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Abstract 

Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by 
poor prognosis and high rates of recurrence. Numerous therapeutic strategies and delivery systems 
are developed to prolong the survival time. They exhibit enhanced therapeutic effects in animal 
models, whereas few of them is applied in clinical trials. Taking into account the drug-resistance and 
high recurrence of GBM, combined-therapeutic strategies are exploited to maximize therapeutic 
efficacy. The combined therapies demonstrate superior results than those of single therapies against 
GBM. The co-therapeutic agents, the timing of therapeutic strategies and the delivery systems 
greatly affect the overall outcomes. Herein, the current advances in combined therapies for 
glioblastoma via systemic administration are exhibited in this review. And we will discuss the pros 
and cons of these combined-therapeutic strategies via nanotechnology, and provide the guidance for 
developing rational delivery systems to optimize treatments against GBM and other malignancies in 
central nervous system. 
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Introduction 
Glioblastoma multiforme (GBM) is a primary 

malignant brain tumor of the central nervous system 
(CNS) with poor prognosis and high mortality [1, 2]. 
The median survival rate is around 12-18 months, and 
the long-term survival time is less than 5 years [3, 4]. 
The current clinical treatments for GBM consist of 
tumor resection, radiotherapy and chemotherapy. 
Maximal tumor resection improves the overall 
survival in GBM. But it is difficult to distinguish 
tumor from normal brain tissues. Several 
intraoperative technologies, such as 5-aminolevulinic 
acid (ALA) and fluorescein (FLCN) guided resection, 
facilitate the identification of tumor and simultaneous 
preservation of neurologic function [5, 6]. They 

significantly improve the gross total resection with 
standard surgery from 36% to over 64% in high-grade 
gliomas (HGG). However, the infiltrative nature of 
GBM raises the challenge to realize a complete 
resection. Furthermore, the extent of resection must be 
balanced with the brain function [7]. The introduction 
of Stupp regimen and modified Stupp extends the 
median survival of the patients, whereas the overall 
survival is still poor [8-10].  

Besides the standard therapy, the therapeutic 
strategies like gene therapy, immunotherapy, 
phototherapy and thermotherapy, have been applied 
for anti-glioma treatments [11-15]. They exhibit 
enhanced therapeutic effects in animal models, but 
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few of them is applied in clinical trials. Since the GBM 
is a complex disease with intricate mechanisms in 
their growth, progression and invasion processes, 
accumulating evidences indicate that single 
therapeutic strategy tends to result in drug resistances 
and tumor cell tolerance, which finally leads to tumor 
recurrence and metastasis [16, 17]. Therefore, 
combined-therapeutic strategies with various 
mechanisms of agents should be able to overcome 
these problems.  

However, the current therapeutic agents have 
some critical problems, such as short half-life in 
circulation, hard transportation to the diseased areas 
and difficulty of controlled releasing the diverse 
drugs in the corresponding sites. These problems 
result in insufficient accumulation of therapeutic 
drugs in the tumor cells, and prevent adequate 
destruction of malignant tumors [18, 19]. Therefore, 
efficient drug delivery will be very critical and 
important for effective therapy [20]. For a typical 
cancer treatment, a five-step CAPIR cascade in drug 
delivery process is presented by Shen’s group [21]. It 
includes circulation in the blood, accumulation in the 
tumor, penetration into tumor tissue, internalization 
into tumor cells and intracellular drug release. High 
efficiency at every step is very important to ensure the 
high therapeutic efficiency of the whole treatment. 
Furthermore, in view of the location of glioblastoma, 
the specific blood-brain barrier (BBB) also constructs a 
major and critical obstacle for the drug delivery [22, 
23]. It is estimated that over 98% of the small 
molecular drugs and almost 100% of large molecular 
drugs cannot cross the BBB [24, 25]. Given this, the 
challenges of drug delivery in the GBM treatment 
should be composed of the following steps: long 
circulation in the blood, effective transportation 
across the BBB, efficient internalization into glioma 
cells and controlled drug release in the cells (Figure 1). 
All of these steps are the key factors to ensure 
sufficient therapeutic agents accumulating in GBM 
cells. 

To overcome these physiological barriers in 
GBM treatments, nanotechnology has been explored 
to solve these problems and potentiate the therapeutic 
effects. These delivery systems can be classified as 
liposomes, polymer nanoparticles, lipopolymer 
nanoparticles, dendrimer nanoparticles, hybrid 
nanoparticles and so on [26-29]. Firstly, the diversity 
of these biomaterials can enable loading of various 
therapeutic agents simultaneously. Secondly, these 
nanodelivery systems can be modified with specific 
targeting, which shows the guidance to BBB and the 
GBM cells. The reported brain tumor targeting 
moieties include transferrin receptor (TfR), 
angiopep-2 peptide, TAT peptide, RGD peptide, 

chlorotoxin and so on [30-32]. The modified 
nanodelivery systems can transport across the BBB by 
receptor-mediated endocytosis, adsorptive-mediated 
endocytosis and carrier-mediated transport [33]. 
These targeting modifications greatly improve the 
brain tumor targeting and reduce the side effects to 
normal tissues. Thirdly, stimuli-sensitive responses 
are introduced into delivery systems to ensure the 
maximal drug retention at the desired sites, such as 
pH, ROS, enzyme, light and thermal responses [34]. 
These strategies with nanotechnology prompt the 
drug accumulation in brain tumors. Intensive 
advances have exhibited the effective and promising 
outcomes for glioblastoma therapy these decades, but 
few of them is applied in clinical trials until now. 
Herein, in this review, we will focus on the 
combined-therapeutic strategies with diverse delivery 
systems, investigate the current combined strategies 
with improved therapeutic effects, and discuss the 
future guidance for glioblastoma treatments and other 
CNS diseases’ therapies.  

 

 
Figure 1. The schematic illustration exhibits the challenges of drug delivery via 
systemic administration for glioblastoma therapy. They generally include: (1) long 
circulation in the blood; (2) effective transportation across the BBB; (3) efficient 
internalization into GBM cells and (4) controlled drug release in the tumor cells. 

