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Abstract 

In recent years, much progress has been motivated in stimuli-responsive nanocarriers, which could 
response to the intrinsic physicochemical and pathological factors in diseased regions to increase the 
specificity of drug delivery. Currently, numerous nanocarriers have been engineered with 
physicochemical changes in responding to external stimuli, such as ultrasound, thermal, light and magnetic 
field, as well as internal stimuli, including pH, redox potential, hypoxia and enzyme, etc. Nanocarriers 
could respond to stimuli in tumor microenvironments or inside cancer cells for on-demanded drug 
delivery and accumulation, controlled drug release, activation of bioactive compounds, probes and 
targeting ligands, as well as size, charge and conformation conversion, etc., leading to sensing and signaling, 
overcoming multidrug resistance, accurate diagnosis and precision therapy. This review has summarized 
the general strategies of developing stimuli-responsive nanocarriers and recent advances, presented their 
applications in drug delivery, tumor imaging, therapy and theranostics, illustrated the progress of clinical 
translation and made prospects. 

Key words: nanoparticles, stimuli-responsive, tumor microenvironment, diagnosis, theranostics, clinical 
translation  

Introduction 
Since the discovery of the enhanced permeability 

and retention (EPR) effect and impaired lymphatic 
drainage of tumors [1], nanocarriers have been 
regarded as promising drug delivery vehicles to 
tumors [2-5]. In general, nanocarriers in the range of 
10 to 200 nm are more likely to be accumulated in 
solid tumors by passively extravasation from the 
hyperpermeable tumor blood vasculature [6] and the 
dynamic openings [7]. Nanocarriers provide a 
versatile platform for loading a wide range of 
payloads, including imaging agents, nucleic acids, 
anticancer drugs, photosensitizers and antibodies, 
etc., to improve the diagnostic and therapeutic out-
comes [8,9]. By incorporating bioactive compounds 
inside nanocarriers, it could avoid enzymatic 
degradation and undesired exposure to healthy 
organs, maintain drug activities, as well as alert the 
half-life in blood circulation, tumor accumulation and 

biological performance. Until now, several types of 
nanocarriers have been engineered for drug delivery 
in oncology [10, 11], including dendrimers, metal 
nanoparticles (e.g., iron oxide nanoparticles), poly-
meric micelles, liposomes, inorganic nanoparticles 
(e.g., silicon nanoparticles), and cell membrane-based 
nanoparticles etc. Currently, some nanocarriers have 
been approved for cancer treatment in clinic, for 
instance, the doxorubicin-incorporated PEGylated 
liposome (i.e., Doxil®) is approved for handling 
Kaposi's sarcoma and ovarian cancer. 

Nanocarriers are supposed to deliver bioactive 
compounds (e.g., imaging or therapeutic agents) to 
tumor tissues or cancer cells for achieving improved 
diagnostic and therapeutic efficacy. However, it meets 
several barriers during circulation or in tumors [12], 
such as protein corona, degradation, burst release or 
leaking of cargos, and recognition and clearance by 
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the reticuloendothelial system (RES) etc. Several 
strategies have been applied to address this, including 
applying PEG shell for achieving stealth effect [13], 
decorating with targeting moieties or charge 
conversion materials for improved cellular 
internalization [14], multistage drug delivery [15], 
introducing hydrophobic units or cross-link the core 
to increase the stability, adding specific molecules to 
escape from RES, etc. Although the PEGylated 
nanocarriers exhibited advantages in prolonged 
circulation, improved drug solubility and reduced 
side effects, the delivery efficacy of most nanocarriers 
is still quite low, which requires further improvement 
[16]. Therefore, strategies for tumor-specific drug 
delivery have been exploited, mainly including 
stimuli-responsive nanocarriers [17], and ligand- 
installed nanocarriers [2], while both were developed 
to improve the precision of drug delivery but with 
different focus. The stimuli-responsive nanocarriers 
are mainly functionalized to delivery, release and 
activate cargos in specific regions (e.g., tumor 
microenvironments or intracellular spaces of cancer 
cells) by responding to internal/external stimuli, e.g., 
pH, enzymes, etc. [18, 19], while the ligand-installed 
nanocarriers are mainly applied to promote the 
specific internalization between nanocarriers and 
specific cells, e.g., cancer cells, tumor vascular 
endothelial cells [2], etc. The stimuli-responsive 
nanocarriers could specifically delivery cargos into 
tumor microenvironment or cancer cells, while the 
ligand-installed nanocarriers could specifically target 
cancer cells that highly expressing receptors. From the 
application view, the stimuli-responsive nanocarriers 
have attracted broad attention, as the stimuli could be 
existed/generated in most of the tumors, while the 
cancer cell-specific receptors were reported to be 
expressed only on partial cancer cells (e.g., the 
expression of Her2/neu was only found in less than 
25% of breast cancer patients) [20], which may require 
preselection of receptors for the application of 
ligand-installed nanocarriers. It is possible to develop 
nanocarriers with stimuli-responsive functions for 
controlled drug release, and with ligands on their 
surface for targeting cancer cell. In addition, 
nanocarriers have also be functionalized for cancer 
theranostics, as the combination of diagnostics and 
therapy was generally referred as “theranostics” [16, 
21], which could be achieved by loading both 
diagnostic and therapeutic compounds inside the 
same nanocarriers [22]. 

The stimuli-responsive nanocarriers have been 
rationally designed and developed by considering 
different pathological profiles in normal tissues, intra-
cellular compartment and tumor microenvironment, 
to increase drug delivery specificity, efficacy and 

biological activities (Figure 1) [23-29]. In general, the 
nanocarriers could response to external stimuli, 
including magnetic field, temperature (i.e., thermal), 
ultrasound, light (e.g., laser) and electronic field, etc., 
and internal stimuli, including pH, ATP, H2O2, 
enzyme, redox-potential, and hypoxia etc., while the 
stimuli could be appeared in tumor microenviron-
ment or inside cancer cells (Figure 1). The stimuli- 
sensitive functions facilitate on-demand or controlled 
drug release, promoted tumor accumulation, ligand 
exposure, drug or probe activation, nanoparticle 
structure or size conformation, charge conversion, as 
well as signaling in specific positions, sensing of 
special pathological factors/molecules, tumor-specific 
diagnosis and theranostics (Figure 1). Moreover, the 
external force (i.e., stimuli) could also alert the 
biological performances of nanocarriers, for example, 
the external magnetic field could increase the 
accumulation of magnetic nanocarriers in tumors. 
Furthermore, the stimuli could also be applied to 
provoke biological activities of certain prodrug- 
formulated nanocarriers in diseased regions/cells for 
precision therapy. In addition, the stimuli-responsive 
nanocarriers were reported to overcome multidrug 
resistance in cancer treatment [30]. 

This review has summarized recent progress and 
achievements in nanocarriers that responsive to 
external or internal stimuli, presented different 
stimuli-sensitive strategies and their applications in 
drug delivery, tumor imaging, therapy and 
theranostics. In the following sections, the clinical 
translation of stimuli-responsive nanocarriers has 
been illustrated, and finally the perspectives were 
made. 

External-responsive nanocarriers 
The external stimuli, mainly including thermal, 

magnetic field, electronic field, ultrasound and light, 
could affect the fate of nanocarriers inside the 
biological systems. With the external stimuli, it 
facilitates enhancing the accumulation of nanocarriers 
in desired regions with outer forces (e.g., magnetic 
field), controlled release, intracellular drug delivery, 
as well as activated imaging and therapy. There are 
several advantages of applying external-stimuli for 
drug delivery to tumors: (1) it could precisely control 
the location and intensity of given external stimuli 
(e.g., magnetic field, laser irradiation); (2) the external 
stimuli could be added or removed depending on the 
treatment requirement; (3) multiple external stimuli 
could be overlaid for achieving multifunction in 
cancer theranostics; (4) the possibility to provide 
multi-times or continuous (e.g., several hours or days) 
stimuli for drug delivery and therapy. However, the 
externally-directed triggers would be impractical for 
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accessing and treating the metastatic lesions, when 
their location is uncertain. Here, the application of 
external stimuli-responsive nanocarriers will be 
discussed in this section. 

Ultrasound-responsive nanocarriers 
Ultrasound is a type of high-frequency sound 

waves, which could affect nanocarriers for controlled 
drug release at diseased sites (i.e., tumors). The 
intensity of ultrasound could be adjusted for different 
applications. At low ultrasound frequencies (< 20 
kHz), it could be applied for imaging, while it could 
be applied for disrupting nanocarriers to release 
cargos or enhancing the permeability of cancer cell 
membrane at high ultrasound frequencies (> 20 kHz) 
[31]. Until now, several microbubbles have been 
commercialized, such as Albunex, Optison, Definity, 
Imagent, Levovist and Sonazoid etc [32]. However, the 
large size (1-10 µm), short half-life and low stability of 
microbubbles limit their access to vascular compart-
ments in tumor tissues and deep penetration. Several 
size switchable microbubbles (i.e., from microbubbles 
to nanobubbles) [33], or nanocarriers have been 
engineered for ultrasound imaging [34], ultrasound- 
triggered drug delivery [35-37], and ultrasound- 
triggered cancer theranostics (Table 1), including 
nanobubbles [38], calcium carbonate (CaCO3) 
nanoparticles [39], liposome [40], nanodroplets [41], 
vesicles [42] and nanoparticles [43], etc. Generally, the 
ultrasound-sensitive nanocarriers are incorporating 

gas or contrast agents [44], including air, N2 and 
perfluorocarbons, etc., or generating gas in biological 
environment [45-47], such as CaCO3 nanoparticles 
[39]. 

The ultrasound-responsive nanocarriers could 
be applied for tumor ultrasound imaging, which is 
safe, low cost and widely applied in clinic, and 
providing images with high spatial resolution. The 
gas and contrast agent (e.g., perfluoropentane) 
incorporated nanocarriers [48], as well as 
nanoparticles that could generate gas (e.g., CO2) in 
biological environment [34, 49], have demonstrated 
tumor-specific imaging at high resolution and 
intensity. In another strategy, the porphyrin 
microbubbles (1-10 µm) could be converted into 
nanobubbles (5-500 nm) for tumor ultrasound 
imaging (Figure 2) [33]. Besides, ultrasound could also 
be applied for triggering controlled release of cargos 
(e.g., imaging probes, anticancer agents) from 
nanocarriers at desired tumor sites [42, 50]. For 
example, the phase changeable, polymeric nano-
droplets could be generated for tumor imaging and 
doxorubicin release due the collapse of microbubbles 
when responding to the low-intensity focused 
ultrasound [41]. Moreover, the ultrasound-responsive 
property could be applied for enhancing the tumor 
accumulation and intracellular delivery of bioactive 
compounds (e.g., siRNA, DNA) [51]. Because 
ultrasound could increase gap in tumor vasculature 
wall (i.e., disrupting of vascular integrity) to facilitate 

extravasation of drug delivery 
systems to malignant tissues, as well 
as enhance cellular uptake by cancer 
cells [52-54]. However, the large size 
of ultrasound-sensitive nanocarriers 
may limit their penetration across 
tumor tissues, due to the weak 
penetration of large nanocarriers [6]. 
In addition, the drug- loaded, 
ultrasound-sensitive nanocarriers 
could further be applied for cancer 
therapy [55], imaging- guided therapy 
[56-58], and theranostics [39, 59].  

