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Abstract 

Prior reports have shown optical coherence tomography (OCT) can differentiate normal colonic 
mucosa from neoplasia, potentially offering an alternative technique to endoscopic biopsy - the 
current gold-standard colorectal cancer screening and surveillance modality. To help clinical 
translation limited by processing the large volume of generated data, we designed a deep 
learning-based pattern recognition (PR) OCT system that automates image processing and provides 
accurate diagnosis potentially in real-time. 
Method: OCT is an emerging imaging technique to obtain 3-dimensional (3D) “optical biopsies” of 
biological samples with high resolution. We designed a convolutional neural network to capture the 
structure patterns in human colon OCT images. The network is trained and tested using around 
26,000 OCT images acquired from 20 tumor areas, 16 benign areas, and 6 other abnormal areas. 
Results: The trained network successfully detected patterns that identify normal and neoplastic 
colorectal tissue. Experimental diagnoses predicted by the PR-OCT system were compared to the 
known histologic findings and quantitatively evaluated. A sensitivity of 100% and specificity of 99.7% 
can be reached. Further, the area under the receiver operating characteristic (ROC) curves (AUC) 
of 0.998 is achieved. 
Conclusions: Our results demonstrate that PR-OCT can be used to give an accurate real-time 
computer-aided diagnosis of colonic neoplastic mucosa. Future development of this system as an 
"optical biopsy" tool to assist doctors in real-time for early mucosal neoplasms screening and 
treatment evaluation following initial oncologic therapy is planned. 
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Introduction 
Cancer of the colon and rectum is the second 

most common malignancy diagnosed globally and 
represents the 2nd leading cause of cancer mortality 
worldwide [1]. In the US, approximately 145,600 cases 
of colorectal cancer are diagnosed annually [2]. 
Arising from the inner surface – or mucosal layer – of 
the colon, these cancers can penetrate through the 

deeper layers of the colon and spread to other organs. 
Left untreated, the disease is fatal. Current 
endoluminal screening or surveillance for colorectal 
malignancy is performed by flexible endoscopy, 
which involves visual inspection of the mucosal lining 
of the colon and rectum with an optical camera 
mounted on the endoscope. Abnormal appearing 
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areas are then biopsied for histologic analysis. With 
the current standard of care, there are several 
shortcomings of endoscopic screening. First, this 
technique relies on visual detection of abnormal tissue 
to guide biopsy site selection. However, because small 
or sessile lesions are hard to detect with the naked 
eye, early malignancies are often missed [3–5]. 
Second, visual endoscopy can only detect changes in 
the surface of the bowel wall; while sufficient for 
screening, this limitation greatly reduces the efficacy 
of endoscopic surveillance after treatment of certain 
tumors. In particular, treated rectal tumors can 
completely disappear from the mucosal surface while 
still leaving nests of tumor cells hidden beneath the 
mucosal surface [6–8]. To improve screening and 
surveillance of colorectal cancers, better imaging 
modalities and methods are needed. 

In prior work, several research groups have 
demonstrated promising results that suggest OCT, an 
established high resolution imaging modality [9–13], 
may address the shortcomings of traditional camera 
endoscopy in the upper gastrointestinal tract [14–16] 
or large intestine [17–19]. OCT has been shown to 
accurately differentiate abnormal from normal tissue 
in multiple organs as an “optical biopsy” tool [20–23] 
in both murine and human colorectal models [24–27]. 
However, clinical application of the technology is 
complicated by the large volume of data generated 
and the subtle qualitative differences between normal 
and abnormal tissue. We hypothesize that computer 
aided diagnosis (CAD) may be valuable in adapting 
this modality to clinical applications. 

