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Abstract 

Background: Programmed cell death protein 1 (PD1) inhibitors have revolutionized cancer therapy, yet many 
patients fail to respond. Thus, the identification of accurate predictive biomarkers of therapy response will 
improve the clinical benefit of anti-PD1 therapy.  
Method: We assessed the baseline serological autoantibody (AAb) profile against ~2300 proteins in 10 
samples and ~4600 proteins in 35 samples with alveolar soft part sarcoma (ASPS), non-small-cell lung cancer 
(NSCLC) and lymphoma using Nucleic Acid Programmable Protein Arrays (NAPPA). 23 selected potential 
AAb biomarkers were verified using simple, affordable and rapid enzyme linked immune sorbent assay (ELISA) 
technology with baseline plasma samples from 12 ASPS, 16 NSCLC and 46 lymphoma patients. SIX2 and EIF4E2 
AAbs were further validated in independent cohorts of 17 NSCLC and 43 lymphoma patients, respectively, 
using ELISA. The IgG subtypes in response to therapy were also investigated. 
Results: Distinct AAb profiles between ASPS, NSCLC and lymphoma were observed. In ASPS, the production 
of P53 and PD1 AAbs were significantly increased in non-responders (p=0.037). In NSCLC, the SIX2 AAb was 
predictive of response with area under the curve (AUC) of 0.87, 0.85 and 0.90 at 3 months, 4.5 months, 6 
months evaluation time points, respectively. In the validation cohort, the SIX2 AAb was consistently 
up-regulated in non-responders (p=0.024). For lymphoma, the EIF4E2 AAb correlated with a favorable 
response with AUCs of 0.68, 0.70, and 0.70 at 3 months, 4.5 months, and 6 months, respectively. In the 
validation cohort, the AUCs were 0.74, 0.75 and 0.66 at 3 months, 4.5 months, and 6 months, respectively. The 
PD1 and PD-L1 IgG2 AAbs were highly produced in ~20% of lymphoma responders. Furthermore, 
bioinformatics analysis revealed antigen functions of these AAb biomarkers.  
Conclusion: This study provides the first evidence that AAb biomarkers selected using high-throughput 
protein microarrays can predict anti-PD1 therapeutic response and guide anti-PD1 therapy. 
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Introduction 
Immune-checkpoint blockade (ICB) has 

demonstrated to be a powerful cancer treatment 
option with remarkable clinical response durability 

[1], especially inhibitors targeting programmed cell 
death protein 1 (PD1). However, a large portion of 
cancer patients fail to respond to anti-PD1 therapy [2]. 
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Significant efforts have been made to find biomarkers 
that guide ICB therapy, such as programmed 
death-ligand-1 (PD-L1) expression, microsatellite 
instability (MSI)/mismatch-repair deficiency 
(dMMR), and tumor mutation burden [3-7].  

Autoantibodies (AAbs), or antibodies that 
recognize self-proteins (autoantigens; AAgs), are also 
of particular interest to ICB research since AAbs can 
be generated by altered protein expression, mutation 
(neoantigen), degradation of tumor proteins, and 
defects in immune tolerance or inflammation [8-10]. 
AAbs also play important roles in the maintenance of 
host homeostasis by clearing dead cells and 
distinguishing diseased cells from normal cells [11, 
12]. PD-L1, which is central to immune checkpoints, 
can be expressed on tumor cells or B cells and its 
inhibition can result in the activation and proliferation 
of T cells [13]. The accumulated evidence suggests 
that immune-related adverse events are associated 
with AAbs [14-18]. For example, 23 AAbs were 
measured in 133 melanoma patients before and after 
ipilimumab treatment. The results indicated that 
patients with anti-thyroid antibodies have more 
thyroid dysfunction in subsequent anti–PD1 therapy. 
In addition, patients with AAbs displayed a higher 
probability of long-term survival and treatment 
response [14]. These results were confirmed by 
measuring pre-existing AAbs to rheumatoid factor, 
antinuclear antibody, antithyroglobulin, and 
antithyroid peroxidase in 137 non-small-cell lung 
cancer (NSCLC) patients [16].  

Among the previously-identified biomarkers for 
anti-PD1 therapeutic response, PD-L1 immunohisto-
chemistry (IHC) was first approved by the United 
States Food and Drug Administration (FDA) as a 
companion test in NSCLC [3]. However, the clinical 
utility of the PD-L1 IHC assay is limited. The 
sensitivity and specificity of PD-L1 antibodies are 
inconsistent. Moreover, the clinical thresholds differ 
across different cancers [3]. The predictive value of 
previously-identified biomarkers of anti-PD1 
response is also limited, in part, to the complexity of 
genomic aberration, transcriptional control, mRNA 
stability, oncogenic signaling and protein stability in 
cancer [3]. Notably, the combination of different 
biomarkers may circumvent the limitation of using a 
single biomarker and improve the efficacy of anti-PD1 
therapy [3]. Therefore, it is important to identify new 
biomarkers that can predict the response of anti-PD1 
therapy while considering assay accuracy, 
accessibility, easy-to-use and economic cost.  