Thermal-responsive 
nanocarriers  

The temperature-sensitive nano-
carriers have also been widely applied 
for drug delivery and dealing with 
cancer. Generally, the nanocarriers are 
designed to be stable in normal 
regions with temperature up to 37 °C 
and sensitive to higher temperature (> 
40 °C) with significantly changes in 
their properties by responding to the 

 

 
Figure 1. The stimuli-responsive nanocarriers for drug delivery to tumors towards precision 
imaging, effective therapy and theranostics. The nanocarriers could accumulate and penetrate tumors, 
and target cancer cells for achieving different applications and functions by responding to the external and 
internal stimuli. 
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narrow temperature shift. Until now, several 
thermal-sensitive nanocarriers have been formulated 
(Table 2), including liposomes [63-65], polymeric 
micelles [66-70], nanocomposites [66, 71], 
nanocapsules [72], nanogels [73-76] and vesicles [77, 
78], etc. The thermal-sensitive nanocarriers is 
generated with materials that could undergo 
physicochemical properties variation associating with 
temperature change [71, 79]. The temperature- 
sensitive materials are mainly including poly(N- 
isopropylacrylamide) (PNIPAM) [80, 81], poly(N-inyl 

isobutyramide) (PAMAM) [82], poly(2-oxazoline) 
(POxs) [83], and poly [2-(2-methoxyethoxy) ethyl 
methacrylate] [PMEOMA] [84], etc. Besides, another 
strategy for achieving thermal-sensitivity is to 
incorporate thermal-unstable materials inside nano-
carriers. For instance, the NH4HCO3 incorporated 
liposome could generate CO2 after giving local 
hyperemia (42°C) to make liposome swollen and 
collapse [64], leading to drug release for efficient 
intracellular drug delivery (Figure 3). 

 

 
Figure 2. The ultrasound-triggered conversion of microbubbles to nanoparticles for multimodality tumor imaging. (A) Illustration of ultrasound-triggered 
conversion of porphyrin microbubbles to nanobubbles. (B) Confirmation of the conversion of microbubbles to nanobubbles with ultrasound stimuli by microscopy. (C) 
Ultrasound imaging of tumors by using no conversion ultrasound (left) and by administration of conversion nanoparticles (right). Adapted with permission from ref. [33], 
copyright 2015 Springer Nature Publishing AG. 
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Figure 3. Thermal-sensitive nanocarriers for drug delivery. (A) Thermal-sensitive liposomes (i.e., ABC liposomes) for molecular imaging, drug delivery and controlled 
drug release. (B) Cellular uptake of thermal-sensitive liposomes, control liposomes (i.e., AS liposomes) and free doxorubicin. Adapted with permission from ref. [64], copyright 
2013 American Chemical Society. 

 

Table 1. Representative ultrasound-responsive nanocarriers 

Nanocarriers Ultrasound-sensitive strategy/materials Cargos Applications Ref. 
Converting 
microbubbles 

Converting porphyrin microbubbles to 
nanoparticles by ultrasound 

Porphyrin and perfluorocarbon gas Ultrasound imaging [33] 

CaCO3 
nanoparticles 

The CaCO3 could generate CO2 in the acidic 
tumor microenvironment 

Doxorubicin Tumor ultrasound imaging, drug release and tumor therapy [39] 

Nanobubbles CO2 gas-generating polymeric nanoparticles  - Ultrasound Imaging [34] 
Liposome Perfluorocarbon for ultrasound-sensitive Doxorubicin, gold nanospheres  Cancer imaging, photothermal-chemotherapy [60] 
Liposome Containing NH4HCO3 to generate gas in tumors Docetaxel and NH4HCO3 Dual ligand targeted triplex therapy, and ultrasound 

imaging 
[61] 

Nanorattles Perfluoropentane for ultrasound-sensitive Perfluoropentane Ultrasound and photoacoustic imaging, photothermal 
therapy 

[48] 

Nanodroplets Perfluorocarbon ZnF16Pc, IR dye, perfluorocarbon Tumor multimodal imaging and therapy [62] 
Gas vesicles Genetically encoded gas nanostructures from 

microorganisms 
Gas Ultrasound and multimodal imaging, molecular biosensors [44] 
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Table 2. Representative thermal-responsive nanocarriers 

Nanocarriers Thermal-sensitive strategy/materials Cargos Applications Ref. 
Liposomes The incorporated NH4HCO3 could response to local hyperemia for drug release Doxorubicin, 

NH4HCO3 
Temperature-controlled drug release [64] 

Nanoscale 
vesicles 

The temperature-sensitive leucine zipper peptide in the wall of vesicles could open 
pores for cargo release 

Doxorubicin Temperature-triggered drug release [87] 

Micelles PMEEECL-b-POCTCL diblock copolymer displays phase transition at temperature 
above its LCST for cargo release 

Nile Red, 
doxorubicin 

Thermal-triggered drug release, 
efficient drug delivery to cancer cells 

[67] 

Nanogels PNIPAM grafted chitosan nanogels response to temperature for drug release Curcumin Temperature-triggered drug release, 
intracellular drug delivery 

[73] 

siRNAsome With siRNA-SS-PNIPAM to form vesicles responding to temperature higher than 
LCST 

Doxorubicin, siRNA Against multi-drug resistant cancer 
cells 

[78] 

Polymersomes Thermal-sensitive PNIPAM gel in side pH-sensitive polymersomes Doxorubicin Dual-thermal, pH-responsive drug 
release, tumor therapy 

[88] 

Complexes PEI-g-PMEOMA-b-PHEMA) polymers for temperature sensitive gene delivery pDNA Gene therapy of tumors [84] 
Nanocapsules Forming Pluronic/PEI with high temperature to load siRNA, which could be released 

inside cancer cells with cold shock 
siRNA Enhanced intracellular siRNA delivery 

to HeLa cancer cells 
[72] 

 
The thermal-sensitivity nanocarriers could be 

applied for gene and drug delivery by using thermal- 
sensitive polymeric materials [63, 85, 86], which could 
shift from hydrophilic to hydrophobic for forming 
nanocarriers. In a recent study, the siRNA-SS- 
PNIPAM conjugates could form siRNAsomes by self- 
assembly at higher temperature (> 32°C) than the 
lower critical solution temperature (LCST) for phase 
transition [78]. In another study, the nanocarriers with 
PNIPAM on the surface formed micellar networks 
(i.e., aggregates) at temperature higher than LCST, 
while disassociated to each other at low temperature 
[75]. In this way, the thermal-sensitive nanocarriers 
could also be applied for plasmid DNA (pDNA) 
condensation [84], folding proteins [77], and 
incorporating hydrophobic anticancer drugs (e.g., 
doxorubicin) [66]. Besides, it could be applied for 
controlled releasing cargos in diseased regions with 
local hyperemia [64, 67, 85]. For instance, the doxoru-
bicin could be released from the lipid-peptide vesicle 
by responding to mild hyperemia [87], as the peptides 
in the wall of vesicles could open pores at high 
temperature (42.5°C). In another case, the Nile Red 
and doxorubicin could be release from the polymeric 
micelles by responding to the thermal-stimuli, where 
the poly(γ-2-(2-(2-methoxyethoxy)ethoxy)ethoxy-ε- 
caprolactone)-b-poly(γ-octyloxy-ε-caprolactone) (PME 
EECL-b-POCTCL) diblock copolymer displayed 
phase transition at temperature above its LCST (38 °C) 
[67]. The thermal-sensitive polymeric micelles 
displayed higher cellular uptake at high temperature 
(42.5°C) than at normal temperature (37 °C), as well as 
lower survival than free doxorubicin as tested on 
MCF-7 cancer cells. Although with much advances in 
developing temperature-sensitive nanocarriers, only 
limited thermal-sensitive materials are existed, which 
requires further development. The thermal-sensitive 
temperature of some materials and nanocarriers was 
neither in the range of biological systems (e.g., 37- 
42°C), nor could be simply shifted to another desired 
temperature. It further has to point out that some 

thermal-responsive nanocarriers were developed with 
non-biodegradable polymers (e.g., PNIPAM), which 
may be difficult for clinical translation. Thus, 
development of biodegradable and thermal-sensitive 
materials would be a future direction. In addition, the 
accumulation of nanocarriers in tumors is still 
critically important for achieving pinpoint thermal- 
triggered drug release and therapy. 

Magnetic-responsive nanocarriers 
The magnetic-responsive nanocarriers have been 

engineered, as the magnetic nanoparticles has 
intrinsic tropism to magnetic field for tumor targeting, 
while it also could generate local hyperthermia under 
an alternating magnetic field for triggering drug 
release and tumor ablation. Until now, several 
magnetic-responsive nanocarriers have been 
formulated (Table 3), including magnetic nano-
particles [89, 90], liposomes [91], superparamagnetic 
iron-oxide nanoparticles (SPIONs) [92], polymeric 
micelles [93], albumin nanocapsules [94], magnetic 
nanocarriers [95, 96] and magnetic nanogels [97], etc. 
Generally, nanocarriers are incorporating magnetic 
materials for achieving magnetic-sensitivity, which 
are mainly including iron oxide nanoparticles (e.g., 
Fe3O4 nanoparticles) [98], iron oxide hybrid nano-
particles (e.g., graphene/Au/Fe3O4 hybrids) [99], and 
other magnetic nanomaterials (e.g., ZnFe2O4) [100]. 
The incorporated magnetic materials also could be 
applied for tumor imaging by magnetic resonance 
imaging (MRI) [92, 101, 102]. Besides magnetic 
materials, the contrast agents [103], anticancer drugs 
[101, 104], plasmids [100], antibodies [98] and photo-
sensitizer [91], could also be incorporated inside the 
magnetic-sensitive nanocarriers for achieving 
multiple functions or multimodal therapeutic effects. 
Moreover, the nanocarriers could be engineered for 
passive tumor targeting through the EPR effect [105], 
as well as be installed with targeting moieties (e.g., 
folic acid) for active targeting cancer cells [94]. 
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Table 3. Representative magnetic-responsive nanocarriers 

Nanocarriers Magnetic-responsive strategy/materials Cargos Applications Ref. 
Multifunctional 
magnetic nanocarriers  

Magnetic field guided tumor targeting of SPIOs-loaded 
nanocarriers 

SPIOs, doxorubicin Tumor-targeted therapy [95] 

Albumin nanocapsules Magnetic guided tumor targeting Fe3O4, hydrophilic drugs Targeting cervical cancer cells [94] 
Magnetic nanoparticles Nanoparticles response to the alternating magnetic 

field for geldanamycin release and effective apoptotic 
hyperemia to kill cancer cells 

Geldanamycin, 
amine-functionalized 
Zn0.4Fe2.6O4 

Nanoparticle-mediated resistance-free apoptotic 
hyperthermia for kill cancer cells  

[89] 

Mesoporous iron oxide 
nanoparticles 

Burst gas generation and on-demand drug release upon 
high-frequency magnetic field exposure 