 

Combined therapies against glioblastoma 
The complexity of glioblastoma multiforme 

motivates researchers to develop various therapeutic 
strategies. Comparing with single therapy, combined 
therapies have emerged new issues to concern. The 
choice of the therapeutic strategy for combination is 
the first key factor. It contains the selection of 
combined methods and the therapeutic agents, and 
synergism of these strategies. The delivery systems 
based on the therapeutic agents are the second 
important issue to concern. These systems of 
combined therapies are required to load the multiple 



Theranostics 2020, Vol. 10, Issue 7 
 

 
http://www.thno.org 

3225 

therapeutic agents and deliver them to the 
corresponding targeted sites for synergistic 
treatments. Herein, various combined-therapeutic 
strategies for anti-glioma treatments are presented in 
the following sections. And the merits of the current 
delivery systems are discussed, which should inspire 
and guide to develop optimized delivery platforms 
for further clinical applications.  

Combined chemotherapies  
Chemotherapy was the most common treatment 

for glioblastoma. Single chemotherapy facilitated the 
drug resistance of the tumor after a certain period, 
which greatly hindered the successful treatment of 
GBM. Combination with diverse mechanisms of anti-
cancer drugs should improve the GBM therapy, and 
some efforts had entered into clinical trials [35-38].  

However, due to the physiological barriers of 
glioblastoma, some clinical trials on the combination 
therapies did not show survival advantages and failed 
to obtain the desirable outcomes [39-41]. Hence, 
numerous delivery systems were developed to 
overcome these challenges and obtained better 
therapeutic effects [42, 43]. For example, Guo et al. 
utilized a liposome (LP), which was composed of egg 
yolk phosphatidylcholine (EPC), cholesterol (Chol) 
and 1,2-distearoyl-sn-glycero-3-phosphoethanol-
amine-N-[methoxy(polyethylene glycol) 2000] 
(DSPE-PEG2000), to separately encapsulate the tumor 
necrosis factor-related apoptosis-inducing ligand 
(TRAIL) and doxorubicin (DOX) [44]. The median 
survival time of the combination group 
(DOX-LP+TRAIL-LP) extended to 48 days, compared 
with the single groups TRAIL-LP (32 days) and 
DOX-LP (39 days). The combined chemotherapies 
showed improved therapeutic effects in the 
intracranial U87MG-bearing mice. The proportion of 
the drugs was easy to adjust by the detached drug 
load, but the synergism effects of these anticancer 
drugs in vivo might be hard to control.  

To increase the drug accumulation in the brain 
tumors, active targeting was introduced into the 
nanosystems to enhance the drug concentration in 
tumor sites and reduce the systemic toxicity [45-47]. 
Erica Locatelli et al. developed a targeted delivery 
nanoparticle (Ag/Ali@PNP–Cltx-99mTc) based on the 
poly(lactic-co-glycolic acid)-block-polyethylene glycol 
(PLGA-b-PEG) copolymer [48]. The nanosystem 
conjugated with chlorotoxin (Cltx), which expressed 
the specific binding to matrix metalloproteinase-2 
(MMP-2), a receptor overexpressed on the brain 
cancer cells. The in vivo biodistribution data exhibited 
that the targeted nanosystem Ag/Ali@PNP–
Cltx-99mTc significantly increased drug concentration 
in tumors. The enhanced drug accumulation 

obviously reduced the tumor size in vivo. The current 
approved anticancer drug temozolomide (TMZ) had 
been reported to associate with the introduction of 
O6-methylguanine-DNA methyltransferase (MGMT), 
which increased TMZ-resistance in chemotherapy 
[49-54]. Sang-Soo Kim et al. developed a cationic 
liposome (scL-p53) encapsulating the tumor 
suppressor gene p53 plasmid DNA to sensitize the 
cancer cells to TMZ [55]. This nanocomplex was 
modified with an antitransferrin receptor (TfR) single 
chain antibody fragment (scFv) to target the tumor 
cells. The combination of scL-p53 with TMZ obviously 
down-modulated the MGMT expression by 95% for 
24 h in vivo. The mice treated with cycle 
administration of TMZ finished at day 45, whereas 
63.6% of the mice were still alive when treated with 
this nanosystem. These studies demonstrated that the 
active brain targeting significantly enhanced the drug 
concentration in tumors with the same doses in 
comparison with the non-targeted systems. 

Active brain targeting ensured the guidance of 
drug accumulation in tumor tissues, and the effective 
release of therapeutic drugs in tumor cells was also 
critical for efficient treatments against GBM [56]. 
Hence, plenty of stimuli-sensitive drug delivery 
systems were designed based on the microenviron-
ment of GBM, including pH, ROS, enzyme, and so on 
[57-59]. For example, the anticancer drug doxorubicin 
(DOX) could potentiate the antitumor effect of tumor 
necrosis factor-related apoptosis-inducing ligand 
(TRAIL), which expressed by pORF-hTRAIL. Inspired 
by these, Jiang’s group designed a targeting 
dendrigraft poly-L-lysine (DGL)-based nanosystem 
(DGDPT/pORF-hTRAIL) with pH-response to carry 
the chemotherapeutic drug DOX and the gene agent 
pORF-hTRAIL for anti-glioma therapy [60, 61]. This 
nanosystem was modified with peptide HAIYPRH 
(T7), a transferrin receptor-specific peptide, for brain 
tumor cells targeting. The target significantly 
increased the drug accumulation in tumors in vivo. 
The median survival of DGDPT/pORF-hTRAIL was 
extended to 57 days, in comparison with 34 days for 
the free DOX. More importantly, the dose of the 
anticancer drug DOX in DGDPT/pORF-hTRAIL was 
less than 0.35 mg/kg mice, whereas the dose of free 
DOX was 5 mg/kg mice. This nanosystem greatly 
increased the pharmaceutical effect of the DOX and 
reduced the side toxicity to normal tissues. Also, Shi’s 
group designed a nanoparticle (3I-NM@siRNA) for 
combined siRNA delivery, which was stabilized by 
electrostatics, hydrogen bonds and hydrophobic 
interactions (Figure 2) [62]. The angiopep-2 targeting 
decorated 3I-NM@siRNA was prepared with poly 
(ethyleneglycol)-block-poly[(N-(3-methacrylamidopr
opyl)guanidinium-co-4-(4,4,5,5-tetramethyl-1,3,2-diox
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aborolan-2-yl) benzyl acrylate)] (PEG-b-P(Gu/Hb))/ 
Ang-poly(ethylene glycol)-block-poly(N-(3-methacryl 
amidopropyl) guanidinium) (Ang-PEG-b-PGu). The 
nanoparticles could trigger drug release under ROS 
environment that enriched in the cancer cells. Treat-
ment with Ang-3I-NM@(siPLK1+siVEGFR2) signifi-
cantly increased the median survival time to 36 days, 
which was longer than the mice treated with 3I-NM@ 
(siPLK1+siVEGFR2) (18 days), Ang-3I-NM@(siPLK1) 
(24 days) and Ang-3I-NM@ (siVEGFR2) (26 days). 