The success of convolutional neural networks 
(CNN) in computer vision tasks has popularized deep 
learning for CAD imaging [28–30]. CNNs have been 
applied to OCT images for detecting ophthalmo-
logical and cardiac diseases [31–33] as well as 
segmenting healthy esophagus layers in vivo [34]. 
Moreover, CNN has also been applied to colon cancer 
diagnostics in an image classification style [35–37]. 
Unfortunately, these methods require a large number 
of labeled training images, making them difficult to 
develop for clinical applications. Fortunately, recent 
advances on pattern recognition neural networks 
make it possible to detect and localize certain objects 
from a single image [38–40] using a small training 
dataset. These networks search for multiple patterns 
in each training image and allow PR-networks to be 
trained from fewer images as compared with older 
models. PR-networks have been previously explored 
in multiple settings [29], however, PR-networks 
paired with OCT have been unexplored in the 
colorectal cancer literature.  

Here, we report the first study of PR-OCT in 
differentiating normal from neoplastic colorectal 

tissue. It is an OCT system trained by RetinaNet, a 
novel neural network architecture, for pattern 
recognition tasks. A dentate structural pattern has 
been utilized as a structural marker of normal 
specimens and used in PR-OCT prediction. Our 
method leverages the recent advancement in object 
detection, which localizes and classifies the diagnostic 
features at real-time, and achieves an accurate 
classification result. This initial study demonstrates 
the feasibility of using PR-OCT as an "optical biopsy" 
tool to assist doctors in real-time for mucosal 
neoplasms screening and treatment evaluation 
following initial oncologic therapy. 

Materials and Methods 
Colon specimen preparation 

Patients undergoing extirpative colonic resection 
at Washington University School of Medicine were 
recruited prospectively into our study. Immediately 
following surgical resection, colon specimens 
underwent imaging of both normal bowel wall as well 
as areas of known abnormality. For each 3-D imaging 
task, several volumes of 10 mm x 20 mm x 1.6 mm or 5 
mm x 10 mm x 1.6 mm were selected depending on 
the available time for the image task. Each imaged 
volume has one 3-D dataset for further data 
processing. Those scanned volumes were far from 
each other to preserve independence between data 
sets. This study was approved by the Institutional 
Review Board of Washington University School of 
Medicine, and informed consent was obtained from 
all patients. All samples were imaged within a 
one-hour period prior to fixation in formalin for 
routine pathological evaluation.  

OCT system setup 
Our swept-source OCT system (Figure 1A) is 

based on a swept source (HSL-2000, Santec Corp., 
Japan) with a 1310 nm center wavelength, 110 nm full 
width at half maximum bandwidth, and 20 kHz scan 
rate. The input light is split by a 50-50 fiber coupler 
and then directed to a reference arm and a sample 
arm by two circulators. Fiber polarization is 
controlled by two manual fiber polarization 
controllers. The reference arm is attenuated by a 
variable density filter. A galvo mirror system 
(GVS002, Thorlabs) is used to scan the sample arm 
light beam. The interference signal was detected by a 
balanced detector (PDB450C, Thorlabs) and sent to a 
data acquisition board (ATS9462, Alazartec 
Technologies Inc). Real-time OCT B-scan images are 
displayed on the monitor. The lateral resolution of the 
system in air was 10 µm, and the axial resolution was 
6 µm by the FWHM definition. 
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Figure 1. PR-OCT imaging procedures. A. Homemade SS-OCT system: FC: fiber coupler, CR: circulator, FPC: fiber polarization controller, CL: collimator, ATT: 
attenuator, MR: mirror, GV: galvo mirror system, OBJ: objective lens, PD: photodetector, DAQ PC: data acquisition computer; B. An illustration of RetinaNet. The left part is 
an FPN with a ResNet-18 backbone, and the right part are two sub-networks predicting the classifications and locations. 

 

OCT image labeling and pattern marking 
Prior to each imaging study, pathologists or 

surgical residents provided guidance to the 
researchers on the sample orientation and location of 
the examined tumor. Then OCT recorded several 
datasets accordingly. Each OCT image was labeled as 
“cancer”, “normal”, “adenomatous polyp”, “treated 
complete responder”, and “treated non-responder” 
based on the pathology record of each specimen. This 
manuscript focuses on identifying normal from 
malignant specimens, and the preliminary prediction 
results for other tissue types are also reported. 