In this study, we set out to identify circulating 
AAb biomarkers predictive of anti-PD1 therapeutic 
response prior to treatment [19, 20]. Plasma samples 
from alveolar soft part sarcoma (ASPS), NSCLC or 

lymphoma patients prior to anti-PD1 therapy were 
screened using a protein array platform called Nucleic 
Acid Programmable Protein Array (NAPPA), which 
has been widely applied in the identification of AAb 
biomarkers for cancers and autoimmune diseases [21]. 
Briefly, NAPPA arrays print complementary DNA 
(cDNA) plasmids encoding for the proteins-of-interest 
and a fusion tag (i.e., Glutathione S-transferase; GST) 
onto an aminosilane-modified glass slide [22, 23]. At 
the time of the experiment, the plasmids are 
transcribed and translated using a human cell-free 
expression system and captured to the slide in situ 
through pre-immobilized anti-tag capture antibodies. 
Patient plasma were screened with NAPPA arrays 
displaying ~6,900 human proteins, which identified 
21 highly produced AAb biomarkers targeting 
antigens associated with cancer. These AAbs, along 
with PD1 and PD-L1 AAbs, were then verified using 
enzyme-linked immune sorbent assay (ELISA), a 
simple, cost-effective, and rapid assay that can be 
performed easily in the healthcare setting. Moreover, 
the relationship between the 23-marker AAb panel 
and the response of cancer patients to the anti-PD1 
therapy was investigated.  

Materials and Methods 
Study design and patient characteristics  

Plasma samples from patients receiving anti-PD1 
therapy (Sintilimab, Toripalimab, Nivolumab) were 
collected within a week prior to the first treatment 
between August 2016 and September 2019 from 
different hospitals. We used same standard operating 
procedure for all samples. After preparing the plasma 
using EDTA, the samples were centrifuged twice at 
16,000 g and 4°C for 10 minutes, the supernatant was 
transferred to a new tube. Samples were transported 
by cold chain and stored at -80°C until use. The 
freeze-thaw cycles were the same. 

There are 4 cohorts of patient sample in this 
study, the discovery cohort 1 compromised of 4 
NSCLC, 3 ASPS and 3 lymphoma patients, the 
discovery cohort 2 included 13 NSCLC, 12 ASPS and 
10 lymphoma patients, there were 16 NSCLC, 12 
ASPS and 46 lymphoma patients in verification 
cohort, the validation cohort consisted of 17 NSCLC 
and 43 lymphoma patients. The patient baseline 
characteristics are shown in Table 1. The treatment 
efficacy was defined as complete response (CR), 
partial response (PR), stable disease (SD), or 
progressive disease (PD) according to Response 
Evaluation Criteria in Solid Tumours (RECIST) 
version 1.1 for ASPS, NSCLC and International 
Working Group 2007 Criteria for lymphoma [24]. 
During anti-PD1 therapy, some patients showed 
response (CR/PR) at the initial stage and later became 
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PD with subsequent treatments. To systematically 
evaluate the performance of biomarkers to discrimi-
nate between responders and non-responders, all 
patients were evaluated at 3 months, 4.5 months and 6 
months [4-6, 25, 26]. A “responder” was defined as a 
patient who had a CR/PR/SD prior to the evaluation 
time point. A “non-responder” was a patient who had 
PD on/before the evaluation time point [6, 26]. 

The study was conducted in three stages. In the 
first stage, NAPPA arrays were consecutively 
employed to screen AAb profiles against ~ 2300 
proteins in discovery cohort 1 (10 samples) and ~ 4600 
proteins in discovery cohort 2 (35 samples). Nine of 
the 10 patient samples in discovery cohort 1 were also 
used in discovery cohort 2. In the second stage, ELISA 
technology was used to verify the production level of 
selected AAbs in 12 ASPS, 16 NSCLC and 46 
lymphoma patients (42 Hodgkin’s lymphoma [HL], 4 
diffuse large B-cell lymphoma [DLBCL]). Finally, 
AAb biomarkers were validated using an 
independent cohort of 17 NSCLC and 43 HL patients 
using ELISA (Figure 1).  

 All experiments were executed according to the 
Declaration of Helsinki. 

Identification of plasma AAbs in patients 
receiving anti-PD1 therapy using protein 
microarrays  

The protein microarray preparation and AAb 
detection workflow are shown in Figure S1A. The 

printed NAPPA microarrays were obtained from the 
NAPPA Protein Array Core (Arizona State 
University; Tempe, Arizona, USA). The ~2300 
proteins screened with the discovery cohort 1 belong 
to numerous protein classes, including nucleic acid 
binding proteins, translational proteins, protein 
modifying enzymes, protein-binding modifying 
enzymes and metabolite interconversion enzymes 
(Figure S1B). The ~4600 proteins screened with the 
discovery cohort 2 mainly consist of transcriptional 
regulators, protein-binding activity modulators, 
protein modify enzymes, nucleic acid binding and 
scaffold/adaptor proteins (Figure S1C). 

