially queried, including 110 patients 
(adult and pediatric) that either experienced AR 
within 1 year or were stable for at least 6 months. 
Utilizing the PCA we created with our institutional 
cohort, we applied the 8 gene signature which yielded 
an AUC of 0.77 in this cohort (Figure 6B). The NPV 
and PPV for the institutional dataset were 74.5% and 
70.6% respectively. The NPV and PPV for the 
validation in the public dataset were 83.2% and 66.7% 
respectively (Table S3). 

Discussion 
In the present study, we created and validated a 

gene signature for AR using both publicly available 
kidney allograft parenchymal and peripheral blood 
gene expression data and peripheral blood 
biospecimens from our institutional biorepository. 

After creation of a 90-probe-set signature targeting 76 
genes based on microarray data, validation of our 
allograft biopsy signature showed a very high AUC in 
adult (0.91) and pediatric (1.00) datasets. In peripheral 
blood, our validation AUC in a pediatric cohort was 
moderate at 0.79. Examination of our institutional 
cohort identified a subset of 8 differentially expressed 
genes. We confirmed this 8 gene signature in a cohort 
of 110 patients from public databases and again 
demonstrated a reasonable AUC for identifying early 
acute rejection (0.77). Overall, our analysis 
demonstrates an effective method for biomarker 
discovery utilizing a combination of publicly 
available data and single center resources. We report 
an age-independent signature of AR that performs 
well in a peripheral blood assay despite diverse and 
non-standardized immunosuppressive regimens.  

 

 
Figure 5. An age-independent signature AR in renal parenchymal and peripheral blood samples. (A) 90-probe set model for the identification of AR event 5 years 
post-transplant using renal tissue samples. (B) 90-probe sets model for the identification of AR event 5 years post-transplant using blood cells. (C) AR-free survival between high 
and low AR risk groups defined by renal AR signature. ROC curves are plotted with AUCs noted (left panel). Logistic regression analysis was performed using non-parametric 
Mann–Whitney U test, lines represent median and interquartile range. 
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Figure 6. Validation of AR signature in vitro and in silico using independent 
datasets. (A) ROC curve of 8-gene signature of AR within 1 year after kidney 
transplant using institutional peripheral blood samples (training set) (B) ROC curve of 
8-gene signature of AR event within 1 year after kidney transplant by in silico analysis 
(testing set). Logistic regression analysis was performed using non-parametric Mann–
Whitney U test, lines represent median and interquartile range. 

 
Though there is considerable excitement 

regarding the ability of peripheral blood-based 
biomarkers to advance the diagnosis and treatment of 
disease, there have been great challenges in moving 
from the research setting into clinical care [43]. 
Additionally, all biomarker research has been plagued 
by a lack of reproducibility [44]. Given these 
limitations, novel methods of merging available data 
in all relevant combinations to imbue richness in 
analysis is needed. Previous studies have utilized 
multiple datasets, including across transplantation 
disciplines, to create signatures of rejection [18]. We 
expanded this idea further by utilizing all relevant 
tissue compartments. By building the base set of 
differentially expressed genes from both kidney 
allograft and peripheral blood gene expression data, 
we allowed for the detection of a very broad set of 
relevant genes involved in the AR response. Prior 
studies have failed to find a strict correlation between 
genes active in the graft and peripheral blood at the 
time of AR [45,46]. Our current study, however, 
shows that it can be effective to utilize genes 
differentially expressed in either compartment in the 
determination of molecular perturbations in both.  

Mechanistically, our 90-probe set signature 
contained 76 genes, many of which are important in 
immune regulation. One central pathway in our 
signature is that of Tumor Necrosis Factor-α (TNF-α) 
and the nuclear factor κ-light-chain-enhancer of 

activated B-Cells (NFκB) signaling. This multifaceted 
pathway is important in pro-inflammatory and 
apoptotic mechanisms depending on the context 
[47,48]. Our signature of AR was also associated with 
inflammatory TNF signaling as MCL1, a known 
anti-apoptotic factor important in both 
polymorphonuclear cell and lymphocyte survival 
[49]. Additionally, there was upregulation of USP4 
and NFKBIA, both of which downregulate TNF-α 
based NFκB signaling. These mediators may attenuate 
overall TNF-α signaling to prevent exhaustion of 
activated cells [50]. Additionally, some reports in 
transplantation have noted certain polymorphisms of 
NFKBI are associated with AR, suggesting that some 
forms of this gene product may enhance 
pro-inflammatory signaling [51]. NFKBI is necessary 
for TNF signaling as it holds NFκB in the cytoplasm 
prior to nuclear translocation and activation of its 
inflammatory transcriptional program [48].  

Consistent with our initial analysis, we saw 
upregulation of Human Leukocyte Antigen (HLA)-E 
in our subset of 8 genes that were associated AR 
arising within 1-year post-transplant. HLA-E interacts 
with CD159c/NKG2C, which activates NK cells. This 
HLA-E mediated signaling has been shown to occur 
in the kidney during AR [52]. Interestingly, HLA-E 
upregulation has been noted as a “Universal” 
rejection feature of AR, regardless of histologic type 
[53]. Additionally, two other Class-I HLA 
presentation associated transcripts, KCTD6 and 
FBX021, are implicated in our gene signature. Both are 
involved in ubiquitination and antigen processing, 
suggesting a contribution of increased antigen 
presentation as a contributing factor to rejection [54].  

Although our study provides an 
age-independent gene signature that was validated in 
multiple pediatric and adult cohorts, our study has 
limitations. First, the data from which the initial 
signature was created are heterogenous. It is possible 
that there is unmeasured methodologic variance for 
which we cannot correct with our normalization 
methods. Definitions of endpoints between studies 
are also various, which could contribute to 
miscategorizations of rejection or stability. However, 
we favor these differences to be small and likely 
randomly distributed. We also note that the PPV of 
the validation set among adult renal tissue samples is 
low (31%). This may be because the differentially 
expressed genes with the most predictive power were 
identified initially in the peripheral blood datasets. 
Though this presents difficulty with pursuing this 
gene signature in biopsy tissue, it bodes favorably for 
continued investigation of this signature in peripheral 
blood. Moreover, we cautiously interpret our positive 
results as previous investigators have failed to 
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corroborate gene signatures between peripheral blood 
and kidney biopsy tissue [24]. However, we provide a 
much larger sample size in the present study which 
may account for an increased ability to detect 
similarities between the two compartments.  

With regards to the corroboration of the 
microarray data with our newly generated RT-PCR 
data, there is a well-known and reported discordance 
between the two assays [55]. However, we believe 
these difficulties only raise the threshold for 
identifying meaningful differences in gene regulation. 
Additionally, as with all models that contain 
numerous variables, there is the possibility of 
overfitting the model. Finally, the samples for our 
validation cohort were from an institutional biobank. 
Prospective validation of our assay is necessary and 
would be the next appropriate step in its 
development. 

Conclusion 
Acute rejection remains a significant problem 

after kidney transplantation. Less invasive methods of 
identifying acute rejection are important to maximize 
graft survival and minimize patient morbidity. We 
identified and validated an age-independent 
peripheral signature of acute rejection that is effective 
in the setting of diverse, non-standardized immuno-
suppressive therapies. This was done efficiently by 
utilizing prior datasets to define our candidate 
signature before validating in an institutional cohort. 
The conduct of a prospective trial to further validate 
this signature is warranted. 
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