Two key imaging patterns were then marked to 
identify normal colonic mucosa from malignancies: 
“Teeth” and “Noise”. Literatures previously reported 
that normal colonic mucosa is associated with a 
dentate imaging structure, which we termed “Teeth” 
for this neural network [41,42]. The “Noise” category 
represents strong signals created by hyper-reflection 
and it has no association with any tissue signature. To 
train the network, we manually inspected each 
training B-scan image from both cancer and normal 
cohorts and marked the specific “Teeth” or “Noise” 
patterns using the labelImg toolbox. Four researchers 
were involved for annotating the boxes with a 
consistent criterion to avoid human bias. Since we 
detected the features based on the structure rather 
than the size of the features, we rescaled the input 
image to a size of 608 × 608, which favors our network 
structure. The labeled coordinates were also 

transformed to be registered with the image 
accordingly. A typical labeled training image is 
illustrated in Figure 2A. 

Dense object detection with RetinaNet  
We used a modified RetinaNet to detect 

structural patterns associated with normal or 
malignant tissue [39]. The RetinaNet is composed of 
three parts: a backbone convolutional network that 
generates feature maps and two subnetworks that 
perform objection classification and bounding box 
regression. For our task, we used a feature pyramid 
network (FPN) backbone on top of a feedforward 
18-layer ResNet [43,44]. The feature maps generated 
from the backbone are then fed into a convolutional 
subnetwork for object classification and boundary 
coordinates regression, as illustrated in Figure 1B. 
Four anchors with two aspect ratios ({1:1,1:2}) at two 
scales are used on each pyramid level [38]. Each 
anchor is assigned with a 3-dimensional one-hot 
vector representing its class (background, teeth, or 
noise) and a 4-dimensional vector representing the 
coordinates of the upper left and lower right corners 
of the rectangular box that surrounds the objects. The 
classification is judged by the focal loss [39] and the 
localization accuracy is evaluated with the robust 
smooth L1 loss [38]. The network is trained for 80 
epochs using the Adam solver [45]. Though reported 
successful for many other CAD tasks [29,32], transfer 
learning techniques are not used here because 
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empirically these methods degrade the performance 
for our study [46]. We suspect this may due to the 
mismatch between the OCT colon images and the 
nature photograph images. Thus we train the network 
from scratch using the labeled OCT images and the 
Xavier initialization [47]. 

After training, the model was tested on 
remaining unseen patients recruited later. During 
testing, once a pattern was detected in an OCT image, 
a score was given to estimate the probability of a 
correct prediction. Then the prediction results were 
used to classify the image as benign or neoplastic. For 
each input B-scan image, the RetinaNet provided a list 
of boxes along with its confidence (probability) 
belonging to every pattern classes. The score for each 
B-scan image belonging to the normal class was 
calculated by summing the “Teeth” confidence value 
over all the boxes. Finally, we averaged the score over 
N sequenced OCT B-scan images. This score is used to 
represent the diagnostic result for the volume 
corresponding to these N images. Figure 2B 
summarizes the PR-OCT working flow in a flowchart. 

Statistical analysis 
 ROC curves were used for the evaluation of our 

model and the AUCs were used as a performance 
indicator. With the ground truth acquired from the 
histology, we categorized the system’s prediction as 
true positive (TP), false positive (FP), true negative 
(TN), and false negative (FN). We denoted positive as 
predicting cancer and negative as predicting normal. 
True and false correspond to the presence of and the 
absence of a match with the histologic result, 
respectively. The sensitivity and specificity can then 
be calculated; from which we plot the ROC by 
computing the  

sensitivity = TP / (TP + FN) 

    and 

1 - specificity = FP / (FP + TN) 

using different threshold values for the binary 
classification. The closer the ROC curve is to the upper 
left corner, the more accurate the neural network 
model has performed. 