To perform plasma AAb screening, the protein 
microarray was first blocked with 5% milk in PBST 
(PBS, 0.2% Tween) for 1 hour, and incubated with 
plasma diluted at 1:50 in 5% milk for 16 hours at 4 °C. 
After washing the slide three times with PBST, 1:500 
diluted Alexa Fluor 647 goat anti-human IgG was 
added to bind to the human AAbs. Fluorescence 
signal was detected and analyzed using the GenePix 
4300A microarray scanner (Molecular Devices, 
Sunnyvale, CA, USA) and GenePix Pro7 software 
(Molecular Devices, Sunnyvale, CA, USA), 
respectively. The reactivity of each AAb was 
quantified by the signal intensity of spots with a 
“Halo ring” according to the method described 
previously [27].  

 

Table 1. Patient baseline characteristics 

 Discovery cohort 1 Discovery cohort 2 Verification cohort Validation cohort 
Characteristics ASPS 

n=3(%) 
NSCLC 
n=3(%) 

Lymphoma 
n=4(%) 

ASPS 
n=12(%) 

NSCLC 
n=13(%) 

Lymphoma 
n=10 (%) 

ASPS 
n=12(%) 

NSCLC 
n=16(%) 

Lymphoma 
n=46(%) 

NSCLC 
n=17(%) 

Lymphoma 
n=43(%) 

Age (year)        
 median 34 60 31 33 60 31 33 60.5 34 63 34 
 range 33-41 43-62 28-53 22-48 32-67 22-53 22-48 32-74 18-69 33-81 21-60 
Gender          
 Male 3(100) 3(100) 2(50) 5(42) 11(85) 5(50) 5(42) 14(88) 52(58) 12(71) 26(60) 
 Female 0(0) 0(0) 2(50) 7(58) 2(15) 5(50) 7(58) 2(12) 37(42) 5(29) 17(20) 
ECOG performance         
 0 1(33) 1(33) 3(75) 4(33) 2(15) 7 (70) 4(33) 4(25) 45(51) 17(100) 23(53) 
 1 2(67) 2(67) 1(25) 8(67) 11(85) 3(30) 8(67) 12(75) 44(49) 0(0) 20(47) 
Stage         
 I 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 2(2) 0(0) 1(2) 
 II 0(0) 1(33) 2(50) 0(0) 1(8) 2(20) 0(0) 1(6) 16(18) 0(0) 12(28) 
 III 0(0) 1(33) 1(25) 0(0) 3(23) 2(20) 0(0) 3(19) 9(10) 5(29) 24(56) 
 IV 3(100) 1(33) 1(25) 12(100) 9(69) 6(60) 12(100) 12(75) 61(69) 11(65) 6(14) 
 Unknown 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 1(1) 1 (6) 0 
Clinical Benefit         
3 months            
 Responder 1(33) 1(33) 3(75) 9(75) 5(38)  9(90) 9(75) 7(44) 77(87) 10(59) 3(7) 
 Non-responder 2(67) 2(67) 1(25) 3(25) 8(62) 1(10) 3(25) 9(56) 12(13) 7(41) 40(93) 
4.5 months            
 Responder 1(33) 1(33) 3(75) 8(67) 4(31) 9(90) 8(67) 5(31) 68(76)  35(81) 
 Non-responder 2(67) 2(67) 1(25) 4(33) 9(69) 1(10) 4(33) 11(69) 21(24)  8(19) 
6 months            
 Responder 1(33) 1(33) 3(75) 7(58) 3(23)  8(80) 7(58) 4(25) 56(63)  31(72) 
 Non-responder 2(67) 2(67) 1(25) 5(42) 10(67) 2(20) 5(42) 12(75) 33(37)  12(28) 

ECOG: Eastern Cooperative Oncology Group 
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Briefly, during in vitro transcription and 
translation, the expressed protein can diffuse and 
bind non-specifically to the slide around the printed 
spot. The “Halo ring” is produced when an AAb 
binds to the diffused protein. We compared spot 
intensity measurements of the same plasma sample 
tested on different two days to determine the 
consistency across experiments. 