Iron oxide nanoparticles, 
paclitaxel, perfluorohexane 

Tumor active targeted thermos-chemo-therapy [107] 

Polymeric micelles Generate magnetic hyperthermia and controlled drug 
release 

La0.7Sr0.3MnO3, doxorubicin Effective breast cancer theranostics [93] 

Multifunctional hybrid 
nanoparticle 

Produce localized heat under an alternating magnetic 
field, which triggers the release of the loaded drug 

Fe3O4, Au, carbon dots, 
doxorubicin 

Photothermal therapy of melanoma tumor [115] 

Liposomes Induce local hyperthermia by response to alternating 
magnetic field  

Magnetic nanoparticles, 
rhodamine, photosensitizer 

Ultimate hyperthermia and photodynamic 
therapy combined tumor ablation 

[91] 

Nanoparticles Generate heat in response to an alternating current 
magnetic field  

Fe3O4 nanoparticles, 
doxorubicin 

Tumor active targeted therapy by magnetic 
hyperthermia and chemotherapy 

[116] 

Magnetic nanogels Magnetic hyperthermia Iron oxide nanoparticles, 
doxorubicin 

Prostate cancer therapy by hyperthermia and 
chemotherapy 

[97] 

Porous magnetic 
microspheres  

Produce thermal energy and trigger the vaporization of 
liquid perfluorohexane 

Iron oxide nanoparticles, 
perfluorohexane 

Tumor treatment by activating droplets 
vaporization 

[103] 

Magnetic nanoparticles Localized hyperthermia kills tumor cell preferentially Iron oxide nanoparticles Treating primary and metastatic lung 
malignancies 

[109] 

 
The interaction between magnetic nanocarriers 

and magnetic field facilitates the magnetic-guided 
accumulation of nanocarriers in tumors, while a 
typical approach is to locate a permanent magnetic 
field in malignant tissues after administration [94]. 
For example, much higher level of SPIONs and 
doxorubicin-loaded nanocarriers in tumors have been 
achieved with external magnetic field-guided tumor 
targeting, leading to effective tumor ablation [95]. In 
this way, it could be applied for promoting the 
accumulation of a myriad of bioactive compounds in 
tumors, including genes, anticancer drugs, and 
imaging probes [106]. Besides, the alternating 
magnetic field-triggered hyperthermia could induce 
on-demand release of cargos from the magnetic- 
sensitive nanocarriers in diseased regions (i.e., tumor 
or cancer cells) [105, 107, 108]. Using hyperthermia to 
cleave the thermosensitive bonds , the magnetic 
nanoparticles could release the heat shock protein 
inhibitors (i.e., geldanamycin), which could block the 
protective function of heat shock proteins to induce 
resistance-free apoptosis for effective tumor ablation 
(Figure 4) [89]. This magnetic-sensitive nanocarriers 
would facilitate treating tumors that resistant to 
hyperthermia therapy, and overcoming multi-drug 
resistant (MDR) of cancers. Moreover, the hyper-
thermia generated by magnetic-sensitive nanocarriers 
could further be applied for tumor ablation [90, 100], 
as hyperthermia could induce apoptosis of cancer 
cells. For example, the magnetic-responsive 
nanocarriers have been developed with ZnFe2O4 
inside the core and decorated with cationic polymers 
of polyethyleneimine (PEI) to interact with plasmids 
on the surface [100]. It facilitated cellular uptake of 
plasmids by the adipose-derived mesenchymal stem 
cells (MD-MSCs), which could migrate to tumors 

guided by an alternating magnetic field for effective 
therapy. Besides primary tumors, the magnetic- 
responsive nanocarriers have also demonstrated high 
potential for treating metastatic tumors (e.g., lung 
metastasis) [109]. Furthermore, the magnetic-sensitive 
nanocarriers could be applied for tumor theranostics 
[110], as it could probe tumors by MRI or other 
imaging modalities, and remotely and non-invasively 
eradicate tumors with the generated hyperthermia in 
the alternating magnetic field [111]. For example, the 
PEGylated MoS2/Fe3O4 nanocomposites (MSIOs) 
made through a two-step hydrothermal method, have 
demonstrated high potential for tumor diagnosis by 
T2-weighted MR imaging and photoacoustic 
tomography (PAT) imaging, and magnetic-targeted 
effective photothermal ablation of tumors [112]. 
Meanwhile, it further allowed both T1- and 
T2-weighted MR imaging of tumors by doping Mn 
into the core of Fe3O4@MoS2 nanocomposites (i.e., 
multifunctional nanoflowers) [113]. Some other 
bioactive compounds, such as photosensitizer chlorin 
e6 (Ce6), could also be incorporated into the 
magnetic-sensitive nanocarriers for multi-functional 
cancer theranostics [96]. In addition, the 
superparamagnetic materials in magnetic-responsive 
nanocarriers could be extensively employed as a 
target moiety for improved tumor therapy, which is 
comparable to the decoration of active targeting 
moieties. As presented in a recent study, the paclitaxel 
(PTX) and SPIO-loaded poly(lactic-co-glycolic acid) 
(PLGA) nanocarriers have been engineered for tumor 
passive targeting by EPR effect, active targeting of 
αvβ3 integrins on cancer cells with RGD ligands 
(RGD), magnetic field (i.e., 1.1 T) guided tumor 
targeting (MT), and the combination of magnetic 
targeting and active targeting (RGD+MT) (Figure 5A) 
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[114]. Accordingly, both RGD and magnetic targeting 
drastically exhibited much higher tumor 
accumulation (i.e., 8-fold increase) of nanocarriers 
than passive targeting, leading to effective tumor 
ablation and improved survival rates of colon CT26 
tumor-bearing mice, while the combination of 
magnetic targeting and active targeting demonstrated 
the best performance in tumor ablation than other 
groups (Figure 5B,C). Notably, higher accumulation 
in tumors and lower deposition in livers/lungs have 
been achieved by magnetic field-guided targeting 
nanocarriers than the RGD-installed nanocarriers, 

demonstrating the promise of magnetic targeting 
approach. Overall, the magnetic field guided- 
targeting strategy requires tumor-specific drug 
delivery, as it may also affect normal organs/tissues 
that distributed with magnetic nanocarriers when 
exposed to the alternating magnetic field. In addition, 
the generation of hyperthermia requires high level of 
magnetic-sensitive nanocarriers in diseased regions, 
which should be located in the alternating magnetic 
field. This approach may facilitate treating tumors 
located in partial regions of the body (e.g., legs, feet 
and arms, etc.), due to safety consideration. 

 
 

 
Figure 4. Magnetic-responsive nanocarriers for tumor therapy. (A) Schematic illustration of resistance-free apoptosis-inducing magnetic nanoparticles (RAIN) for 
cargo release and killing cancer cells. (B) Illustration of applying magnetic-sensitive nanocarriers for tumor treatment in an alternating magnetic field. (C) The temperature 
profiles in tumors. (D) The anti-tumor efficacy by magnetic-sensitive nanocarriers with hyperthermia. Adapted with permission from ref. [89], copyright 2013 WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim. 
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Figure 5. Nanocarriers for magnetic targeted tumor therapy. (A) Illustration of paclitaxel (PTX) and SPIO-loaded nanocarriers for tumor passive targeting (PT), active 
targeting of αvβ3 integrins with installed RGD ligands (RGD), magnetic field (1.1 T)-guided tumor targeting (MT), and combination of magnetic targeting and active targeting 
(RGD+MT). (B,C) The tumor growth ratio (B) and survival rates (C) of CT26-tumor bearing mice. Adapted with permission from ref. [114], copyright 2014 Elsevier B.V. 

 
Light-sensitive nanocarriers 

Nanocarriers that could responsive to light have 
also been extensively developed, as light is an 
attractive stimulus with the possibility to adjust the 
irradiation wavelength, power and affecting area 
[117]. In general, the light irradiation, such as UV-Vis 
and near-infrared light (NIR), could remotely affect 
the light-sensitive nanocarriers in biological systems 
(e.g., cancer cells, or tumors). Meanwhile, the light- 
triggered tumor therapy could be precisely conducted 
by control the range of irradiation to avoid or mini-

mize potential harm to normal organs and tissues. 
Until now, several light-responsive nanocarriers have 
been exploited (Table 4), including polyion complex 
vesicles (PICsomes) [118], polyplexes [119, 120], 
nanoparticles [121, 122], polymeric micelles [123, 124], 
upconverting nanoparticles (UCNPs) [125,126], 
polymersomes [127,128], liposomes [129, 130], nano-
gels [131], nanorods [132], and nanorattles [48], etc. 
Meanwhile, the cargos/materials with light-response 
function could be applied for constructing light- 
sensitive nanocarriers, such as photosensitizers (e.g., 
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IR780) [133], gold nanocomposites (gold nanoparti-
cles) [134], UCNPs [123], organic molecules (e.g., 
azobenzene) [135], graphene [131], carbon nanotubes 
[136-138], and two-dimensional (2D) transitional 
metal nanomaterials (e.g., MoS2, WSe2 and WS2) [139, 
140], etc. Nanocarriers could response to light for 
several activities: (1) alert the conformation of certain 
molecules, such as azobenzene, spiropyran, 
dithienylethene and diazonaphthoquinone etc. [141]; 
(2) cleave the light-sensitive chemical bonds for 
nanocarriers disassociation [123]; (3) trigger release of 
therapeutics from nanocarriers in diseased regions 
[130]; (4) light-activated imaging (e.g., photoacoustic 
imaging) or imaging-guided therapy [142-146]; (5) 
generate singlet oxygen (O21), also referred as reactive 
oxygen species (ROS) for photodynamic therapy 
(PDT) [147, 148], and photothermal effect for tumor 
ablation by photothermal therapy (PTT) [149, 150]. 

Nanocarriers could also be formed or assembled 
by responding to light, due to change the hydrophilic- 
hydrophobic balance or structure conversion of 
light-sensitive materials. Recently, the light-sensitive 
nanoparticles were formed by using 1,2-distearoyl-sn- 
glycero-3-phosphoethanolamine-N-carboxy(polyethyl
ene glycol) (DSPE-PEG) to incorporate spiropyran in 
visible or dark conditions, and disassociated 
responding to UV irradiation due to the conversion of 
SP to merocyanine (MC) [121]. The photo-switching 
nanocarriers demonstrated high potential for loading 
different bioactive compounds for UV-Vis triggered 
drug release, including paclitaxel, docetaxel and 
doxorubicin etc., as well as for cancer therapy [151]. 