Numerous researches detected that the available 
drug therapies were dissatisfied because they failed to 
penetrate into depth of the tumor tissues and kill the 
brain cancer stem cells (BCSCs), which was the most 
responsible factor for tumor recurrence [63-65]. 
Intensive studies had been arisen to inhibit the growth 
of cancer stem cells for effective treatments to 
glioblastoma [66]. Lu et al. in our group designed a 
brain targeting and multifunctional nanoparticle 

(CARD-B6) to synergistically aim at both the 
glioblastoma cells and glioblastoma stem cells (GSCs) 
(Figure 3) [67]. In this nanosystem, acid-sensitive 
poly(β-amino ester) (PAE) was utilized to load the 
antiangiogenic drug combretastain A4 (CA4), and 
triggered to release the cargo in the GBM 
microenvironment. The azobenzene (AZO) bond in 
the PAE, rapidly broken up in the hypoxic GSCs, was 
applied to conjugate with all-trans retinoic acid 
(ATRA), which could induce the GSCs differentiation 
into glioblastoma cells. The amide bond in the PAE 
was conjugated with anticancer drug doxorubicin 
(DOX) for controlled release in tumor cells. The 
designed CARD-B6 could spatiotemporally trigger to 
deliver these drugs to their corresponding target sites. 
And the survival time of the CARD-B6 treated mice 
significantly enhanced, with 60% survivals vs. 0% for 
all the other control groups. 

 

 
Figure 2. The schematic illustration of the formation of 1I-NM@siRNA, 2I-NM@siRNA and 3I-NM@siRNA utilizing different polymers to generate different numbers of 
stabilizing interactions. Adapted with permission from [62]. Copyright 2019 WILEY‐VCH Verlag GmbH & Co. 

 
Figure 3. The structural composition and preparation route of the multifunctional nanoparticles CARD-B6. Adapted with permission from [67]. Copyright 2017 WILEY‐VCH 
Verlag GmbH & Co. 
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Figure 4. The schematic illustration of the formation of the biomimetic nanomedicine (Ang-RBCm@NM-(Dox/Lex)). Adapted with permission from [74]. Copyright 2018 
WILEY‐VCH Verlag GmbH & Co. 

 
Recently, biomimetic nanosystems were 

exploited for drug delivery applications, including the 
utilization of red blood cell membranes, tumor cell 
membranes, platelet membranes and etc. [68-73]. 
They had good biocompatibility and avoided 
immunogenicity. For instance, Shi’s group designed a 
biomimetic nanomedicine (Ang-RBCm@NM-(Dox/ 
Lex)) by functionalizing with red blood cell 
membranes (RBCms) (Figure 4) [74]. This nanosystem 
was equipped with angiopep-2 at the surface of red 
blood cell membranes. The target had high affinity for 
the low density lipoprotein receptor-related protein 
(LRP) receptor, which was overexpressed on both the 
endothelial cells of the BBB and glioblastoma cells. A 
pH-sensitive a-dextran that coloaded the anticancer 
drug doxorubicin (Dox) and lexiscan (Lex), and 
encapsulated in the RBCm, could transiently open the 
BBB to enhance the permeability of the nanomedicine 
Ang-RBCm@NM-(Dox/Lex). The Ang-RBCm@NM- 
(Dox/Lex) exhibited a longer blood circulation time, 
with the half lifetime of 9.3 h, whereas the circulation 
time of NM-(Dox/Lex) without RBCm camouflage 
was only 2.4 h. And the biodistribution of Ang-RBCm 
@NM-(Dox/Lex) in the orthotopic brain tumor was 
about 3.5-fold higher than that of NM-(Dox/Lex). The 
biomimetic nanomedicine enhanced the median 
survival time to 38 days, in comparison with 
RBCm@NM-(Dox/Lex) (28 d), Ang-RBCm@NM-Dox 
(25 d), NM-(Dox/Lex) (22 d), free Dox (22 d) or PBS 
(18 d) treated groups. 

Chemotherapy was the most widely studied 
treatment for anti-glioma therapy. Mounting 
researches were reported from the non-targeting and 
non-sensitive delivery systems to the active targeting 
and stimuli-sensitive systems. Intelligent 
multifunctional delivery systems were designed in 
dependence on the specific characteristics of the GBM. 
They exhibited better drug accumulation and longer 
survival time for GBM treatments. However, GBM 
was a complex disease. The initiation, growth and 

procession of the GBM were not completely 
understood until now. Hence the therapeutic drugs 
might not involve in every critical point of the whole 
treatments, and the designed drug delivery systems 
based on existing knowledge of GBM could not 
completely eliminate the GBM. Moreover, most of the 
biomaterials utilized in these systems were not 
approved by FDA, which aggravated difficulties for 
the clinical translations. 

Biomimetic drug delivery systems offered new 
opportunities to mimic the biological vehicles. The 
naturally derived cell membranes decorated the drug 
delivery systems, and brought longer circulation and 
better biocompatibility for these nanosystems. 
However, they also generated new problems, like the 
preparation operations and the cost of the biological 
products, the strictness production conditions for the 
clinical translations and applications. 

Combined chemotherapy with radiotherapy 
Radiotherapy was one of the clinical treatments 

for GBM, and amount of efforts had been made to 
increase the efficacy [4]. However, the invasive tumor 
growth of the glioblastoma limited the radiotherapy’s 
efficacy and induced tumor recurrence. Since the 
combination of radiotherapy with chemotherapy 
turned into the standard treatment strategy to inhibit 
GBM recurrence [75-78], the radiotherapy concomi-
tant with free temozolomide or carmustine entered 
into clinical trials. But the regimens were still 
insufficient for the requirements [79].  