Verification and Validation of plasma AAb 
biomarkers using ELISA 

The 23 potential AAb biomarkers were analyzed 
with ELISA in duplicate as previously described [27]. 
First, 96-well high-bind ELISA plates (Corning Inc, 
NY) were coated with goat anti-GST antibody (GE 
Healthcare, MA) at 10 μg/mL in 0.2 mol/L sodium 
bicarbonate buffer (pH 9.4) overnight at 4 °C. In 
parallel, the antigens were prepared by incubating 
cDNA plasmids (20 ng/mL) in a human cell-free 
expression system (Thermo Fisher, USA) for 2 hours 
at 30 oC. The anti-GST antibody coated plate was 
incubated with 1:100 diluted expressed antigens, 
blocked with 5% milk in PBST at room temperature 
for 1 hour, and then incubated with 1:300 diluted 
plasma in PBST for 1 hour at room temperature. After 
washing the plate three times with PBST solution, 
AAb detection was performed by incubating the plate 
with an HRP-conjugated anti-human IgG antibody 
(Jackson ImmunoResearch Laboratories, PA, USA) for 
1 hour, followed with tetramethylbenzidine (TMB) 
substrate (ComWin Biotech, Beijing, China) for 15 
minutes at room temperature. The reaction was 
stopped with 2 M sulfuric acid. The signal was read 
using a SPETRA MAX190 plate reader (Molecular 
Devices, Sunnyvale, CA, USA) at 450 nm. The ELISA 
signal of each AAb was normalized using the OD450 
of the expressed antigens divided by the median 
OD450 of all antigens measured for that sample as 
previously described [27]. 

HRP-conjugated anti-human IgG1-4 antibodies 
(Jackson ImmunoResearch Laboratories, PA, USA) 
were employed to detect the distribution of PD1 and 
PD-L1 AAb IgG subtypes in plasma.  

Statistical analysis  
The Mann-Whitney U test was used to identify 

significantly-produced AAbs between the responder 
and non-responder groups among the ASPS, NSCLC 
and lymphoma patients (p≤0.05). The association 
between the AAbs and their predictive effect in 
determining whether a patient would be a responder 
or non-responder in ASPS, NSCLC and lymphoma 
patients was performed with a Spearman correlation 
coefficient (plotted with Circos [28]). The tests were 
implemented by the Python Scipy Statsmodels 
module and plotted by the Python Matplotlib and 

Seaborn modules. Hierarchical clustering and 
Principle Component Analysis (PCA) were 
implemented and plotted by the statistical language 
R.  

The discriminatory capacity of the selected 
biomarkers was assessed by the area under the curve 
(AUC) using GraphPad Prism version 8.0.1 for 
Windows (GraphPad Software, San Diego, California 
USA). To determine the performance of the PD1 and 
PD-L1 IgG2 AAbs, we used the Python Scikit-learn 
module to calculate the partial area under the receiver 
operating characteristic curve (pAUC) as well as the 
sensitivity and specificity using the filtered threshold 
(with a sensitivity > 0.1 and pAUC > 0.005) [29].  

Results 
Global identification of AAbs related to 
anti-PD1 therapy using NAPPA 

The overall experimental design of this study is 
shown in Figure 1. We performed the AAb screening 
using NAPPA protein microarrays with plasma from 
ASPS, NSCLC and lymphoma patients (Figure S1A). 
Printing was evaluated using a fluorescent stain that 
binds to double-stranded DNA (i.e., PicoGreen), 
whereas in vitro protein expression was assessed by 
staining with a mouse anti-GST tag antibody and then 
a fluorescently-conjugated anti-mouse antibody 
(Figure S1D). 95% of the cDNA plasmids were 
successfully printed and the captured GST-tagged 
proteins were displayed with high-reproducibility 
(R=0.907) (Figure S1E). The reproducibility of plasma 
AAb detection using different NAPPA arrays was 
0.95 (Figure S2). 

In the biomarker discovery stage, 10 plasma 
samples from 5 responders and 5 non-responders in 
discovery cohort 1 were first screened using NAPPA 
microarrays displaying ~2,300 human proteins. Seven 
AAbs (GEMIN2, DDX49, EIF4E2, CCDC130, MRPL44, 
P53, FATE1) were identified in the responder group. 
Since no similar study has been performed previously 
and the data from discovery cohort 1 showed 
promising results, we chose to expand the screening 
for discovery cohort 2 to ~ 4,600 human proteins, 
which represented different proteins than the first 
~2,300 protein array set. The discovery cohort 2 
contained 35 plasma samples (12 ASPS, 13 NSCLC, 10 
lymphoma) from 18 responders and 17 
non-responders. Fourteen AAbs (RCN3, VMAC, 
PHACTR1, EIF3H, LPCAT4, UBALD1, ARFGAP1, 
CPLX2, ZNF280B, SIX2, TECA3, JUN, SPAG8, SIX3) 
were selected for further evaluation (Table S1). These 
AAbs were either differentially-produced between 
responders and non-responders based on our array 
data or their antigens were shown to have an 
association with cancer in previous studies. 
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Figure 1. Study flow chart. In the discovery stage, we screened AAbs in two sets of plasma samples using NAPPA protein microarrays displaying a total of ~2,300 or ~4,600 
human proteins. In the verification stage, selected AAbs based on NAPPA data and prior knowledge were measured using ELISA technology with the baseline plasma samples 
from ASPS (n=12), NSCLC (n=16) and lymphoma (n=46) patients receiving anti-PD1 therapy. Statistically-significant predictive biomarkers, SIX2 and EIF4E2, were further 
validated during the validation stage using an independent group of 17 NSCLC and 43 lymphoma patients. ASPS: alveolar soft part sarcoma, NSCLC: non-small-cell lung cancer. 