 

 
Figure 2. A. A training OCT B-scan image from a normal colon. Both “Teeth” and “Noise” classes are labeled with rectangular boxes shown in different colors; B. A flowchart 
summarizes the PR-OCT work flow: first, colorectal B-scan images were collected and separated into training and testing sets; second, “Teeth” and “Noise” patterns were 
labeled on training images and fed into the RetinaNet; finally, the trained model was tested on all testing images and the performance was evaluated. 
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Results 
Preparation of PR-OCT: establishing OCT 
dataset and training RetinaNet model 

 A total of 20 tumor areas, 16 normal areas, 2 
adenomatous polyp areas, 2 treated areas from 
complete responders, and 2 treated areas from non- 
responders from 24 patients (mean age 69 years old, 
range: 53-91) were imaged and processed ex vivo from 
August 2017 to July 2019 in Washington University 
School of Medicine. Diagnoses were ascertained by 
subsequent surgical pathology examination. Details 
can be found in Table 1. 

 

 
Figure 3. 3D-OCT images of normal and cancerous human colon 
specimens. A. Normal specimen en face image constructed by axial summation; B. 
XZ cross-section of normal colon specimen; C. YZ cross-section image; D. Enlarged 
area of A; E. Representative en face histology; F. Photograph of a normal specimen; 
G. Cancerous specimen en face image constructed by axial summation; H. XZ 
cross-section of cancerous colon specimen; I. YZ cross-section image. 

 
In the training cohort of images, 838 labeled OCT 

images from 4 tumor areas and 4 normal areas 

acquired from 4 patients were included, where 2176 
“Teeth” and 1875 “Noise” patterns were marked. We 
only used 4 tumor areas and 4 normal areas for 
training since the AUC of the ROC for our testing set 
did not improve too much as we included more areas 
in the training set, as shown in Supplementary 
Material (Figure S1). The remaining imaged areas, 
which were not seen by the trained model (from 
different patients), including 25,250 OCT images were 
categorized as the testing cohort. 

 

Table 1. Lesion characteristics (patients’ mean age 69 years old, 
range: 53-91) 

Pathology 
reports 

Number 
of 
imaged 
areas 

Number 
of OCT 
images 

Average 
OCT 
images 
per area 

Median 
OCT 
images 
per area 

Average 
imaged 
areas per 
patient 

Median 
imaged 
areas per 
patient 

Cancer 20 12550 628.4 600.0 1.1 1.0 
Normal 16 8038 502.4 500.0 1.2 1.0 
Adenomatous 
polyp 

2 2500 1250.0 1250.0 1.0 1.0 

Complete 
responder 

2 1500 750.0 750.0 1.0 1.0 

Non-responder 2 1500 750.0 750.0 1.0 1.0 

 

Qualitative OCT imaging results 
Distinct patterns were identified in normal colon 

tissues. Uniform crypt structures of normal colonic 
tissue created dentate structures within SS-OCT 
3D-scanning images; likewise, the heterogeneous 
structure distribution of cancerous tissue yielded 
sparse dentate structures with little organized pattern. 
Representative images of normal colon tissues, 
cancerous tissues, and corresponding H&E slides are 
shown in Figure 3. 