Hence, delivery systems with nanotechnology 
were exploited for the combined therapies to 
maximize the therapeutic effects. Shi et al. developed 
an integrin targeting 177Lu radiolabeled 3PRGD2 (a 
dimeric RGD peptide with 3 PEG4 linkers) for 
radiotherapy [80]. The cellular uptake of 
177Lu-3PRGD2 in U87MG tumors was about 6%ID/g 
for 1 h. The combination with the anti-angiogenic 
agent Endostar exhibited significant tumor inhibition 
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in comparison with the control group. Later, Matteo 
Tamborini et al. reported that combining the 
chlorotoxin-nanovectors and radiation could exhibit a 
synergistic effect for in vivo GBM growth (Figure 5) 
[81]. Chlorotoxin, a selective target and anticancer 
drug, was conjugated on poly(lactic-co-glycolic acid) 
(PLGA) nanoparticles (PNP). Low dose of radiation (2 
Gy) rendered the brain extracellular matrix permeable 
and facilitated the accumulation of the nanovectors 
(Ag-PNP-CTX). The combination therapy signifi-
cantly inhibited approximately 50% tumor growth in 
U87MG-bearing mice. 

As the clinical standard treatment, radiotherapy 
often resulted in the modest improvement for 
glioblastoma treatments without reducing the quality 
of life or cognition. From the available better 
treatments, radiotherapy with concomitant 
chemotherapy was the current standard of care. 
However, the reported clinical trials regarding the 
combination of radiotherapy and chemotherapy 
exhibited diverse results. For instance, the addition of 
bevacizumab to radiotherapy-temozolomide did not 
improve the survival against GBM in phase 3 study 
[79]. And sorafenib combined with radiotherapy- 
temozolomide exhibited severe side effects in phase 1 
study [82]. These might be due to the mechanisms of 
these drugs or the insufficient drug concentrations in 
the tumors, which counteracted the therapeutic 
effects. Hence, the definition of tumor margins, the 
choice of the chemotherapeutic drugs and drug 
delivery systems were very important for the 
regimen. 

Combined chemotherapy with phototherapy 
Phototherapy was composed of the 

photothermal therapy (PTT) and the photodynamic 
therapy (PDT), which was a promising non-invasive 
strategy for cancer treatments. The former one 
utilized the photothermal agents to generate heat and 
kill tumor cells under light absorption. And the latter 
one produced cytotoxic reactive oxygen species, such 
as singlet oxygen (1O2), free radicals or peroxides, to 

induce cell death [83-85]. Nanotechnology assisted the 
phototherapy into further applications since most of 
the photosensitizers and photothermal agents were 
hydrophobic and had low tumor selectivity [15, 
86-89].  

However, phototherapy alone could not kill the 
tumor cells entirely due to the uneven light 
distribution and hypoxic condition in the tumor 
tissues, and it was easy to induce local recurrence and 
distant metastasis, especially for glioblastoma [90, 91]. 
Hence, combination of the phototherapy with 
chemotherapy could highlight the potential 
approaches for malignant glioblastoma therapies [92, 
93]. For instance, Yu et al. designed an organoplatium 
(II) metallacage (M) coordinated by photosensitizer 5, 
10, 15, 20-tetra(4-pyridyl)porphyrin (TPP), therapeutic 
drug cis-(PEt3)2Pt(OTf)2 (cPt), and disodium tereph-
thalate (DSTP) [94]. The metallacage self-assembled 
with mPEG-b-PEBP and RGD-PEG-b-PEBP to form 
metallacage-loaded nanoparticles (MNPs) for long 
blood circulation and active targeting (Figure 6). The 
MNPs exhibited superior anticancer results against 
U87MG with no recurrence after single injection, 
which attributed to the synergistic photochemo-
therapy. 

The inherent proteins were applied as drug 
carriers due to their superior biocompatibility. Liu's 
group utilized the human serum albumin (HSA) as 
the carrier to conjugate with the photosensitizer 
chlorin e6 (Ce6) and self-assemble with the anticancer 
drug paclitaxel (PTX) [95]. An acyclic Arg-Gly-Asp 
(cRGDyK) peptide, targeting to ανβ3-integrin 
overexpressed on tumor angiogenic endothelia, was 
chosen as the active targeting (HSA-Ce6-PTX-RGD). 
The accumulation of the nanoparticles was about 2.4 
times higher than the non-targeting one in vivo. The 
survival time after the combination therapy 
prolonged to 40 days without a single death, while the 
mice treated with control groups exhibited lifetimes 
about 15-30 days. 

 

 
Figure 5. Schematic procedure for the synthesis of chlorotoxin-nanovectors (Ag-PNP-CTX). Adapted with permission from [81]. Copyright 2016 American Chemical Society. 
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Figure 6. Schematic diagrams of the MNPs served as a multifunctional theranostic platform. The structures of TPP, cPt, DSTP, M, mPEG-b-PEBP and RGD-PEG-b-PEBP were 
illustrated. Adapted with permission from [94]. Copyright 2018 Springer Nature. 

 
Figure 7. Schematic illustration for the preparation of the RBC-based system (IB&D@RBC-RGD) and the remotely controlled drug release under the NIR laser. Adapted with 
permission from [103]. Copyright 2015 WILEY‐VCH Verlag GmbH & Co. 

 
Gold nanoparticles were the attractive photot-

hermal agents for cancer therapies due to their strong 
absorbance of NIR light and higher heat conversion 
efficiency [96-99]. Yongwei Hao et al. developed a 
tumor-targeting hybrid nanosystem by modifying Au 
on the surface of docetaxel (DTX)-loaded poly(lactide- 
co-glycolide) (PLGA) nanoparticles (ANG/GS/PLGA 
/DTX NPs) [100]. The U87MG cells treated with 
nanosystem showed a striking temperature increase 
for 12.3°C when exposed to 808 nm irradiation. And 
the tumor inhibition rate of the ANG/GS/PLGA/ 
DTX NPs under irradiation was about 70%, which 
was the highest among all of the control groups for in 
vivo studies. 