The light-switching function also could be applied for 
inducing reversible aggregation of nanoparticles (e.g., 
vesicles) [152]. However, the short wavelength of 
UV-Vis may limit their applications. Therefore, the 
NIR light-sensitive nanocarriers have also been 
engineered for controlled drug delivery [153], and 
penetrating into deep tissues [154]. For example, the 
IR-780-incorperated polymeric micelles could 
response to NIR for doxorubicin release [155]. Besides, 
the light-sensitive nanocarriers facilitate intracellular 
delivery of bioactive compounds, including genes 
[120], photosensitizers [118], and anticancer drugs 
[124], etc. In a recent study, the photosensitizer Al(III) 
phthalocyanine chloride disulfonic acid (AlPcS2a)- 
incorporated polyion complex vesicles (PICsomes) 
could sensitive to laser irradiation for endosome 
escape and drug release, exhibiting much stronger 
photocytotoxicity than that of AlPcS2a [118]. In 
another strategy, by co-administration of photofrin, it 
could also induce photochemical internalization (PCI) 
for achieving endosomal escape of nanocarriers to 
improve the therapeutic effects of camptothecin [124]. 
Moreover, the light-triggered endosome/lysosome 
escape also plays an important role in transferring 
genes into cytoplasm, as genes could be degraded in 
the late lysosomes to lose activity. For example, the 
light-responsive, three-layered polyplex micelles have 
been developed with polycationic polymers to 
condensate pDNA and load dendrimer 
phthalocyanine (i.e., photosensitizer), demonstrating 
efficient systemic gene transfection by light-triggered 
PCI for endosomal/lysosomal escape (Figure 6) [119]. 

 
 

Table 4. Representative light-responsive nanocarriers 

Nanocarriers Light-responsive mechanism/materials Cargos Applications Ref. 
Polyion complex 
vesicles (PICsomes) 

Light-triggered release of photosensitizer, 
photochemical internalization 

Al(III) phthalocyanine chloride 
disulfonic acid (AlPcS2a) 

PDT of tumors, photoinduced cytoplasmic 
delivery of drugs 

[118] 

Three-layered polyplex 
micelles 

Dendrimeric photosensitizer for light-responsive 
endo-/lysosomal escape 

pDNA, photosensitizer Light-induced systemic gene transfer for tumor 
therapy 

[119] 

Micelles Using NIR light excitation of UCNPs to trigger 
dissociation of micelles 

NaYF4:TmYb UCNPs NIR light-triggered cargo release [123] 

Nanoparticles Spiropyran for UV-Vis light responsive Rhodamine B, coumarin 6, calcein, 
Cy5, paclitaxel, docetaxel, 
doxorubicin 

Light-triggered drug delivery and tissue 
penetration 

[121] 

Nanoparticles Photosensitizer Ce6 for light- triggered size reducing, 
and generation of O21 (ROS) 

Camptothecin, Ce6 Enhanced tumor penetration for combined 
therapy 

[159] 

Liposome Porphyrin for light-responsive phototherapy Doxorubicin, porphyrin Chemotherapy and phototherapy of tumors [129] 
Lanthanide-doped 
UCNPs 

Dithienylethene photo-responsive molecules  Er3+/Yb3+ and Tm3+/Yb3+ doped 
NaYF4 UCNPs 

NIR light remote-control to drive the reversible 
photo-switching reactions 

[125, 
126] 

Cell membrane-based 
nanocarriers 

Indocyanine green (ICG) for photothermal therapy Doxorubicin, ICG NIR-triggered drug release and tumor active 
targeted photothermal and chemotherapy 

[160] 

Vesicle The structure change of azobenzene makes 
disassociation with β-CD 

β-CD, azobenzene Mimic for cell aggregation [152] 

Nanogel Graphene for light-triggered photothermal effects Doxorubicin, graphene Theranostics of lung cancer [131] 
Nanorods Gold nanorods for thermal sensitivity DNA, doxorubicin Treatment of multidrug resistant cancer cells [134] 
Carbon nanotubes Photothermal effects of carbon nanotubes Doxorubicin Photothermal and chemotherapy of tumor [138] 
2D transitional metal 
nanomaterials 

Photothermal effects of MoS2 Doxorubicin Photothermal and chemotherapy of tumor [139] 
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Figure 6. Schematic illustration of light-responsive nanocarriers for gene transfer. (A) Preparation of pDNA and photosensitizer-loaded nanocarriers. (B) Chemical 
structure of photosensitizer; (C) Light-triggered endo-/lysosomal escape for gene transfection inside cancer cells. Adapted with permission from ref. [119], copyright 2015 
Springer Nature Publishing AG. 

 
Furthermore, the light-sensitive nanocarriers 

could further be activated for imaging-guided tumor 
therapy [156, 157] and theranostics [60, 156], which 
could figure out the cut-edge of tumors for precisely 
irradiation by PTT or PDT. In addition, the light- 
sensitive nanocarriers could be applied for tumor 
ablation, as a result of light-triggered generation of 
ROS and photothermal effect [130, 156], or combined 

with other bioactive agents (e.g., anticancer drugs) for 
multimodal cancer theranostics [155, 158]. It has also 
demonstrated high efficacy for treating MDR cancers 
[134]. In general, the light- sensitive nanocarriers have 
demonstrated high potential for drug delivery, 
controlled drug release and cancer theranostics, 
especially tumors that could be accessed by 
light/laser due to the limitation of light penetration. 
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Internal stimuli-responsive nanocarriers 
Specific biological factors in tumor 

microenvironment or inside cancer cells, such as 
enzymes, ATP, low pH, redox-potential and hypoxia, 
etc., could be specific triggers for controlled drug 
release, endosome/lysosome escape, prodrug 
activation, tumor specific imaging and therapy [161]. 
The internal triggers are intrinsically existed in tumor 
microenvironment or inside cancer cells. However, 
they usually show poor specificity and heterogenetic 
distribution in tumors, which may affect the efficacy 
of internal stimuli-sensitive nanocarriers. In this 
section, recent advances in nanocarriers responding to 
internal stimuli, mainly including pH, hypoxia, redox 
and enzymes, for tumor theranostics will be focused. 

pH-responsive nanocarriers 
The pH-responsive nanocarriers have been 

extensively exploited, due to the nature of low pH 
inside the organelles (e.g., lysosomes and endosomes) 
of cancer cells and in tumor microenvironment. In 
general, the pH in cytoplasm, blood and normal 
tissues is almost around pH 7.0 to 7.4, while it exhibits 
approximately pH 6 to 4 in endosomal/lysosomal 
organelles, and pH 6.5 to 6.8 in tumor microenviron-
ment [162]. Thus, the pH-responsive in tumor micro-
environment could be applied for controlled drug 
release or prodrug activation, while keep the “stealth 
effect” of nanocarreirs in normal regions (e.g., in blood 
circulation) without leaking of cargos. This would 
decrease the risk of exposure normal organs (e.g., 
heart) to the toxic cargos (e.g., doxorubicin), and 
specifically deliver them to tumors for achieving high 
therapeutic performance. Until now, several types of 
pH-sensitive nanocarriers, including CaCO3 
nanoparticles [163, 164], calcium phosphate (CaP) 
nanocarriers [165-167], inorganic nanoparticles or 
crystals [168-170], polymer-drug conjugates [171, 172], 
polymeric micelles [173-175], liposomes [176], polym-
ersomes [177], nanogels [178- 180] and dendrimers 
[181], etc., have been exploited for imaging, 
intracellular drug delivery, charge conversion, and 
controlled drug release in tumor- microenvironment 
[172, 182]. Meanwhile, several pH-sensitive polymers 
have been synthesized for fabricating nanocarriers 
with pH-responsibility [183, 184], including poly(2- 
(pentamethyleneimino) ethyl methacrylate) (PC6A), 
poly(2-(hexamethyleneimino) ethyl methacrylate) 
(PC7A), poly(β-amino ester) (PAE), poly- 
sulfadimethoxine (PSD), poly(L-histidine) (PHis), 
poly(4-vinylbenzoic acid) (PVBA), 2,3-dimethylmaleic 
anhydride (DMMA), poly(N,N-dimethylaminoethyl 
methacrylate) (PDMAEMA), poly(N,N-diethylamino- 
2-ethylmethacrylate) (PDEAEMA), poly(N’-(N-(2- 

aminoethyl)-2-aminoethyl) aspartamide) [PAsp 
(DET)], poly(2-diisopropylaminoethyl methacrylate) 
(PDPA), poly [(2-N-morpholino) ethyl methacrylate] 
(PMEMA), poly(4-vinylpyridine) (P4VP), poly 
(glutamic acid) (PGlu) [185], poly (methacrylic acid) 
(PMAA), poly(L-aspartic acid) (PAsp) and poly(2- 
vinylpyridine) (P2VP) (Figure 7). Meanwhile, certain 
pH-sensitive chemical bonds have also been applied 
for drug conjugation, confirmation/ size change and 
charge conversion, etc. (Figure 8), which facilitate 
pH-triggered drug release, and disassociation of 
nanocarriers inside cancer cells or in tumor 
microenvironment [186]. 

Compared to cytoplasm with an almost neutral 
pH (pH 7.2), the pH in endosomal/lysosomal 
organelles was around pH 6 to 4. Generally, nano-
carriers enter into cancer cells through the pathway of 
endocytosis, which requires endosome/lysosome 
escape to avoid further degradation in late lysosomes 
with low pH. Currently, several intercellular 
pH-triggered nanocarriers have been engineered for 
liberating cargos inside cancer cells [187]. The 
pH-triggered charge conversion nanocarriers have 
also been engineered for intracellular drug delivery, 
where the neutral or negative charged nanocarriers 
could turn to be positively charged by responding to 
low pH in endosomes/lysosomes for disrupting 
endosomes/lysosomes, due to the protonation of the 
cationic materials [188, 189]. The pH-triggered charge 
conversion could be obtained with certain chemical 
groups, such as citraconic anhydride, 2,3-dimethyl-
maleic anhydride (DA), cis-aconitic anhydride, 
carboxy dimethylmaleic anhydride (CDM) and 
cis-4-cyclohexene-1,2-dicarboxinic anhydride, etc. The 
charge conversion strategy facilitates intracellular 
delivery of antibodies [190], proteins [189, 191], 
siRNA [192, 193], and DNA [194], as well as 
enhancing the tumor accumulation of nanocarriers 
[195], etc. As presented in a recent study, the pDNA- 
loaded nanocarriers (HA-NPs) were innovated by 
using PAsp(DET) for formulating cationic PAsp 
(DET)/pDNA condensates and endosome escape, as 
well as installing hyaluronic acid (HA) for active 
targeted gene therapy of cancer [196]. The HA-NPs 
could selectively internalize with CD44 receptors 
overexpressed on B16F10 melanoma cancer cells and 
tumor vascular endothelial cells to prompt 
preferential intracellular delivery of pDNA payloads, 
and block the CD44-angiogenic signaling for pursuit 
of inhibited tumorigenesis, leading to effective 
ablation of primary tumor and lung metastasis. 
Besides, the endocytosis procedures could be visible 
with probe-loaded, intracellular pH-sensitive 
nanocarriers. For example, the endocytic pH-sensitive 
nanoparticles has been reported, which could 
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specifically probe early endosomes or late 
endosomes/lysosomes with different pH-sensitive 
groups [197, 198], and even probe early endosomes 
(pH 6.0) at single-organelle resolution [199]. More-
over, the intracellular pH could trigger controlled 
drug release from nanocarriers [200-203]. With one 
example, the cRGD-decorated polymeric micelles that 
self-assembled from epirubicin- conjugated block 
copolymers through hydrazide bonds, could 
specifically delivery and release epirubicin inside 
cancer cells for effective tumor ablation [204]. 