 

Verification of selected AAbs using ELISA  
Using ELISA, the production of 23 AAbs in 74 

patients in verification cohort prior to anti-PD1 
therapy (12 ASPS, 16 NSCLC, 46 lymphoma) was 
measured (Table 1). These 23 AAbs included the 21 
AAbs identified in initial discovery stage using 
NAPPA arrays, as well as PD1 AAb and PD-L1 AAb 
due to their functional relevance to cancer immunity 
and anti-PD1 therapy [30, 31]. Notably, PD1 and 
PD-L1 AAbs were not included on the NAPPA arrays 
during the biomarker discovery phase of this study. 
To ensure that the ELISA results were reproducible, 
we compared data from the same plasma samples 
analyzed on the same day and across different days. 
The correlation was 0.99 and 0.96 within and across 
different experiments, respectively (Figure S3A-B). 
The intra- and inter-coefficient of variation (CV) were 
3% and 7%, respectively (Figure S3C-D). These results 
demonstrate that our ELISA data are reliable and 

reproducible. 
To elucidate the relationship between plasma 

AAbs and the different cancers explored in this study, 
hierarchical clustering was performed. The plasma 
AAb profile in lymphoma patients was distinct 
compared to ASPS and NSCLC patients. However, 
the AAb patterns between ASPS and NSCLC patients 
were similar (Figure 2A). Principle component 
analysis confirmed the clustering, in which almost all 
lymphoma patients were separated from ASPS and 
NSCLC patients (Figure 2B). Using the 
Mann-Whitney U test, we identified 7 AAbs (PD1, 
PD-L1, PHACTR1, ARFGAP1, EIF3H, JUN, UBALD1) 
that were significantly elevated in the lymphoma 
group, whereas 7 AAbs (EIF4E2, CCDC130, LPCAT4, 
CPLX2, SIX2, TCEA3, VMAC, MRPL44) were 
decreased in lymphoma patients than the other two 
groups (p≤0.05, Figure 2C, Figure S4). Notably, PD1 
and PD-L1 AAbs were detected in a large number of 
cancer patients prior to anti-PD1 therapy, and the 
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highest level was detected in lymphoma patients. 
Furthermore, IgG1 and IgG2 were the major IgG 
subtypes for both PD1 and PD-L1 AAbs (Figure 2D).  

Predictive AAb biomarkers of anti-PD1 
therapy in ASPS patients  

To understand the association between the 
candidate 23 AAb biomarkers and the response to 
anti-PD1 therapy in ASPS patients, we analyzed the 
association of the baseline AAbs with ASPS patient 
response at 3 months, 4.5 months and 6 months. P53 
and PD1 AAbs were well correlated with the 
responses of anti-PD1 therapy at all three time points 
(Figure 3A). The Mann-Whitney U test revealed that 
the P53 and PD1 AAbs were differentially produced 
between responders (n=7) and non-responders (n=5) 
at 6 months (p=0.037) (Figure 3B). The predictive 
performances of P53 and PD1 AAbs were evaluated 
using ROC curve analysis, which gave an AUC of 0.83 

for both targets (Figure 3C).  

Predictive AAb biomarker of anti-PD1 therapy 
in NSCLC patients 

We investigated the association of all 23 AAbs 
with anti-PD1 therapy response in NSCLC patients. 
The concentration of SIX2 AAb before therapy was 
well correlated with the clinical outcome at all three 
evaluation time points (3 months, 4.5 months, 6 
months) (Figure 4A). The SIX2 AAb level was 
significantly higher in non-responders than 
responders with p-values of 0.007, 0.006, 0.006 and 
AUCs of 0.87, 0.85 and 0.90 at 3 months, 4.5 months 
and 6 months, respectively (Figure 4B-C). In addition, 
we validated the SIX2 AAb in an independent cohort 
of NSCLC patients (n=17). The result indicated that 
the SIX2 AAb was consistently up-regulated in the 
non-responder group (p=0.024, Figure 4D) with an 
AUC of 0.80 at 3 months (Figure 4E). 

 
 