The biomimetic drug delivery systems coated 
with native cell membranes also attracted researchers’ 

attentions to fight against cancers with phototherapy 
[101, 102]. Liu’s group exploited a RBC-based system 
(IB&D@RBC-RGD) with a tumor angiogenesis 
targeting (Figure 7) [103]. Anticancer drug DOX and 
photothermal agent indocyanine green-bovine serum 
albumin nanocomplexes were co-loaded into the 
modified RBCs. With deep penetrability of near- 
infrared (NIR) light, the IB&D@RBC-RGD signifi-
cantly released the cargos and enhanced cytotoxicity 
against U87MG and 4T1 cells. 

Phototherapy for GBM was restricted due to the 
limited tissue penetration and photosensitizers’ 
delivery. Nanosystems were applied in photosensi-
tizers’ delivery for targeting transportation and 
reducing the non-specific accumulation in normal 
tissues. However, due to the highly invasive growth 
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of GBM, there usually had tumor recurrence and 
metastasis after phototherapy. Combined therapies by 
nanotechnology maximized the anti-glioma efficacy, 
which were attributed to the significant increase of 
chemotherapeutic drugs and photosensitizers/ 
photothermal agents in the tumor cells. And these 
were confirmed by a growing amount of studies. But 
the challenges for this combined-therapeutic strategy 
against GBM still remained, including the ratio of the 
therapeutic drugs and photosensitizers/photothermal 
agents, the drug-to-light interval and the synergistic 
interaction of the therapeutic methods. All of these 
should greatly affect the anti-glioma effects and need 
comprehensive studies in future. 

Combined chemotherapy with 
immunotherapy 

Immunotherapy had received tremendous 
attentions in the treatment of cancers in the decades 
[104]. It could activate the body’s own immune 
systems and induce the specific immune responses 
with tumor antigens to eliminate the tumor cells [105, 
106]. Most importantly, it had the potential for 
long-term reduction of cancer metastasis and 
recurrence [107]. The immunotherapeutic strategies 
included the cancer vaccines, monoclonal antibodies, 
oncolytic virus, engineered T-cells and 
immunomodulation [11, 107, 108]. However, the 
major challenges of immunotherapy for glioblastoma 
were the lack of specific tumor antigens, limited 
immunogenicity of the cancer cells and the 
immunosuppressive environment of the tumors 
[109-111]. Intensive studies had been reported to 
promote the specific immune responses and exhibit 
effective immunotherapy for glioblastoma [112, 113].  

The epidermal growth factor receptor variant III 
(EGFRvIII), an oncogenic variant of the EGFR, 
expressed in 20-30% of all glioblastoma [114]. It was 
exploited to cancer vaccine (Rindopepimut) and 
showed an encouraging progression-free survival in 
clinical trials [115, 116]. However, the combination of 
Rindopepimut and temozolomide in phase 3 trial did 
not show significant difference in overall survival for 
EGFRvIII-expressing glioblastoma [117]. This might 
be due to inappropriate combination of the drugs, 
which counteracted the immunological and chemical 
effects. And the unspecific tumor antigens, which 
were not sufficient to cover the heterogeneous brain 
tumors, also influenced the therapeutic effects of 
GBM. 

The immune checkpoint was a costimulatory 
factor for regulating the antigen recognition in the 
process of immune responses. The inhibition of the 
checkpoint could enhance the anticancer immune 
activation [118-120]. Combination of immune check-

point with chemotherapy could stimulate the tumor 
immunity and sensitize the tumor to chemical agents 
[121-123]. For instance, Jing Kuang et al. designed an 
iRGD-modified silica nanoparticles (DOX@MSN-SS- 
iRGD&1MT) to simultaneously deliver the chemical 
agent doxorubicin (DOX) and the immune checkpoint 
inhibitor 1-methyltryptophan (1MT) for anti-glioma 
treatment (Figure 8) [119]. The active targeting iRGD 
guided the nanoparticles to penetrate across BBB and 
improved drug accumulation in orthotopic brain 
tumors. The nanoparticles induced antitumor 
immune responses and regulated the immunosup-
pressive microenvironment. The chemo-immuno-
therapeutic therapy significantly extended the 
medium survival with a 50% durable cure rate. 

The immunomodulation of the microenviron-
ment of the glioblastoma was another promising 
approach for tumor regression [124]. For example, 
Padma Kadiyala et al. reported a nanodiscs (DTX- 
sHDL-CpG) based on high-density lipoprotein (HDL), 
the synthetic apolipoprotein-I (ApoA-1) [125], which 
encompassed the anticancer drug docetaxel (DTX) 
and the immune activator CpG (Figure 9). The 
nanosystem could elicited antitumor CD8+ T cell 
responses and developed the anti-GBM immunologi-
cal memory. The DTX-sHDL-CpG showed moderate 
effect on tumor growth, and the combination of DTX- 
sHDL-CpG with radiation significantly increased the 
long-term survival in 80% of GBM-bearing mice. 

Current advances demonstrated that the 
chemotherapy with temozolomide (TMZ) could 
induce and aggravate the immunosuppressive tumor 
microenvironment [126, 127]. Regulating the tumor 
microenvironment by immunotherapy enabled the 
GBM more sensitive to chemotherapy. Qiao et al. in 
our team exploited a dual targeting and ROS respon-
sive nanosystem (ALBTA) for immunochemotherapy 
(Figure 10) [128]. SiRNA against tumor growth factor 
β (siTGF-β) was employed to modify the immune 
microenvironment of glioblastoma and improve the 
efficacy of TMZ. To deliver these two drugs in a 
controlled manner, firstly, ROS-responsive poly[(2- 
acryloly)ethyl(p-boronic acid benzyl) diethylammoni-
um bromide] (BAP) was chosen to assemble with 
siTGF-β and triggered to release in cytoplasm of 
tumor cells. Secondly, zwitterionic lipid distearoyl 
phosphoethanol-aminepolycarboxybetaine (DSPE- 
PCB) based envelope (ZLE) was selected to enhance 
the delivery of TMZ and BAP/siTGF-β (AN@ 
siTGF-β) into cytoplasm. The core-shell structural 
nanoparticles (ALBTA) significantly improved the 
immunosuppressive microenvironment in vivo, and 
increased the medium survival time from 19 d (for 
untreated control group) to 36 d without obvious 
systemic toxicity in the intracranial glioblastoma mice. 
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Figure 8. A) The synthetic route of the iRGD-modified silica nanoparticles DOX@MSN-SS-iRGD&1MT. B) The illustration of DOX@MSN-SS-iRGD&1MT showed active 
targeting and drug release. Adapted with permission from [119]. Copyright 2018 WILEY‐VCH Verlag GmbH & Co. 