Functional nanocarriers could also response to 
the low pH in tumor microenvironment for cancer- 
specific theranostics. Firstly, the pH-sensitive 
nanocarriers could incorporate different types of 
imaging probes for tumor-selective imaging and 

diagnosis. For instance, the pH-sensitive polymeric 
micelles incorporating fluorescence dye could 
specifically probe several types of solid tumors, due to 
the specific exposure of dyes in tumors, while the 
diagnostic selectivity could be promoted higher by 
installing targeting moieties (i.e., cRGD) on the surface 
of micelles [20]. The nanocarriers could further be 
utilized for fluorescence imaging-guided surgical 
resection of tumors [206]. Considering the limited 
penetration of optical imaging, the pH-sensitive 
nanocarriers have been exploited for tumor imaging 
by MRI [207, 208]. For instance, the Mn2+-doped, 
polymer hybrid CaP nanocarriers (PEGMnCaP) have 
been developed with intratumoral pH-triggered 
contrast amplification for MR imaging of tumor 
malignancy (Figure 9A), as the released Mn2+ could 

 

 
Figure 7. The intracellular or tumor microenvironment pH-responsive polymers have been applied for engineering pH-sensitive nanocarriers. 
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bind to surrounding proteins to boost much higher 
relativities. It could specifically and sensitively 
amplify the contrast in tumors for accurate two- and 
three-dimensional MR imaging (Figure 9B). The 
PEGMnCaP could also distinguish hypoxia in tumors 
with even higher contrast enhancement than the 
surrounding tumor regions, as more Mn2+ were 
released in hypoxic regions with lower pH, while the 
hypoxia imaging was confirmed by immunostaining 
of hypoxia (Figure 9C) and checking the lactate level 
in the detected hypoxia regions (Figure 9D). It further 
accurately probed ultra-small liver metastasis (Figure 
9E), which was difficult to be detected by 
conventional CAs. The pH-triggered MR imaging of 
solid tumors could be further applied for 
imaging-guided tumor neutron capture therapy [165]. 
For example, the pH-sensitive block copolymer 
hybrid CaP nanocarriers further demonstrated high 
performance in cancer theranostics by incorporating 
Gd-DTPA for tumor diagnosis and promoted 
gadolinium neutron capture therapy (GdNCT) [165, 
208]. Besides, the intratumoral pH could also trigger 
size switching for improved penetration of 
nanocarriers [186, 209], as comparable large size of 
nanocarriers benefits long circulation, while small size 
benefits intratumoral penetration [6, 210]. For 
instance, the polymeric micelles have been 
self-assembled with platinum (Pt)-drug conjugated, 
pH-sensitive poly(ethylene glycol)-b-poly(2-azepane 
ethyl methacrylate)-modified polyamidoamine 

dendrimers (PEG-b-PAEMA-PAMAM/Pt) (Figure 
10A). It could be disassociated into small size of 
polymer-drug conjugates by responding to tumor pH 
for deep penetration in tumors, exhibiting improved 
therapeutic efficacy (Figure 10B-D) [211]. Moreover, 
nanocarriers could response to pH for surface charge 
conversion in tumor microenvironment [212, 213], as 
neutral or negative charged nanocarriers holds the 
“stealth effect” during long circulation, while positive 
charged nanocarriers are more likely to internalize 
with cancer cells. Regarding this point, the surface of 
polymeric micelles were designed to switch from 
neutral charge at blood pH 7.4 to cationic at tumorous 
pH 6.5, which could maintain their “stealth effect” 
during circulation and increase internalization with 
cancer cells for improved tumor accumulation [195]. 
By tumor pH-triggered surface conversion, 
nanocarriers could also be applied for tumor-specific 
molecular imaging [214]. In addition, by conjugating 
ligands (e.g., biotin) to tumor pH-sensitive polymers, 
it was applied to hide the targeting ligands inside the 
PEG shell during circulation (i.e., pH 7.4) and present 
ligands in tumor microenvironment (i.e., pH <7.0) 
[215], to avoid unspecific internalization and uptake 
of ligands during circulation, as well as improve 
tumor active targeting efficacy [216]. The ligand- 
installed, pH-sensitive nanocarriers were reported to 
target tumors and spontaneous metastasis with 
effectively suppressed tumor growth [202]. 

 

 
Figure 8. The pH-responsive chemical bonds have been utilized for developing pH-sensitive nanocarriers. 



Theranostics 2020, Vol. 10, Issue 10 
 

 
http://www.thno.org 

4571 

 
Figure 9. The pH-responsive PEGMnCaP nanocarriers with contrast amplification ability have been developed for MR imaging of tumor malignancy. (A) 
The composition and characterization of Mn2+-doped PEGMnCaP. (B) PEGMnCaP specifically enhanced the contrast in C26 tumors for three-dimensional (3D) MR imaging. 
(C,D) PEGMnCaP probed hypoxia in tumors as confirmed by immune-staining of hypoxia (C) and chemical shift imaging (CSI) of lactate (D). (E) PEGMnCaP for precisely MR 
imaging of 1-2 mm ultra-small metastasis in liver. Adapted with permission from ref. [205], copyright 2016 Springer Nature Limited. 

 

Hypoxia-responsive nanocarriers 
The poorly vascularization inside solid tumors is 

likely to form hypoxia (low oxygen level), which 
plays an important role in cancer progression, such as 
locoregional spread and distant metastasis [217]. The 
promoted malignant phenotype by hypoxia has 
negative impact on prognosis and therapy and leads 
to resistance to standard therapy (e.g., radiotherapy, 
chemotherapy). Therefore, several strategies have 
been utilized for treating hypoxic tumors, mainly 

including increasing the oxygen level and using 
hypoxia activatable prodrugs, etc [218]. Until now, 
several types of nanocarriers have been engineered 
for drug delivery to hypoxic tumors (Table 5) [219], 
including liposomes [220], silica nanoparticles [221], 
upconversion nanoparticles (UCNPs), layer-by-layer 
nanoparticles [222], nanovesicles [128], polymeric 
micelles [223], polymersomes [224], albumin 
nanoparticles [225], cell membrane coated metal 
organic framework (MOF) [226], solid-state sensors 
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[227], polymeric probes [228], and polymer hybrid 
CaP nanoparticles [205], etc. Meanwhile, different 
cargos could be loaded inside the hypoxia-activation 
nanocarriers, ranging from imaging agents (e.g., 
contrast agents), prodrugs (e.g., dihydrochloride 

(AQ4N)), anticancer drugs (e.g., doxorubicin), siRNA 
and photosensitizers (e.g., ICG), etc., demonstrating 
high performance in hypoxic tumor imaging and 
effective therapy by overcoming drug resistance [229]. 

 

 
Figure 10. The pH-responsive nanocarriers for tumor therapy. (A) The structure of pH-sensitive polymer-drug conjugates. (B) Illustration of pH-dependent 
self-assembly and disassociation of PEG-b-PAEMA-PAMAM/Pt nanocarriers (SCNs/Pt) at different pH. (C) Illustration of pH-triggered disassociation of SCNs/Pt nanocarriers in 
tumors. (D) The penetration of SCNs/Pt nanocarriers in BxPC3 pancreatic cancer spheroids. Adapted with permission from ref. [211], copyright 2016 American Chemical 
Society. 
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Table 5. Representative hypoxia-responsive nanocarriers 

Nanocarriers Magnetic-responsive strategy/materials Cargos Applications Ref. 
Liposomes The prodrug of banoxantrone dihydrochloride (AQ4N) could be 

activated in hypoxic environment caused by PDT 
Ce6, AQ4N Cancer therapy [230] 

Silica nanoquencher Azo monomer; cell-penetrating poly(disulfide)s (CPD) coated silica 
nanoquencher (BS-qNP) (CPD-protein@BS-qNP) 

Antibody (Cetuximab), 
fluorescent dye 

Hypoxia-triggered protein 
release and fluorescence 
imaging 

[231] 

Upconversion 
nanoparticles (UCNPs) 

Oxygen indicator [Ru(dpp)3]2+Cl2 for hypoxia detection as UCNPs 
provided the excitation light of [Ru(dpp)3]2+Cl2 by upconversion process 
at 980 nm 

 [Ru(dpp)3]2+Cl2, UCNPs Imaging hypoxic regions or 
oxygen changes in cells and 
zebrafish 

[229] 

Nanoparticles The photosensitizer of ICG-mediated PTT induced hypoxia, which then 
activated the prodrug of TPZ 

TPZ, ICG Tumor therapy by PDT and 
chemotherapy 

[232] 

Nanoparticles The shift from hydrophobic to hydrophilic of 2-nitroimidazole that 
grafted to polymers in light-activated hypoxia 

Doxorubicin, light-sensitive 
polymer 

Hypoxia-triggered drug 
release, tumor 

[233] 

Nanoparticles PEG-azo(azobenzene)-PEI-DOPE block copolymer siRNA siRNA delivery and tumor 
RNAi 

[234, 
235] 

Nanoparticles Layer-by-layer nanoparticles with a pH-sensitive layer for targeting of 
tumor hypoxia 

Sulfonated polystyrene beads or 
carboxylated quantum dots 

Systemic tumor targeting [222] 

Cancer cell membrane 
coated MOFs 

The porphyrinic MOFs could generate toxic ROS for PDT and cause 
hypoxic regions for activating TPZ 

Porphyrinic metal organic 
framework, TPZ 

Tumor targeted PDT and 
chemotherapy 

[226] 

Nanovesicles The light irradiation of Ce6 induced hypoxia for oxidation bioreduction 
of 2-nitroimidazole in polymers and activation of TPZ 

Ce6, TPZ Tumor fluorescence imaging 
and therapy 

[128] 

Polymeric micelles The metronidazole (MN) grafted in polymers could change 
hydrophobicity in hypoxic conditions for drug release 

Doxorubicin Tumor chemotherapy and 
radiotherapy 

[236] 

Polymersomes The PLA (polylactic acid)-azobenzene-PEG is sensitive to hypoxia Gemcitabine, hypoxia- sensitive 
dye “Image-iT” 

Tumor imaging and drug 
delivery 

[224] 

Albumin nanoparticles With hypoxia-sensitive azobenzene linker to covalently bridge 
photosensitizer Ce6-conjugated HSA and oxaliplatin 
prodrug-conjugated HSA 

Oxaliplatin prodrug, Ce6 Tumor chemotherapy and 
photodynamic therapy 

[225] 

Mesoporous silica 
nanoparticles 

The Ce6-dopped mesoporous silica nanoparticles were decorated with 
PEG and glycol chitosan by hypoxia-sensitive azobenzene linker 

Oligonucleotide (CpG), Ce6 Cancer immunotherapy [221] 

Solid-state sensors Iodide-substituted difluoroboron dibenzoylmethane-poly(lactic acid) 
(BF2dbm(I)PLA) solid-state sensor material 

BF2dbm(I)PLA Tumor hypoxia optical 
imaging 

[227] 

Polymeric probes Poly(N-vinylpyrrolidone)-conjugated iridium-(III) complex (Ir-PVP) and 
poly(ε-caprolactone)-b-poly(N- vinylpyrrolidone) (PCL-PVP) 
nanoparticles 