 Figure 3A displays an en face image of a normal 
colon specimen formed by axial summation along the 
depth direction (z-dimension) of the entire 3D dataset 
for visualization. A clear crypt structure can be 
visualized as dot patterns in the image. When seen in 
cross-section (Figure 3B in XZ plane and Figure 3C in 
YZ plane), the uniform crypt structures create a 
dentate pattern that is replicated throughout normal 
colonic wall structure. Figure 3D shows an enlarged 
area in Figure 3A. Figure 3E is a representative en face 
histology image. The OCT and histology images have 
exactly the same size and come from similar, but not 
identical, location within the colon specimen. A 
microstructural en face crypt pattern can be clearly 
visualized in the enlarged area and it correlates well 
with the histology image. The average crypt diameter 
is 68 𝜇𝜇𝜇𝜇 in the enlarged area and 70 𝜇𝜇𝜇𝜇 in the en face 
histology, which suggests a close match. Note that 
tissue fixation as performed on standard pathologic 
processing results in some tissue shrinkage due to the 
removal of water from specimens. However, the 
degree to which this distorts measurements is difficult 
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to assess and occurs more markedly on gross 
measurements than on microscopic ones. The degree 
of shrinkage also varies by tissue type; while renal 
tumors were found to shrink ~10% during fixation 
process [48], others have found that the majority of 
shrinkage occurs immediately after resection due to 
devascularization of the tissue. Since all 
measurements for this study were taken after 
resection, this may explain the similarities of size that 
we found between fresh ex vivo measurements and 
those taken from histology slides after fixation. The 
photograph of the normal part of the colon specimen 
is displayed in Figure 3F for reference. Figure 3G 
shows the en face image of a cancerous colon specimen 
formed by axial summation. There is a heterogeneous 
structure distribution and the well-organized crypt 
pattern is broken. This may due to the neoplastic 
growth. When seen in cross-section (Figure 3H-I), no 
dentate line can be observed within those 
cross-sectional images.  

Teeth pattern detection result 
 The trained RetinaNet was then tested on the 

testing cohort for pattern recognition purpose. Since 
the “Teeth” pattern is related to the normality of colon 
specimens, our network only predicted all “Teeth” 
patterns within the testing OCT images. Figure 4A-F 
display pattern recognition results from 6 typical OCT 
images. In normal cases (Figure 4A-B), the “Teeth” 
patterns are detected and marked by green boxes with 
the corresponding scores beside each box. However, 
no such pattern is detected in the cancerous case 
(Figure 4C). Figure 4D is the testing result of an 
adenomatous polyp. No “Teeth” pattern was 
detected. For the treated complete responders, the 
“Teeth” patterns come back as shown in Figure 4E. In 
contrast, no such pattern was detected in treated 
non-responders (Figure 4F). Only patterns with a 
score larger than 0.5 are shown for a better 
visualization. More tested normal and cancer cases 
can be found in respective Supplementary Video S1, 
Video S2, Video S3, and Figure S4. 

 

 
Figure 4. PR-OCT dentate pattern detection results for: A-B. normal colon images, green boxes are the predicted “Teeth” patterns and the corresponding scores are 
labelled on the bottom; C. cancer colon images; D. polyp colon images; E. treated complete responder colon images; F. treated non-responder colon images. G. A swarm plot 
on a box plot of prediction scores for normal, cancer, polyp, treated complete responder (Responder in the figure), and treated non-responder (NonResponder in the figure) 
colon specimens. 
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Figure 5. Plot of the ROC of the binary classification (normal vs. cancer) 
result. The AUC is labeled under the ROC. 

 

Table 2. Cohen’s d between all scores of five tissue groups 

 Normal Cancer Polyp Responder Non-responder 
Normal  3.34 2.47 1.47 2.16 
Cancer   0.04 3.52 0.43 
Polyp    3.62 0.44 
Responder     2.20 
Non-responder      

 

Identifying colon region with endogenous 
optical contrast 

The identification results of tissue category using 
the trained neural network are displayed in Figure 4. 
During testing, N sequenced OCT B-scan images were 
used for tissue identification. In this report, N was 
heuristically chosen to be 40, as the AUC of the ROC 
improves slowly with the increasing of N. Evaluation 
of different choices of N can be found in 
Supplementary Material (Figure S2). Figure 4G shows 
a swarm plot superimposed on a box plot of the 
prediction scores for the testing cohort. The median 
value of the normal ones (2.76) is noticeably higher 
than the cancer ones (0.11). For polyps, the median 
score is close to cancer (0.13). Treatment responders 
(median value: 1.08) show a distinct difference to 
non-responders (median value: 0.05). The treatment 
responder class has a score closer to normal specimen, 
and the non-responder class is closer to cancer tissue. 
The Cohen’s d between all scores of five tissue groups 
can be found in Table 2. Statistically, a larger d means 
a larger difference between two groups. 