 
Figure 9. The formulation route of the nanodiscs DTX-sHDL-CpG. Adapted with permission from [125]. Copyright 2019 American Chemical Society. 

 
Figure 10. The chemical structural formula of the components and the preparation route of the nanosytem ALBTA. Adapted with permission from [128]. Copyright 2018 
WILEY‐VCH Verlag GmbH & Co. 
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Figure 11. A) The illustration of the lipid magnetic nanovectors (LMNVs) loaded with SPIONs and functionalized with an anti-transferrin receptor antibody (anti-TfR Ab). B) The 
high magnification transmission electron microscopy (TEM) images of functionalized nanovectors (AbLMNVs). Adopted with permission from [143]. Copyright 2019 The Royal 
Society of Chemistry. 

 
Despite the impressive advances in GBM 

treatments, the efficacy of immunotherapy still 
needed further improvements for desirable overall 
survival. For example, the identification of the specific 
glioblastoma antigens was required to reinforce the 
specific immunity responses. Combination of 
immunotherapy with chemotherapy via nanotechno-
logy obviously enhanced the sensitivity of the GBM 
cells to chemotherapeutic drugs, and regulated the 
microenvironment of tumors. However, the timing of 
the immunotherapy for combination [127, 129] and 
the delivery strategies had critical influences on the 
therapeutic effects, which needed more efforts to 
investigate. 

Combined chemotherapy with 
magnetothermal therapy 

Hyperthermia therapy had been developed as a 
safe and effective complementary therapy for cancer 
treatments [130]. Several magnetic nanomaterials had 
been used in hyperthermia applications, including 
iron oxide nanoparticles, cobalt ferrite, iron platinum 
nanoparticles and so on [131-133]. Iron oxide 
nanoparticles were usually applied as the 
thermo-agents in cancer treatments and entered into 
clinical trials [134-136]. Since the most thermo-agents 
were the metal nanomaterials, they were preferable 
for phagocytose by macrophages rather than the 
glioblastoma cells. Moreover, the challenges for 
magnetothermal therapy were the focused heating on 
the tumor sites with optimum temperature, and not 
harmed the surrounding normal tissues [137, 138]. 
Hence, nanotechnology was introduced to this 
therapy for active targeting and inducing more 
thermo-agents into diseased areas, which promoted 
the anti-tumor effects [139-141]. 

Plenty of evidences showed that the magneto-
thermal therapy against GBM was more effective by 
combining with chemotherapy [142]. They could 
enhance the sensitivity of the tumor cells to therapeu-

tic drugs. For example, Gianni Ciofani’s group devel-
oped a lipid magnetic nanovectors (LMNVs) with 
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-con
jugated poly(ethylene glycol) (DSPE-PEG) (Figure 11) 
[143, 144]. It was functionalized with the antibody 
against the transferrin receptor (TfR) for dual 
targeting to endothelial cells of BBB and GBM cells. 
The superparamagnetic iron oxide nanoparticles 
(SPIONs) and temozolomide (TMZ) were co-loaded 
in the lipid nanovectors (LMNVs). The anti-TfR anti-
bodies facilitated targeting to glioblastoma spheroids 
in multi-cellular in vitro models, with 40.5% vs. 8.1% 
for non-target nanovectors. The combined treatment 
with magnetothermal hyperthermia was able to 
efficiently disintegrate the GBM spheroids and induce 
significant tumor cell death. Under magnetic fields, 
the nanovector induced mild hyperthermia (43°C) 
and enhanced anticancer effect against U87 MG cells. 

Besides the lipid nanovectors, many synthetic 
polymeric nanosystems were also exploited as 
delivery vectors for combined treatments. Yin et al. 
exploited a highly magnetic zinc-doped iron oxide 
nanoparticle (ZnFe2O4) decorated with branched 
polyethyleneimine (PEI) to deliver lethal-7a miRNA 
(let-7a) (MNP-PEI/miRNA/PEI complexes), which 
was a tumor suppressor that inhibited malignant 
growth by targeting the downstream effectors of heat 
shock proteins (HSPs) (Figure 12) [145]. The 
nanosystem MNP-PEI/miRNA/PEI exhibited 
obvious apoptosis of brain cancer cells and led to 
caspase-3 mediated apoptosis by combining with 
magnetic hyperthermia. 

Wen-Chia Huang et al. reported a tumortropic 
adipose-derived stem cells (ADSCs) encapsulating the 
nanotherapeutics (SPNPs) for chemo-thermotherapy 
[146]. The nanotherapeutics were co-assembled with 
poly(γ-glutamic acid-co-distearyl γ-glutamate), poly( 
lactic-co-glycolic acid), the anticancer drug paclitaxel 
(PTX) and oleic acid-coated superparamagnetic iron 
oxide NPs. With the guide of ADSCs to tumor sites, 
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hyperthermia was activated by the high frequency 
magnetic field (HFMF) and triggered drug release in 
tumor cells. The data in vivo demonstrated that the 
combined therapy extended the lifespan of the brain 
tumor-bearing mice almost 3 folds, from 11 to 31 days, 
in comparison with the PBS control group. Whereas, 
the ADSCs without HFMF activation was only 15 
days.  

Although the combination of magnetothermal 
therapy with chemotherapy showed better inhibition 
against the GBM than single therapy, the combined 
strategy had not reached the required threshold for 
efficient clinical applications in GBM treatments. The 
reasons for this were as follows. Firstly, the 
magnetothermal efficiency of the magnetic systems 
was insufficient for clinical applications. The amount 
and characteristics of magnetic materials and their 
intratumoral distribution were the key factors for 
therapeutic effects. Secondly, the timing of the 
magnetothermal therapy and chemotherapy should 
greatly influence the overall results of treatments, 
which needed further investigations. Finally, the 
design of the delivery systems for the combination 
was very important, since these would directly affect 
the anti-tumor effects. Albeit these challenges, such 
combinations offered multimodal therapeutic 
strategies in a single treatment. The thermo-agents in 
the magnetothermal therapy, like the iron oxide 
nanoparticles, could also exhibit magnetic resonance 
imaging for tracing the combined nanosystems and 
monitoring the drug accumulation in in vivo 
distribution.  