Iridium (III) complex  Optical imaging of tumor and 
metastasis 

[228] 

Polymer hybrid CaP 
nanoparticles 

Tumor pH-triggered release of Mn2+ from CaP to boost higher contrast 
enhancement in hypoxic tumor regions 

Mn2+  MR imaging of solid tumors, 
hypoxia and metastasis 

[205] 

 
The tumor hypoxia could be targeted with 

hypoxia-responsive and some pH-sensitive nano-
carriers, since hypoxic tumor regions are generally 
associated low pH due to the glycolysis of glucose 
and production of H+ and lactate [237]. The major 
strategy is utilizing hypoxia-sensitive nanocarriers, 
which are generally constructed with hypoxia- 
sensitive materials or derivates, e.g., 2-nitroimidazole 
[238-240], nitroimidazole [241-243], metronidazole 
[236], azobenzene [244-246], nitro-benzene derivatives 
[223] and iridium (III) complexes, etc. Hypoxia could 
trigger cargo release from the hypoxia-sensitive 
nanocarriers, e.g., the incorporated antibody (i.e., 
Cetuximab) could be released from the silica nano-
particles in hypoxic tumors due to the cleavage of the 
hypoxia-sensitive cross-linkers (i.e., Azo monomer) 
[231]. In another study, the nanocarriers were 
prepared with hypoxia-sensitive 2-nitroimidazole and 
light-sensitive conjugated polymers for generating 
ROS and local hypoxia after laser irradiation, to 
trigger doxorubicin release for enhanced synergistic 
anticancer efficacy (Figure 11) [233]. The hypoxia- 
sensitive nanocarriers also facilitate molecular 
imaging of tumors and metastasis. For example, the 
nanoscale probes with oxygen level-sensitive iridium 
(III) complexes have demonstrated high potential for 
optical imaging of tumors and metastatic lesions [228, 

247]. Besides, some nanocarriers could delivery 
hypoxia-activatable prodrugs [e.g., tirapazamine 
(TPZ) and banoxantrone (AQ4N), etc.] to hypoxic 
tumors for enhanced therapy, while some photosensi-
tizers could be co-loaded to generate hypoxia by laser 
irradiation for prodrug activation. For instance, the 
ICG and TPZ-incorporated liposomes with iRGD as 
targeting moieties could target both normoxic and 
hypoxic cancer cells, while the irradiation of ICG by 
NIR laser could produce extra hypoxia activate TPZ 
for enhanced therapy [232]. In another example, the 
vessel-disruptive agents (i.e. 5,6-dimethylxanthenone- 
4-acetic acid) and TPZ incorporated, platelet 
membrane-coated nanoparticles could disrupt tumor 
blood vasculatures to promote drug accumulation for 
improved hypoxia-sensitive therapy [248]. In 
addition, some pH-sensitive nanocarriers have also be 
applied for treating tumor hypoxia [249], e.g., the 
pH-sensitive nanoparticles formed by layer-by-layer 
procedure could target hypoxic tumors for 
fluorescence imaging with the incorporated QDs 
[222]. So far, the hypoxia- sensitive nanocarriers have 
exhibited much progress in drug delivery to hypoxic 
tumor for molecular imaging and improved therapy. 
However, some underlying problems would be 
addressed in future studies, such as modulating 
hypoxic tumor microenvironment, increasing drug 



Theranostics 2020, Vol. 10, Issue 10 
 

 
http://www.thno.org 

4574 

penetration and oxygen level, and clinical translation 
of hypoxia-responsive nanocarriers. 

Redox-responsive nanocarriers  
The redox-responsive nanocarriers have been 

widely applied for drug delivery due to the signifi-
cantly different reduction potentials and capacities in 
tumors, e.g., the glutathione (GSH) level inside cancer 
cells (2-10 mM) is remarkable higher than that in 
normal regions (2-10 μM). Until now, several 
redox-sensitive nanocarriers have been engineered 
(Table 6), including nanocapsules [250], mesoporous 
silica nanoparticles [251], polymer-drug conjugates 

[252], polymersomes [253], polymeric vesicles [254], 
polymeric micelles [255-257], nanogels [258], gold 
nanoparticles [259] and hybrid nanoparticles [260], 
etc. The disulfide bonds could be cleaved into 
sulfhydryl groups by GSH [261], while the diselenide 
bonds (Se-Se) are also sensitive to redox potential 
[262], but with lower bond energy than that of 
disulfide bonds [263]. Moreover, the H2O2-responsive 
nanocarriers have also been developed for tumor 
therapy [264, 265], including for treating hypoxic 
tumors [266] and multidrug resistant tumors [267]. 

 
 

 
Figure 11. Schematic illustration of light-activated hypoxia-responsive nanocarriers. (A)Preparation of nanocarriers. (B)Nanocarriers generated ROS to induce 
local hypoxic environment, which triggered drug release to enhance the synergistic anticancer efficacy. Adapted with permission from ref. [233], copyright 2016 WILEY-VCH 
Verlag GmbH & Co. KGaA, Weinheim. 
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Table 6. Redox-responsive nanocarriers for cancer theranostics 

Nanocarriers Redox-responsive mechanism/materials Cargos Applications Ref. 
Nanocapsules Disulfide bonds response to DTT) and GSH Carboxyfluorescein Redox-potential triggered drug release inside cancer 

cells  
[250] 

Mesoporous silica 
nanoparticles 

Disulfide bonds Fluorescence dye Cell-specific targeting and redox-sensitive drug 
release 

[251] 

Mesoporous silica 
nanoparticles 

Disulfide bonds Doxorubicin Controlled drug release and tumor active targeted 
therapy 

[275] 

Polymer-drug conjugates Disulfide bonds 10B-based sodium 
borocaptate 

Efficient tumor targeted therapy, deep penetration, 
GSH-triggered drug release 

[252] 

Polymeric vesicles Oxidation of the central-block sulphide moieties 
to sulphoxides and ultimately sulphones by 
H2O2 

- The first example of use oxidative conversions to 
destabilize nanocarriers 

[276] 

Polymersomes Disulfide bonds in poly (trimethylene 
carbonate-co-dithiolane trimethylene carbonate) 

Doxorubicin Lung cancer chemotherapy [253] 

Micelles Disulfide bonds Camptothecin GSH-triggered drug release inside cancer cells for 
effective tumor therapy 

[124] 

Micelles Se-Se bonds Rhodamine B GSH-triggered cargo release [263] 
Micelles Disulfide bonds siRNA Cross-linked micelles with improved stability for 

siRNA delivery 
[271] 

Dendritic nanoparticles Disulfide bonds Cisplatin, fluorescence dye Tumor theranostics [277] 
Cationic vesicles Reduction of Fe3+ to Fe2+ by GSH Anticancer drugs and 

siRNA 
Redox‐responsive nanocarriers for drug/siRNA co‐
delivery 

[254] 

Nanogels Disulfide bonds Camptothecin Tumor therapy [258] 
Nanoparticles Diselenide bonds Paclitaxel GSH-triggered drug release and tumor active 

targeted therapy 
[278] 

Nanoparticles Catalase-response to H2O2 Catalase, photosensitizer of 
methylene blue 

Light-triggered, H2O2-responsive release of cargos 
for treating hypoxic cancer cells 

[267] 

Polyphosphazene nanoparticles Cross-linking by disulfide bonds  Doxorubicin Redox-responsive chemotherapy and photothermal 
therapy 

[279] 

 
 
The redox-sensitive nanocarriers could trigger 

cargo release inside cancer cells [268], as some 
bioactive compounds were conjugated to nano-
materials through the disulfide bonds [252, 269] and 
the drug-loaded cavities in some nanocarriers (e.g., 
mesoporous silica nanoparticles) were sealed by 
disulfide bonds [251]. The redox-sensitive strategy 
could also be applied to detach the surface shell [270], 
and cross-link the core to increase the stability of 
nanocarriers [271, 272]. In another strategy, the 
cationic vesicles were formed by chelating of Fe3+ with 
amphiphilic piliararene, exhibiting GSH-triggered 
release of incorporated doxorubicin and siRNA from 
the collapse vesicles, as a result of GSH-induced 
reduction of Fe3+ to Fe2+ inside cancer cells [254]. 
Besides, the redox-responsive function could trigger 
the disassociation and degradation of nanocarriers 
inside cancer cells, as some nanocarriers were 
cross-linked by redox-sensitive bonds to increase the 
stability [271, 273]. The disulfide bonds cross-linked 
polymer nanocapsules could be disassociated by 
responding to GSH and dithiothreitol (DTT) [250]. 
Meanwhile, nanocarriers prepared by polymers with 
diselenide bonds (Se-Se) could also response to 
environmental redox-potential (i.e., GSH, H2O2) for 
controlled disassociation of nanoparticles and release 
of cargos [263]. Moreover, the redox-responsive 
nanocarriers facilitate intracellular delivery of 
bioactive compounds into cancer cells to overcome 

the cellular barriers, such as siRNA [254] and sodium 
borocaptate (BSH) [255], etc. For one example, the 
BSH-polymer conjugates have been engineered by 
conjugating with disulfide bonds for tumor boron 
neutron capture therapy (BNCT), because of the poor 
cellular uptake of clinically approved 10B-compounds 
(e.g., BSH) and the limited effective distance almost 
within diameter of cancer cells (Figure 12A-C) [252]. 
The BSH-polymer conjugates have significantly 
promoted the intracellular delivery of BSH, slightly 
extended the half-life in blood circulation and highly 
enhanced the tumor accumulation for deep 
penetration in tumor tissues and significant tumor 
therapy by BNCT (Figure 12D-F). Furthermore, the 
morphology of redox-sensitive nanocarriers may 
affect the intracellular delivery of cargos. Therefore, 
nanocarriers with different morphologies have been 
self-assembled with camptothecin and polymers 
through the disulfide bonds, including spheres, 
smooth disks, vesicles, and staggered lamellae [274], 
while the staggered lamellae ones demonstrated the 
most efficient cellular internalization than others. In 
addition, the redox-responsive nanocarriers 
demonstrated high potential for treating hypoxia 
tumors. For example, the Cy5.5-deoxybouvardin 
(RA-V) conjugates incorperated nanocarriers could 
target cancer cells by cRGD ligands, as well as release 
RA-V for intracellular fluorescence imaging and 
inducing apoptosis of cancer cells [266]. 
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Figure 12. The redox-responsive nanocarriers for drug delivery to tumors toward effective therapy. (A,B) Illustration of boron neutron capture therapy (A) and 
nanocarriers for tumor BNCT (B). (C)The synthesis of redox-responsive polymeric nanocarriers. (D) Plasma clearance and tumor distribution of BSH and BSH-polymer 
conjugates. (E) The deep penetration of BSH-polymer conjugates in BxPC3 pancreatic tumors. (F) Boron neutron capture therapy of solid tumors with the polymer-boron 
cluster conjugates. Adapted with permission from ref. [252], copyright 2017 Elsevier B.V. 