 
Figure 2. Verification of AAbs using ELISA. (A) Nonbiased hierarchical analysis of AAbs from ASPS, NSCLC and lymphoma patients prior to the anti-PD1 therapy. 
False-colored rainbow coloring from blue to red corresponds to the AAb level from low to high, respectively. The heat map and hierarchical cluster analysis data were normalized 
using the z-score. (B) Principal component analysis of AAbs in ASPS, NSCLC and lymphoma patients; (C) Detection of PD1 and PD-L1 AAbs in ASPS, NSCLC and lymphoma 
patients; (D) Detection of the IgG subtypes for PD1 and PD-L1 AAb subtypes using plasma from lymphoma patients. The data was log2 normalized by using the ELISA signal 
divided by the buffer background. The statistical analysis was performed using a Mann-Whitney U test with a p-value < 0.05. *, **, ***, **** in the graphs correspond to the p-value 
< 0.05, 0.01, 0.001 and 0.0001, respectively. ASPS: alveolar soft part sarcoma, NSCLC: non-small-cell lung cancer. 
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Figure 3. AAb predictive biomarkers of anti-PD1 therapy response in ASPS patients. (A) Association analysis of plasma AAbs and ASPS clinical response using circos 
association analysis at 3 months, 4.5 months, and 6 months, respectively. The association coefficient denotes the areas of the arc in the circle. Lines in red and blue represent the 
two most relevant markers with immunotherapy efficacy; (B) Box plot analysis of AAbs in ASPS responder and non-responder groups at 6 months. The statistical analysis was 
performed using a Mann-Whitney U test with a p-value ≤ 0.05; (C) Discrimination of ASPS patients’ responses to anti-PD1 therapy by the P53 or PD1 AAbs using ROC curve 
analysis. R and NR represent the responder and non-responder groups, respectively. ASPS: alveolar soft part sarcoma. 

 

Predictive AAb biomarker of anti-PD1 therapy 
in lymphoma patients  

The production of EIF4E2 AAb correlated with 
clinical outcome in 46 lymphoma patients (Figure 5A). 
More specifically, the baseline EIF4E2 AAb was 
up-regulated in the responder group compared to 
non-responder group at 3 months, 4.5 months and 6 
months with p-values of 0.054, 0.017, and 0.010, 
respectively (Figure 5B). The AUCs of EIF4E2 AAb for 
the evaluation time point of 3 months, 4.5 months and 
6 months were 0.68, 0.70 and 0.70, respectively (Figure 
5D). We further validated the EIF4E2 AAb in an 
independent cohort of 43 lymphoma patients, with 
p-values of 0.087, 0.015, and 0.060 and AUCs of 0.74, 
0.75 and 0.66 for the evaluation time points at 3 
months, 4.5 months and 6 months, respectively 
(Figure 5C,5E).  

We compared the levels of PD1 and PD-L1 IgG1 
and IgG2 AAbs between responders and 
non-responders in ASPS, NSCLC and lymphoma. 
Interestingly, the production of PD1 and PD-L1 IgG2 
AAbs was highly specific for a subset of lymphoma 

patients who responded to therapy (Figure 6A, Figure 
S5-S6), which may due to the various AAb 
distribution of IgG2 in lymphoma patients (Figure 
S7). Using pAUC analysis, the sensitivity and 
specificity of PD1 and PD-L1 IgG2 AAbs were 
determined. The sensitivity of PD1 IgG2 AAb was 
21% (11/53), 21% (10/47), and 14% (5/37) at the 
evaluation time points of 3 months, 4.5 months and 6 
months, respectively. The specificity of PD1 IgG2 
AAb was 100% (9/9), 93% (14/15) and 92% (23/25) at 
3 months, 4.5 months and 6 months, respectively. The 
sensitivity of PD-L1 IgG2 AAb was 15% (8/53), 28% 
(13/47) and 23% (9/37), whereas the specificity was 
100% (9/9), 93% (14/15) and 92% (23/25) at 3 months, 
4.5 months and 6 months, respectively (Figure 6A, 
Figure S5-S6, Table S2). These results were also 
observed in lymphoma patients who showed a 
consistent response or non-response to anti-PD1 
therapy at all three evaluation time points. PD1 and 
PD-L1 IgG2 AAbs had a sensitivity of 22% (8/36) and 
19% (7/36), respectively, at a specificity of 100% (8/8) 
in lymphoma patients who responded to anti-PD1 
therapy (Figure 6B).  
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Bioinformatics analysis of AAb biomarkers 
associated with anti-PD1 therapy  

Using the random walking with restart (RWR) 
approach, 70 proteins (Figure S8) were identified that 
interact with the antigens targeted by the 5 AAb 
biomarkers (PD1, PD-L1, P53, SIX2, EIF4E2) from our 

study (Table 2, Table S3). Pathway enrichment 
analysis indicates that these proteins belong to 
pathways involved in cancer, immune checkpoint, 
and gene transcription and translation (Figure 6C, 
Table S4).  

Table 2. Functional annotation of AAb biomarkers identified in this study 

No. Gene name  Protein name UniProt ID Protein class Molecular function 
1 TP53 Cellular tumor antigen p53 P04637 transcription factor (PC00218) binding (GO:0005488); transcription regulator activity 

(GO:0140110) 
2 PDCD1 (PD1) Programmed cell death protein 1 (Protein 

PD1) 
Q15116 - apoptotic process, humoral immune response 

3 CD274 (PD-L1) Programmed cell death 1 ligand 1 Q9NZQ7 immunoglobulin receptor 
superfamily 

cell surface receptor signaling pathway; negative regulation of 
activated T cell proliferation 

4 SIX2 Homeobox protein SIX2 Q9NPC8 transcription factor (PC00218) binding (GO:0005488); transcription regulator activity 
(GO:0140110) 