Combined phototherapy with immunotherapy 
Near-infrared photoimmunotherapy (NIR-PIT) 

was a recently emerging therapy for cancers [147]. It 
employed a conjugate, which consisted of a 
near-infrared photosensitizer and a target-specific 
antibody. They could selectively kill the cancer cells 
and activate the body's antitumor immune responses. 
And few of the photo-immunoconjugates displayed 
toxicity until the activation by the light with specific 
wavelength. The NIR-PIT was applied for clinical 
trials against inoperable head and neck cancers by 
using cetuximab-IR700 (RM1929), and they exhibited 
promising results [148, 149].  

Utilizing the unique character of NIR-PIT, Jing et 
al. chose the AC133 monoclonal antibody to conjugate 
with the photosensitizer IR700 (AC133-IR700) for 
glioblastoma treatments [150]. The AC133 could 
recognize the CD133 on human cancer stem cells, and 
enhance the active targeting to orthotopic AC133+ 
brain tumor. The treated group extended the median 
survival time to 33.5 days in comparison with 
non-irradiated control group (with 15 days of survival 
time). The epidermal growth factor receptor (EGFR) 
was the general genetic mutation in GBM. Hence, an 
EGFR-specific antibody (ZEGFR-03115) was conjugated to 
the photosensitizer IR700DX for glioblastoma 
treatments [151]. The tumor distribution of the 
ZEGFR-03115-IR700DX was 6-fold higher than that of the 
control group ZTaq-IR700DX. And they exhibited a 
significant inhibition of tumor growth in U87-MGvIII 
bearing mice over a period of 18 days. 

 

 
Figure 12. The MNP-PEI/miRNA/PEI complexes enhanced the treatment against brain cancer. A) The MNP complexes were first delivered to GBM cells, which was enhanced 
by magnetofection. Once inside the cells, let-7a miRNA was released for targeting downstream effectors of HSPs. This sensitized the cancer cells to subsequent magnetic 
hyperthermia for enhanced apoptosis. B) MNPs were complexed with let-7a miRNA branched PEI via a layer-by-layer approach. Adapted with permission from [145]. Copyright 
2014 WILEY‐VCH Verlag GmbH & Co. 
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Figure 13. The synthesis route of photo-immunoconjugate nanoparticles (PIC-NPs). A) The illustration of PIC synthesis. Benzoporphyrin derivative (BPD) photosensitizers 
were conjugated to PEGylated cetuximab via carbodiimide crosslinker chemistry. B) The varied stoichiometry of BPD reacted with cetuximab. C) Transmission electron 
microscopy (TEM) image of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA) polymeric nanoparticles prepared via nanoprecipitation method. Scale bar 100 nm. D) 
Schematic depiction of PIC-NP synthesis via copper-free click chemistry. Azide-containing FKR560 dye-loaded PLGA nanoparticles were reacted with the dibenzocyclooctyne 
(DBCO)-containing PICs to form PIC-NPs. E) Covalent conjugation of PICs onto 80 nm PEG-PLGA NPs to form monodispersed PIC-NPs around 100 nm in diameter. Adapted 
with permission from [152]. Copyright 2018 WILEY‐VCH Verlag GmbH & Co. 

 
However, due to the limited ratio of the 

photosensitizer-to-antibody, the amount of photo- 
immunoconjugates delivered to tumor cells was not 
sufficient. Hence, Huang et al. adopted poly(lactic-co- 
glycolic acid) (PLGA) nanoparticles to overcome the 
obstacles [152]. The photo-immunoconjugates benzo-
porphyrin derivative (BPD)-cetuximab was bound to 
PLGA nanoparticles by click coupling (Figure 13). The 
photo-immunoconjugate nanoparticle (PIC-NP) could 
significantly enhance the photosensitizers to cancer 
cells, and increase light-activated cytotoxicity in 
EGFR-overexpressing U87 cells. The nanotechnology 
improved the overall treatment outcomes comparing 
with the photo-immunoconjugates. 

Compared to classic photodynamic therapy, the 
photoimmunotherapy utilized the specific antibodies 
that could facilitate targeting the tumor cells without 
damaging the normal cells. It also enhanced photo-
sensitizer delivery into tumors and increased the 
light-activated cytotoxicity. Despite these promising 
advances, the limited ratio of photosensitizer-to- 
antibody restricted the amount of photosensitizers 
delivered by photo-immunoconjugates. Hence, the 
nanodelivery systems provided the larger loading 
capacity and increased accumulation in the tumors. 
They efficiently maximized the photo-toxicity to the 
targeted tissues. However, the photoimmunotherapy 
for glioblastoma was still in its infancy. The immune 
activation was not studied well for these anti-glioma 
treatments. 

Combined gene therapy with immunotherapy 
Gene therapy had emerged as a novel treatment 

for various human diseases including cancers. It could 
specifically regulate the oncogenes in the anti-tumor 

treatments [153, 154]. The adenovirus-mediated gene 
therapy with sitimagene ceradenovec and ganciclovir 
after resection increased survival time of patients with 
newly diagnosed glioblastoma multiforme [155]. 
Hence, the gene therapy was usually proposed as a 
useful adjuvant for the current glioblastoma 
treatments [156]. The combination of gene therapy 
with immunotherapy should increase the whole 
outcomes of glioblastoma treatments [157, 158]. For 
example, Maria-Carmela Speranza et al. utilized the 
nonreplicating adenovirus containing the HSV TK 
gene (AdV-tk) to potentiate the anti-PD-1 efficacy in 
syngeneic glioblastoma mouse models. The AdV-tk 
could upregulate the IFN signaling and increase the 
PD-L1 levels. And cytotoxic CD8+ T cells were 
induced to accumulate in tumors. The combination 
treatment significantly increased the percentage of 
long-term survival (LTS ≥ 100 days) animals from 
30-50% (single agents) to 88% [159].  