 

Enzyme-responsive nanocarriers 
Enzymes play an important role in biological 

reactions, while the unregulated expression of certain 
enzymes in neoplastic conditions could be triggers for 
enzyme-responsive drug delivery. Several enzyme- 
responsive nanocarriers have been engineered for 
achieving controlled release of cargos in tumors and 
cancer cells [280, 281], prodrug/ligands activation, as 
well as morphology change, mainly including meso-
porous silica nanoparticles [282, 283], dendrimers 
[284], magnetic nanoparticles [285, 286], polymeric 

micelles [287] and liposomes [288, 289] etc. As shown 
in Table 7, nanocarriers could response to several 
upregulated enzymes in tumor microenvironment 
and cancer cells [290], which are mainly including 
oxidoreductases (e.g., peroxidases) [291], transferases 
(e.g., creatine kinase) [289], and hydrolases, such as 
matrix metalloproteinases (MMPs) [292-294], human 
recombinant caspase 3 [295], proteinase K [60, 296], 
intestinal protease [286], cathepsin B [297] and trypsin 
[298, 299] etc.  
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Table 7. Enzyme-responsive nanocarriers for cancer theranostics 

 Bond type Enzyme Reaction Occurrence Materials Cargo Ref. 
Hydrolases Peptide 

bonds 
α- 
Chymotrypsi
n 

Hydrolyze peptide amide 
bonds 

Pancreas Hollow mesoporous silica/poly(L-lysine) 
particles 

Fluorescein and 
cytosine-phosphodiest
er-guanine 
oligodeoxynucleotide 
(CpG ODN) 

[283] 

Human 
recombinant 
caspase 3 

Hydrolyze peptide bonds 
only after an aspartic acid 
residue 

Cytoplasm Hyaluronic acid coating caspase 3 loaded pure 
drug nanoparticles 

Paclitaxel [295] 

Cathepsin Hydrolyze glycyl 
phenylalanyl leucyl 
glycine tetra-peptide 

Lysosome PEGylated lysine peptide 
dendrimer-gemcitabine conjugate 

Gemcitabine  [284] 

Hydrolyze tetrapeptide 
glycyl phenylalanyl 
leucyl glycine 
tetra-peptide 

Lysosome Amphiphilic biodegradable triblock 
N-(2-hydroxypropyl methyl) acrylamide 
copolymer-gadolinium- paclitaxel-Cyanine5.5 
conjugates 

Paclitaxel [297] 

Elastase Hydrolyze peptide amide 
bonds of elastin 

Tumor PEGylated pDNA-nanoparticles Nucleic acid [306] 

MMPs Hydrolyze peptide amide 
bonds of extracellular 
matrix proteins 

Participate in tissue 
remodeling and 
metastasis 

Low molecular weight protamine and 
conjugated it to PEG-PCL nanoparticles 

Paclitaxel [307] 

Hydrolyze peptide amide 
bonds of extracellular 
matrix proteins 

Participate in tissue 
remodeling and 
metastasis 

MSNs-Peptide-BSA-LA@DOX Doxorubicin [293] 

Hydrolyze peptide amide 
bonds of extracellular 
matrix proteins 

Participate in tissue 
remodeling and 
metastasis 

Brush peptide-polymer amphiphiles composed 
fluorescent nanoparticle 

Fluorescence dye [294] 

Hydrolyze peptide amide 
bonds of extracellular 
matrix proteins 

Participate in tissue 
remodeling and 
metastasis 

Micellar nanoparticles with a surface comprised 
of MMP-substrates and a hydrophobic 
paclitaxel core 

Paclitaxel [292] 

Hydrolyze peptide amide 
bonds of extracellular 
matrix proteins 

Participate in tissue 
remodeling and 
metastasis 

Phenylboronic acid conjugated human serum 
albumin grafted mesoporous silica 
nanoparticles 

Doxorubicin  [282] 

Thrombin Hydrolyze peptide amide 
bonds of fibrinogen 

Participate in 
haemostasis, 
thrombosis, cell 
signaling, 
fibrinolysis and 
inflammation 

Layer-by-layer assembly of 
poly(2-oxazoline)-based materials 

Thrombolytic agent [308] 

Thermolysin Hydrolyze peptide amide 
bonds containing 
hydrophobic amino 
acids. 

Produced by Bacillus 
thermoproteolyticu 

Poly(L-glutamic acid) star polypeptides using 
PPI dendrimers as initiators. 

Rhodamine B [309] 

Trypsin Hydrolyze peptide amide 
bonds 

Pancreas Bola-like cationic diphenylalanine nanocarriers Doxorubicin [298] 

Hydrolyze peptide amide 
bonds at C terminal of 
lysine and arginine 

Produced by the 
pancreas, activated 
in the small intestine 

Protamine/ sulfatocyclodextrin supramolecular 
nanoparticles 

Trisodium salt of 
8-hydroxypyrene-1,3,6-
trisulfonic acid (HPTS) 

[299] 

Proteinase K Hydrolyze peptide bonds Candida albicans Methotrexate-conjugated magnetic 
nanoparticles 
and glycine coated magnetic nanoparticles 

Glycine and 
methotrexate 

[296] 

Hydrolyze peptide bonds Candida albicans Polytyrosine nanoparticles Doxorubicin  [60] 
 Ester bonds Acetyl-

cholinesteras
e 

Hydrolyze acetylcholine 
and other choline esters 

Present in 
neuromuscular 
junctions 

Poly(ethylene glycol)-block-poly(acrylic acid) 
with myristoylcholine chloride 

Nile red [310] 

Phospholipas
e 
 

Hydrolyze lipids Present in human 
digestive system, 
intracellular 
compartment and 
extracellular spaces 

(R)-1-O-hexadecyl-2-palmitoyl-snglycero-3-pho
sphocholine 

Antitumor ether lipids [301] 

Hydrolyze phosphoric 
acid monoester in peptide 
sequences 

Participate in signal 
transduction and 
protein activity 

ATP coated Ag nanoparticles Silver nanoparticles [311] 

 Glycosidic 
bonds 

α-amylase Cleaved α-1,4 glycosidic 
bond 

Present in saliva Hydroxyethyl starch based 10-hydroxy 
camptothecin (10-HCPT)-HES and 5-FU-HES 
conjugates 

Paclitaxel [312] 

β- 
Glucuronida
se 

Hydrolyze complex 
carbohydrates 

Present in lysosome, 
necrotic tissue, and 
some solid tumor 
types 

β-glucuronidase-responsive prodrugs with the 
potent monomethyl auristatin E linker 

Monomethyl auristatin 
E 

[313] 

Oxidoredu
ctases 

Azo 
compounds 

Azoreductas
e 

Reductive azo 
compounds 

Colon bacteria Copolymers of 2-hydroxyethyl methacrylate 
(HEMA) and methyl methacrylate (MMA), and 
terpolymers of HEMA, MMA, and methacrylic 
acid 

Ibuprofen [291] 

Transferas
es 

Phosphorus-
containing 
groups 

Creatine 
kinase 

Phosphorylate hydroxyl 
group in peptide 
sequences 

Regulate cellular 
pathways 

Liposome based DSPE-PEG2000-TAT Paclitaxel [289] 
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The enzyme-sensitive nanocarriers could be 
utilized in the following aspects: (1) Activating 
prodrugs, probes and ligands by cutting the 
enzyme-sensitive bonds between the bioactive 
compounds and protective groups; (2) Degradation or 
disassociation of nanocarriers through enzyme- 
triggered cleavage of polymer backbones, charge 
conversion of nanomaterials and disassembly of 
nanoparticles; (3) Direct cleaving the conjugation 
between nanocarriers and drugs; (4) Enzyme- 
triggered physical disruption of nanocarriers; (5) 
Enzyme-triggered controlled release of cargos. For 
achieving enzyme-sensitive function, several factors 
should be considered for rational design nanocarriers: 
(1) The recognition and accessibility of enzymes to the 
sensitive groups/substrates in nanocarriers; (2) The 
threshold of the substrates that responding to 
enzymes, which should ensure the enzyme-triggered 
reaction; (3) the influence of physiological conditions 
and the physicochemical properties to the enzyme- 
sensitivity. 

The specific enzyme-triggered cargo release 
allows drug delivery to tumors and avoids cargo 
exposure during circulation, which could maintain 
the activity of bioactive compounds, while avoid 
causing sides effects to normal organs/tissues. For 
enzyme-triggered drug release, the cathepsin could 
cleave the hydrolyze peptide bonds in gemcitabine- 
conjugated dendrimer nanocarriers inside lysosomes 
to liberate gemcitabine and cationic dendrimers, 
leading to lysosome escape and intracellular gemcita-
bine delivery [284]. In another study, the hyaluronic 
acid coated and prodrug-loaded nanoparticles could 
specifically release paclitaxel inside cancer cells by 
affecting the hydrolyze peptide bonds with human 
recombinant caspase 3 [295]. Besides, the prodrugs/ 
probes could be activated by enzymes in tumors, as 
the prodrug strategy is generally applied to protect 
the activity of drugs, probes and ligands during 
circulation to increase the diagnostic or therapeutic 
specificity [301]. In one example, the protease- 
activatable nanoprobes have been developed by 
combining fluorescent dye and Fe3O4 nanocrystals 
through MMP-9 [302], which could turn “ON” the 
fluorescence for tumor imaging when the peptide 
substrates linkers were cleaved by protease. In 
another case, the MMP9-activatable doxorubicin 
prodrug-loaded nanocarriers were developed (Figure 
13A,B) [300], to combine with combretastatin A4 
(CA4)-loaded nanocarriers for cancer synergistic 
treatment. The CA4-loaded nanocarriers could 
disrupt tumor blood vasculature and selectively 
enhance MMP9 expression in tumors to promote the 
accumulation of doxorubicin (Figure 13C), leading to 
effective treatment of 4T1 and C26 tumors (Figure 

13D,E). Moreover, the enzyme-responsive 
nanocarriers could be applied for tumor specific 
imaging, e.g., the MMP-responsive iron oxide 
nanoparticles have specifically enhanced the 
T2-weighted contrast in tumors for diagnosis by MRI 
[285]. Furthermore, the enzyme could uncap the 
surface shell (e.g., peptides) of nanocarriers to 
improve their accumulation in tumors. For example, 
the nanocarriers self- assembled by paclitaxel- 
conjugated block copolymers and enzyme-recognition 
peptide shell, could change the morphology due to 
the cleavage of peptide shell by MMP, leading to high 
accumulation of the polymer-drug conjugates in 
tumors [292]. In addition, the enzyme-responsive 
function could be applied for disassociation of 
nanocarriers. The azobenzene-linked amphiphilic 
diblock copolymers have been applied to form 
polymeric micelles, and micellar architecture could be 
disrupted by responding to azoreductase and 
nicotinamide adenine dinucleotide phosphate 
(NADPH) [303]. It demonstrated high potential in the 
arena of colon-specific drug delivery, as azoreductase 
is existed in human intestine. The enzyme-triggered 
degradation of nanocarriers into small size structures 
would improve the penetration of drug delivery 
systems throughout the tumor's interstitial spaces. For 
instance, the 100 nm nanoparticles could be reduced 
to 10 nm by responding to proteases (i.e., MMP-2) in 
tumor microenvironment, which effectively enhanced 
the diffusion of drugs into the tumor's dense collagen 
matrix, while maintained long circulation for 
achieving EPR effect [304]. Overall, the enzyme- 
sensitive nanocarriers have demonstrated high 
potential in tumor diagnosis [285, 286], as well as 
treating primary and metastatic tumors [293, 294, 
305].  
Multimodal-responsive nanocarriers 