Figure 5 plots the ROC of the binary 
classification (normal vs. cancer) result. The true 
positive rate and the true negative rate are obtained 
by setting the threshold from 0 to 10. Note that the 
curve is plotted in the log-log scale because the AUC 
is very close to 1, which makes the linear scale plot 
indistinguishable from the boundary. A sensitivity of 
100% and specificity of 99.7% can be achieved. The 
AUC of 0.998 is achieved in our study. 

Moreover, we have tested the classification time 
using different numbers of sequenced OCT images for 
identification. Using the CPU clock, a total time is 
calculated by recording the overall time cost to predict 
2000 images using a batch size of N on a Nvidia 
Geforce GTX 1070 GPU. Then we report the 
classification time as the total time divided by 
2000/N. The result can be found in Figure S2. It took 
around 3.3 s for classifying 40 sequenced OCT images. 

Discussion 
 This is the first report using a RetinaNet-based 

PR-OCT system to distinguish normal from neoplastic 
tissue within human colorectal specimens with 
real-time diagnosis capability. Using around 26,000 
OCT images acquired from 20 tumor areas, 16 normal 
areas, 2 adenomatous polyp areas, 2 treated areas 
from complete responders, and 2 treated areas from 
non-responders, our system has achieved excellent 
performance. Quantitative scoring of the estimated 
probability of a normal specimen was used to 
evaluate performance. The accumulated scores from 
40 sequenced OCT images were used for 
identification of tissue categories and its strength in 
differentiating cancer and normal in ex vivo 
specimens, with an AUC of 0.998 in 3.3 s. 

Previously, a “Teeth” pattern was found as a 
landmark in OCT images of human normal colon due 
to the increased optical transmission through the 
normal crypt lumens [41,42]. Consistent results were 
found in this report. This dentate pattern was 
therefore used as the basis for tissue type prediction 
using the RetinaNet system. While we achieve a 
distinct classification between normal and cancer 
specimens, the preliminary test on polyps, treated 
complete responders, and non-responders is also a 
success. Recent studies have shown that changes in 
crypt size and appearance are associated with the 
earliest forms of colorectal cancer [49]; therefore, our 
PR-OCT may lead to more sensitive assessment of 
early malignancies and improved detection of 
residual malignant tissue after chemotherapy and 
radiation treatment. 

Clinical translation of PR-OCT requires 
integration of the probe into the colonoscope for 
“optical biopsy” in real time during endoscopic 
evaluation. Several studies have demonstrated the 
feasibility of endoscopic OCT in both rodent and 
human models [17–19,26,27], especially, camera- 
guided endoscopic OCT [24,25]. Current screening 
methods for colorectal tissue rely on histologic 
evaluation of biopsy specimens, which take days to 
receive. With a classification time of only few seconds, 
PR-OCT shows a great potential to provide accurate 
real-time diagnosis. In addition, PR-OCT was tested 
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on OCT images with different field of views (FoV) 
and the prediction power was similar. In 
Supplementary Video S1 and S2, examples with larger 
FoV can be found; examples of smaller FoV are shown 
in Supplementary Video S3, and Figure S4. Though 
we assume the PR-OCT’s performance can generalize 
across different OCT systems, future efforts may focus 
on testing the performance on other OCT systems, i.e. 
spectral domain OCT. Therefore, suitable for serving 
as an “optical biopsy” tool to localize normal and 
malignant tissues with microscopic resolution. This 
can help guide more targeted biopsy. Once 
implemented into colonoscope, it can assist doctors 
during the colonoscopy procedure to potentially 
provide a high diagnostic accuracy of early 
malignancy. 