Despite the potentials of gene therapy, the 
intrinsic characteristics of the gene limited the 
efficient delivery to tumor sites and hindered their 
progress to the clinical applications [26, 160, 161]. 
Especially the crossing through the BBB exhibited an 
extra challenge for anti-glioma treatments. Nano-
particles could compensate the shortages of the gene 
and safely deliver gene and immunotherapeutic 
agents to brain tumors [162]. For instance, Gulsah 
Erel-Akbaba et al. developed a cyclic peptide iRGD 
(CCRGDKGPDC)-decorated solid lipid nanoparticle 
(SLN) to deliver siRNA against both the epidermal 
growth factor receptor (EGFR) and programmed cell 
death ligand-1 (PD-L1) for combined therapy (Figure 
14) [163]. The targeting nanoparticles f(SLN)-iRGD: 
siRNA led to 54.7% and 58.6% decrease for EGFR and 
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PD-L1, respectively. Moreover, the median survival of 
the mice treated with f(SLN)-iRGD:siRNA with radia-
tion increased to 38 days. These three combinations 
largely improved the survival of the GL261-bearing 
mice. 

Evidences exhibited that the gene therapy was 
usually applied to regulate the immunosuppressive 
signals and enhance the systemic therapy in glioma 
treatments [164]. These could synergistically augment 
the immune responses with immunotherapy. But the 
reported studies on this strategy were less. The gene 
therapy and immunotherapy usually served as 
adjuvant treatments in existing anti-glioma therapies. 
Moreover, the lack of specific genes and antigens was 
still the critical barriers for satisfied treatments. 

Conclusion and Perspective 
Glioblastoma is a complex and deadly disease in 

central nervous system. The high infiltration, hetero-
geneity, rapid growth rate and regeneration ability of 
the GBM stem cells result in poor prognosis and high 
recurrence. Furthermore, the existence of the blood- 
brain barrier (BBB) greatly hinders adequate 
accumulation of the therapeutic drugs in tumor sites, 
which also induces drug-resistance to therapy. With 
the deep understanding of glioblastoma, improved 
therapeutic strategies are exploited to enhance the 
efficacy against glioblastoma. They mainly include 
chemotherapy, gene therapy, radiotherapy, immuno-
therapy, phototherapy and magnetothermal therapy. 
Considering the intricate characteristics of GBM, 
combined-therapeutic strategies are developed for 
synergistic anti-glioma effects and reduced drug- 
resistance [165]. And the pros and cons of the 
combined therapies are summarized and illustrated in 
Table 1.  

 

Table 1. The pros and cons of the combined treatments against 
glioblastoma.  

Combined treatments Advantages Disadvantages 
Chemotherapies Reduced drug resistance; 

Multiple mechanisms 
Non-specificity to tumor 
cells 

Chemotherapy and 
radiotherapy 

Increased tumor 
sensitivity to 
chemotherapeutic drugs 

Hard to control radiation 
margin; Timing of 
radiotherapy 

Chemotherapy and 
phototherapy 

Multiple mechanisms Limited tissue penetration 
of light; Drug to light 
interval 

Chemotherapy and 
immunotherapy 

Multiple mechanisms; 
Reduced metastasis and 
recurrence 

Lack of specific antigens; 
Timing of immunotherapy 

Chemotherapy and 
magnetothermal therapy 

Multimodality; 
Theranostics 

Thermal efficiency; Hard 
to focus heating on tumor 
sites 

Phototherapy and 
immunotherapy 

Enhanced targeting; 
Reduced metastasis and 
recurrence 

Restricted ratio of 
photosensitizer to 
antibody; 

Gene therapy and 
immunotherapy 

Indirect anti-tumor effect; 
Reduced drug resistance 

Lack of specific genes and 
antigens 

 
In review of the intensive studies for GBM, some 

problems should be settled for optimizing GBM 
treatment. Firstly, the choices of the therapeutic 
agents in combined strategies are very important for 
overall treatment outcomes. The therapeutic 
mechanisms of the agents should not counteract the 
pharmaceutical effects for each other. Some of the 
combinations in clinical trials do not obtain the 
satisfied results compared with monotherapies [40, 
166]. It has been reported that the combination of 
erlotinib and sorafenib in phase II study exhibits 
significant pharmacokinetic interactions, which may 
display negative impacts on the therapeutic efficacy 
[167]. Moreover, the recent therapeutic agents selected 
for therapy can not cover the critical points in the 
progression of GBM. Therefore, multi-modal 
combined strategies should be tesed in anti-glioma 
treatments. Secondly, the timing of the therapeutic 
strategies in combination needs more investigations. 
For instance, the administration timing of 

 

 
Figure 14. The chemical structures of the DSPE-PEG(2000)-DBCO, Esterquat and iRGD peptide, and the construction of the nanoparticles SLN, f(SLN), f(SLN)-iRGD and 
f(SLN)-iRGD:siRNA. Adapted with permission from [163]. Copyright 2019 American Chemical Society. 
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chemotherapy in combinations obviously affects the 
efficacy of immunotherapy [127]. Hence, alternative 
therapeutic strategies are required to attempt for 
maximizing the therapeutic effects. Finally, the 
suitable delivery systems are demanded for effective 
drug delivery. Increasing studies demonstrate that 
nanosystems perform preferable therapeutic results in 
comparison with free therapeutic agents. The delivery 
platforms possess active brain targeting and diverse 
stimuli-responses [168, 169]. Therefore, these 
strategies significantly promote the loading agents to 
cross BBB and accumulate in GBM cells. And they 
extend the overall survival time of GBM in animal 
experimental studies. However, glioblastoma remains 
a complicated cancer. The current reported targets are 
not specific for the endothelial cells of BBB and tumor 
cells. The further and better understanding of the 
intricate tumor microenvironment is still required. 
Hence, the specific targets and the suitable 
stimuli-responses of the GBM are required to exploit, 
which will facilitate the diverse agents to release in 
the right places and ensure sufficient therapeutic 
agents in GBM cells. Moreover, most of the 
biomaterials in studies have not been approved by 
FDA, which aggravate the difficulties for clinical 
translation. 

Although the current combined-therapeutic 
strategies have enhanced the efficacy of GBM 
treatments, great efforts are still required on the 
understanding the complicated mechanisms of the 
growth, progression and invasion process of GBM. 
Multidisciplinary knowledge of GBM will guide the 
development of optimal therapeutic strategies and 
rational nanosystems for satisfied outcomes, and 
direct the investigation for other malignant diseases in 
central nerves system. 
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