In addition, nanocarriers have also been 
engineered with multiple stimuli-responsive 
functions, facilitating multistage drug delivery, as 
well as achieving higher specificity and efficacy. For 
example, nanocarriers responding to both 
intracellular pH and GSH have been developed for 
promoted intracellular drug delivery [314]. In another 
study, the developed platinum drug delivery 
nanocarriers could response to intracellular GSH for 
disassociation, and response to intracellular low pH 
for controlled drug release [277]. Indeed, the multiple 
stimuli-responsive nanocarriers hold high potential in 
achieving long circulation, high tumor accumulation, 
deep penetration in tumor tissues, internalization 
with cancer cells and endosome escape, etc. Thus, 
several multiple stimuli-responsive nanocarriers have 
been engineered for delivery cargos to tumors 
[315-321]. In one example, the multiple stimuli- 
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responsive nanocarriers could be discharged into 
small nanoparticles by responding to the low pH in 
tumor microenvironment, and then the platinum 
prodrugs in the small nanoparticles were activated by 
GSH for promoted penetrating and treating the 
poorly permeable pancreatic tumors [209]. In another 
example, the nanocarriers made by γ-glutamyl-based 
polymer–drug conjugates (PBEAGA-CPT) conjugates 
could response to both γ-glutamyl transpeptidase 
(GGT) and GSH have been developed [322], which 
could convert to be positive charged nanomaterials by 
responding to GGT for internalization with cancer 
cells and by responding to GSH inside cancer cells to 
release CPT (Figure 14A-C). The multimodal 
responsive polymer-drug conjugated nanocarriers 
have demonstrated high efficacy in transcytosis, 

extravasation, internalization with cancer cells and 
deep tumor penetration, leading to effective supres-
sion of subcutaneous HepG2 tumors (Figure 14D-F). 
In general, it is sophisticate for developing multiple 
stimuli-responsive nanocarriers, and also difficult to 
maintain the multiple functions in biological systems. 
Thus, nanocarriers with single or dual stimuli- 
responsive functions have been more focused [49, 
323]. For instance, the polyphosphazene nanocarriers 
with pH- and redox-sensitivities have been 
engineered for tumor multimodal imaging- guided 
chemo-photodynamic therapy [324-326]. Here nano-
carriers for multiple stimuli-triggered drug delivery 
were briefly introduced, as each stimuli- responsive 
function has already been discussed above. 

 
 
 

 
Figure 13. Enzyme-responsive nanocarriers for cancer therapy. (A) Schematic illustration of nanocarriers incorporating combretastatin A4 nanodrug (CA4) plus 
MMP9-activatable doxorubicin prodrug for tumor therapy. (B) The chemical structure of MM9-activatable MMP9-activated doxorubicin prodrug. (C) The distribution of 
doxorubicin in tumors. (D,E) Tumor inhibition rate in 4T1 (D) and C26 (E) tumor models. Adapted with permission from ref. [300], copyright 2019 John Wiley & Sons, Inc. 
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Figure 14. Multimodal-responsive polymer-drug conjugated nanocarriers. (A) Illustration of the cationization-initiated transcytosis-mediated tumour penetration for 
transendothelial and transcellular transport of nanocarriers. (B) The structures of GGT-responsive cationizing PBEAGA-CPT conjugates and the non-GGT-responsive 
PEAGA-CPT conjugates. (C) The zeta potentials of the nanocarriers. (D-F) Antitumor efficacy of polymer-drug conjugated nanocarriers against subcutaneous HepG2 tumors, 
where the tumor growth rate (D), tumor weight (E) and bodyweight (F) were measured. Adapted with permission from ref. [322], copyright 2016 Springer Nature Limited. 
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Table 8. Clinical translation of stimuli-responsive nanocarriers 

Stimulus Nanocarriers Cargo Indications Clinical status Reference 
Magnetic Iron oxide magnetite Iron oxide nanoparticles Prostate cancer Phase I NCT02033447 

Iron and carbon 
(MTC-DOX) 

Doxorubicin  Unresectable hepatocellular 
carcinoma 

Phase II and III NCT00034333 

Hepatocellular 
carcinoma 

Phase I and II NCT00054951 

Liver metastasis Phase I and II NCT00041808 
Temperature Liposomes 

(ThermoDox) 
Doxorubicin  Recurrent regional breast cancer Phase I and II NCT00826085 

Liver tumor Phase I NCT02181075 
Pediatric refractory solid tumor Phase I NCT02536183 

Doxorubicin combined with high 
Intensity focused ultrasound (HIFU)  

Painful bone metastases, breast carcinoma, non-small 
cell lung cancer, small cell lung cancer, 
adenocarcinoma 

Phase II NCT01640847 

Doxorubicin combined with 
standardized radiofrequency ablation 

Hepatocellular carcinoma Phase III NCT02112656 

pH Polymeric micelles 
(NC6300) 

Epirubicin Solid tumor, soft tissue sarcoma, metastatic sarcoma, 
sarcoma 

Phase I and II NCT03168061 

Secretory 
phospholipase 
A2 (sPLA2) 

Liposomes (LiPlaCis) Cisplatin Advanced or refractory solid tumor, metastatic 
breast cancer, prostate cancer and skin cancer 

Phase I and II NCT01861496 

 
Clinical translation of the 
stimuli-responsive nanocarriers 

The advances in stimuli-responsive nanocarriers 
have led to clinical translation of several formulations. 
As shown in Table 8, there are six nanocarriers 
responding to magnetic, temperature, pH and 
secretory phospholipase A2 (sPLA2), are under 
clinical translation. Two magnetic-sensitive iron- 
based nanocarriers, iron oxide magnetite, and 
doxorubicin-loaded iron and carbon (MTC-DOX), are 
under clinical trial for treating cancers. The iron oxide 
magnetite was conducted Phase I clinical trial to 
evaluate safety, retention and distribution after 
injection, which final score is for treating prostate 
cancer in men by thermal ablation. Three clinical trials 
have been applied for MTC-DOX, including Phase II 
and III studying the safety, tolerance and efficacy 
(survival time) on treating unresectable hepatocellular 
carcinoma (NCT00034333); Phase I and II evaluation 
of prohibiting hepatocellular carcinoma progression 
after injection with external magnet (NCT00054951); 
and Phase I and II studying on liver metastasis (NCT0 
0041808). Besides, the thermal-sensitive doxorubicin- 
incorporated liposomes (ThermoDox) have been 
applied for the following three clinical studies: Phase I 
and II studying the maximum tolerated dose, safety, 
pharmacokinetics and hyperthermia effects in 
patients with recurrent regional breast cancer 
(NCT00826085); Phase I investigation of doxorubicin 
release from liposome by focused ultrasound in liver 
tumors (NCT02181075); and MRI and high intensity 
focused ultrasound (HIFU) combined study to 
determine doxorubicin release in pediatric refractory 
solid tumor (NCT02536183). The clinical trial of 
ThermoDox has also be designed to evaluate the 
safety and efficacy by combining with HIFU on 
several tumors (Phase II, NCT01640847), e.g., painful 
bone metastases, breast carcinoma, non-small cell 

lung cancer, small cell lung cancer and 
adenocarcinoma; as well as study the efficacy on 
treating hepatocellular carcinoma combined with 
standardized radiofrequency ablation (Phase III, 
NCT02112656). Moreover, the pH-responsive, 
epirubicin-loaded polymeric micelles (NC6300) have 
entered Phase I and II study (NCT03168061) for 
evaluating the dose, activity and tolerability in 
patients with soft tissue sarcoma. In previous 
preclinical clinical study, NC6300 could reduce the 
cardiotoxicity of epirubicin by conjugating to 
polymers through pH-sensitive bonds (i.e., 
hydrazone) [327], and exhibited better therapeutic 
effect (10 mg/kg based on epirubicin) on treating 
hepatocellular carcinoma [328]. The preclinical 
evaluation has provided positive evidences for 
further clinical evaluation. In addition, the secretory 
phospholipase A2 (sPLA2)-sensitive, cisplatin- 
incorporated liposomes (LiPlaCis) have entered Phase 
I and II to study the safety, tolerability and sensitivity 
on patients with advanced breast cancer and 
metastatic breast cancer (NCT01861496). Although 
with progress, the clinical translation of stimuli- 
responsive nanocarriers still encountered several 
barriers: (1) the differences between animal tumor 
models and tumors in patients, as tumors in patients 
are more heterogeneity and complicated; (2) the 
toxicity, biosafety and biodegradability of 
nanocarriers should be addressed; (3) the stable 
stimuli-responsive function in vivo; (4) the tumor 
accumulation and therapeutic efficacy of stimuli- 
sensitive nanocarriers should be proved in clinical 
trial; (5) the factors that influence the stimuli- 
responsive properties in vivo should be clarified; (6) 
the right dose and administration way should be 
studied, e.g., intravenous injection (i.v.), intraperi-
toneal injection (i.p.). Therefore, future work would 
focus on clinical translation of the stimuli-sensitive 
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nanocarriers, and optimizing the formulations from 
lessons of clinical trial. 

Conclusion 
The nanocarriers bring novel strategy for 

delivery bioactive compounds to tumors. The 
stimuli-sensitive nanocarriers provide high specificity 
and multiple functions in drug delivery, including 
controlled release, alerted tumor accumulation, 
switch “ON-OFF” activities, as well as promoted 
diagnostic and therapeutic accuracy and efficacy. 
Besides, the rational design of stimuli-nanocarriers 
has considered their biological manners in tumor 
microenvironment and cancer cells to maximize the 
efficacy and minimizing the adverse effects to normal 
organs and tissues. Until now, numerous external and 
internal stimuli-sensitive nanocarriers have been 
developed, exhibiting better outcomes than the 
conventional formulations. The stimuli-responsive 
systems could be widely applied for diagnosis, 
probing, sensing and therapy tumors and other 
diseases, such as cardiovascular diseases, etc. 
Moreover, maintaining the stimuli-sensitivity in large 
scale produced nanocarriers would be potential 
challenge. Furthermore, although with extensive 
studies on stimuli-sensitive nanocarriers, only a few 
formulations have entered clinical translation, which 
requires future extensive works on clinical translation. 
In addition, considering the heterogeneity of tumors, 
the molecular imaging would be applied for screening 
the stimuli-responsive nanocarriers in tumors and 
patients, to predict and study the sensitivity and 
responses [329]. Meanwhile, the stimuli-responsive 
nanocarriers may also be combined with antibodies 
for tumor immunotherapy [330, 331]. Overall, the 
development of nanocarriers responding to external 
and internal stimuli in diseased regions would 
promote the advent of “magic bullets” for tumor 
precision diagnosis and therapy in future. 
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