5 EIF4E2 Eukaryotic translation initiation factor 4E 
type 2 (eIF-4E type 2) 

O60573 translation initiation factor binding (GO:0005488); transcription regulator activity 
(GO:0140110) 

 

 
Figure 4. AAb predictive biomarker of anti-PD1 therapy response in NSCLC patients. (A) Circos correlation analysis of plasma AAbs and clinical response in 
NSCLC patients. The red line denotes the significant association between an AAb and response to anti-PD1 therapy in NSCLC patients. The correlation analysis was plotted with 
Circos; (B) Box plot analysis of the SIX2 AAb in the NSCLC responder and non-responder groups at 3 months, 4.5 months and 6 months. The statistical analysis was performed 
using a Mann-Whitney U test with a p-value ≤ 0.05; (C) Discrimination of NSCLC patients’ responses to anti-PD1 therapy by the SIX2 AAb using ROC curve analysis. (D) and 
(E) Validation of SIX2 AAb in an independent group of NSCLC patients by box plot and ROC analysis, respectively. The statistical analysis was performed using a Mann-Whitney 
U test with a p-value ≤ 0.05; R and NR represent the responder and non-responder groups, respectively. NSCLC: non-small-cell lung cancer. 
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Figure 5. AAb predictive biomarker of anti-PD1 therapy response in lymphoma patients. (A) Circos correlation analysis of plasma AAbs and clinical response in 
lymphoma patients. The red line denotes the significant association between the AAb and response to anti- PD1 therapy in lymphoma patients. The correlation analysis was 
plotted with Circos; (B) and (C) Box plot analysis of the EIF4E2 AAb in the lymphoma responder and non-responder groups at 3 months, 4.5 months and 6 months in verification 
cohort and validation cohort, respectively; (D) and (E) Discrimination of lymphoma patients’ responses to anti-PD1 therapy by the EIF4E2 AAb using ROC curve analysis in the 
verification and validation cohorts, respectively; The statistical analysis was performed using a Mann-Whitney U test with a p-value≤0.05, R and NR represent the responder and 
non-responder groups, respectively. 

 

Discussion 
A variety of biomarkers have been developed to 

identify cancer patients who would benefit from 
anti-PD1 therapy. However, the clinical utility of 
these biomarkers has been limited for various reasons, 
including inconsistent methods, invasive or 
difficult-to-obtain samples (e.g., tumor DNA, tissue, 
circulating tumor cells), and varying clinical 
thresholds across different cancers [3]. Thus, there is 
an urgent need for the identification of novel 
biomarkers that can predict immunotherapy 
response. In this study, we identified new predictive 
candidate AAb biomarkers of anti-PD1 therapy using 
protein microarrays. We then verified 5 AAb 
biomarkers with ELISA technology. To our 
knowledge, this is the first study investigating the 
association between AAbs and anti-PD1 therapeutic 
response by proteomics screening.  

We identified distinct AAbs between ASPS, 
NSCLC and lymphoma patients. The different cell 
types in which the cancers originate may explain these 
data. ASPS and NSCLC arises from epithelial or 
mesenchymal cells, whereas lymphoma begins in 
lymphocytes of the immune system [32]. We also 
found that the production of PD-L1 AAb was 

significantly higher in lymphoma patients than ASPS 
and NSCLC patients. Notably, PD-L1 is up-regulated 
in >95% of cases in HL [33].  

Five potential AAb biomarkers (PD1, PD-L1, 
P53, SIX2, EIF4E2) predictive of patient response to 
anti-PD1 therapy were identified. PD1 and PD-L1 are 
immune checkpoint proteins that are critical in 
regulating antitumor immune response. The PD-L1 
AAb has been observed in the plasma of patients with 
rheumatoid arthritis [34], type 1 autoimmune 
hepatitis [35], and systemic lupus erythematosus [36]. 
However, the association of PD1 and PD-L1 AAbs 
with anti-PD1 therapy is unknown. In this study, we 
show that PD1 and PD-L1 AAbs are present in cancer 
patients. Furthermore, we demonstrate that the PD1 
and PD-L1 AAbs are mainly comprised of the IgG1 
and IgG2 subtypes in lymphoma. Importantly, our 
results indicate that in lymphoma patients, PD1 and 
PD-L1 IgG2 AAbs are highly produced in ~20% 
patients who respond to anti-PD1 therapy (Figure 6A, 
Figure S5-S7). Given these results, we propose that 
these AAbs may play important roles in anti-PD1 or 
anti-PD-L1 therapy. The molecular mechanisms of 
these biomarkers in ICB therapy should be elucidated 
in future studies. 



Theranostics 2020, Vol. 10, Issue 14 
 

 
http://www.thno.org 

6408 

 
Figure 6. Predictive potential of PD1,PDL1 IgG2 in lymphoma and bioinformatics analysis of AAb biomarkers. (A) Jitter plot analysis of PD1 and PD-L1 IgG and 
IgG2 AAbs in the responder and non-responder groups of lymphoma patients at 3 months; (B) Jitter plot analysis of PD1 and PD-L1 IgG and IgG2 AAbs in lymphoma patients that 
were consistently responders or non-responders across all time points; (C) Pathway enrichment analysis of the antigens targeted by the AAb biomarkers and their protein 
interactions using the Reactome database. The red line represents an FDR ≤ 0.01; The RRR and NNN are defined as the patients that showed consistent responses and 
non-responses to anti-PD1 therapy at 3 months, 4.5 months and 6 months, respectively. The sensitivity and specificity were calculated by pAUC analysis. The p-values was 
calculated by Kolmogorov-Smirnov test via Python SciPy module. The patients with PD1 and PD-L1 IgG2 AAbs above the cut-off are shown as red dots. 

 
P53 is the most well-known tumor suppressor 

gene, and the AAb to P53 has been found in different 
cancers including breast cancer, lung cancer, and 
ovarian cancer [37]. Recent evidence indicated that the 
expression of PD1 and PD-L1 can be regulated by P53 
in cancer cells with genotoxic stress and DNA damage 
[38]. The expression of P53 also correlated with the 
malignancy and proliferation of ASPS tumors [39]. In 
our study, both PD1 and P53 AAbs were significantly 
up-regulated in the non-responder group compared 
to responder group in ASPS patients (Figure 3B), thus 
supporting earlier studies [39].  

SIX2 is a transcription factor that participates in 
signaling pathways associated with cell proliferation, 
differentiation, and survival [40]. The mRNA 
expression of SIX2 is higher in tumors than normal 
tissues, and positively correlated with advanced 

stages and poorer survival of NSCLC patients [41]. 
However, the immunogenicity of SIX2 is unknown. 
We observed and validated this negative association 
of SIX2 and clinical outcome in our NSCLC cohort 
(Figure 4).  

The EIF4E2 AAb was consistently up-regulated 
in the responder group compared to non-responder 
group in lymphoma patients. Eukaryotic Translation 
Initiation Factor 4E Family Member 2 (EIF4E2) is a 
member of the cap-binding subunit (EIF4E) and part 
of the EIF4F complex. EIF4E plays a vital role in 
cap-dependent translation of cellular mRNAs, and 
influences a subset of mRNAs encoding oncogenic 
proteins, such as vascular endothelial growth factor 
(VEGF), MYC, and cyclins [42]. EIF4E is frequently 
overexpressed in various types of cancers, and its 
overall phosphorylation is significantly higher in 
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tumor tissue compared to paired normal tissues, thus 
supporting the critical role of EIF4E in cancer [43]. 
Recent work indicated that EIF4F affects translation of 
the signal transducer and activator of transcription 1 
(STAT1) protein, which leads to the overexpression of 
PD-L1 on the surface of cancer cells. They also 
observed a correlation between EIF4F complex 
activation and immunotherapy in melanoma patients 
[44]. The overproduction of EIF4E2 AAb in 
lymphoma patients may inhibit the downstream 
translation of oncogenic proteins like VEGF, MYC, 
cyclins, and STAT1.  

The current approved or promising predictive 
markers of anti-PD1 therapy require an invasive 
tissue biopsy, the results can be influenced by the 
heterogeneity of tumor tissue [29]. In comparison, 
AAb detection using ELISA requires only a few 
microliters of plasma or serum. ELISA testing is also 
simple, affordable, rapid and can be completed within 
a few hours without sophisticated equipment or 
in-depth training. Serological AAb detection has been 
demonstrated to be a powerful approach for early 
cancer detection and efficacy monitoring (e.g., 
EarlyCDT-lung to test for lung cancer, Videssa® 
Breast to test for breast cancer)[45]. The results of this 
study further indicate that AAbs have clinical value to 
predict response of anti-PD1 therapy. Besides ASPS, 
NSCLC and lymphoma, the predictive value of these 
AAbs can be further investigated in other types of 
cancer. The functional association between these 
AAbs and immune checkpoint pathways has been 
illustrated by bioinformatics analysis (Figure 6C, 
Figure S8). However, further study is required to 
investigate the interactions of cancer cells and host 
B-cell immunity, and to evaluate the contribution of 
AAbs to cancer cell eradication. 

There are several limitations in this study. Due to 
the low incidence of ASPS, there were a limited 
number of ASPS plasma samples in this study. The 
number of responders and non-responders differed 
across cohorts, which could be caused by various 
response rates across different cancer types. In 
addition, improved patient stratification would 
benefit from studying the longitudinal change of these 
AAb biomarkers pre- and post- anti-PD1 therapy. The 
predictive performance of the AAbs in combination 
with other biomarkers (e.g, PD-L1 expression) should 
also be explored. 

In conclusion, this is the first study to 
systematically investigate the relationship between 
AAbs and the anti-PD1 therapeutic response using a 
high-throughput proteomics technology. The results 
suggest that AAbs can be a new class of predictive 
biomarkers for anti-PD1 therapy.  
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Supplementary figures and tables. 
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