Interestingly, we have achieved an accurate 
classification on a large amount of unseen testing data 
set with only limited training images. This is largely 
due to the training method employed in this study. 
Rather than throw images along with their 
classification labels, significant image patterns 
associate with normal specimens’ structure have also 
provided to the network. In addition, a neural 
network designed for computer vision tasks is well 
suited for our objective – detecting one simple 
“Teeth” pattern in a grayscale image. Therefore, small 
amount of training data can yield a good prediction 
result in unseen images. Moreover, the powerful idea 
of introducing focal loss in RetinaNet dramatically 
improves the performance of the object detector 
under the condition of severely unbalanced classes 
(i.e., thousands of locations are evaluated by the 
detector, while only a few contain objects). Regarding 
object detection speed, RetinaNet also gives faster 
classification than its predecessors because it is a 
one-stage object detector [38,40,50]. 

One limitation of the study is the ex vivo nature 
of all imaged specimens. The human in vivo 
environment is likely more complex. For example, 
bowel movement, surgical adhesions, colonic 
strictures, etc. can cause difficulties in scanning and 
imaging. When fully developed, an OCT catheter will 
be delivered by colonoscope to the area of interest 
within the bowel [51–54]. The system was tested on a 
very limited number of other abnormalities: 2 
adenomatous polyp specimens. As the adenomatous 
polyp will potentially grow into cancer, it is 
promising that we got a lower predicting score which 
was close to cancerous tissue. Additionally, there are 
other colorectal abnormalities were not tested by 
PR-OCT, such as inflammatory bowel disease and 
hyperplastic polyp pathology. The ability to 
differentiate adenomatous from hyperplastic polyps 
would make a significant clinical impact. Since most 

biopsy-proven hyperplastic polyps will not undergo 
surgical resection due to the nature that they will not 
grow into malignancy, we did not encounter any 
patients with incidentally found hyperplastic polyps. 
We will need to test PR-OCT’s ability to differentiate 
these two types of polyps in future in vivo patient 
studies. Finally, the system was tested on a very 
limited number of tumors that had previously 
received radiation and chemotherapy treatment; 
though the result is promising, the number of 
specimen is limited. These devised lesions may 
require more categories in our PR-OCT classification 
design. It is also worth to mention that if the training 
sample is too small (i.e. one patient), the prediction 
power for abnormal lesions will drop as shown in 
Supplementary Figure S3. Future work includes 
training the network on an extended training set with 
more tissue abnormalities from a larger pool of 
patients. 

In conclusion, the results presented suggest that 
PR-OCT may differentiate normal from cancerous 
colon rapidly, potentially enabling for real-time use. 
With further improvement, PR-OCT may enable 
"optical biopsy" of colorectal tissue in real time, which 
could direct diagnostic and therapeutic interventions 
to targeted areas of unusual mucosal growth. While 
the technology itself is not a direct treatment, one of 
its potential future applications is to assess the novel 
“wait and watch” rectal cancer treatment manage-
ment strategy which allows treatment responders 
with no residual cancer left to be followed up safely 
by imaging rather than surgery and therefore 
preserves their quality of life [55,56]. Though 
promising, these preliminary results warrant further 
study. Specifically, future efforts will include both 
hardware and software integration of PR-OCT into 
the endoscope, fine-tuning the network, and 
evaluation in the in vivo setting. 

Abbreviations 
OCT: optical coherence tomography; PR: pattern 

recognition; 3D: 3-dimensional; ROC: receiver 
operating characteristic; AUC: area under the curve; 
CAD: computer aided diagnosis; CNN: convolutional 
neural networks; TP: true positive; FP: false positive; 
TN: true negative; FN: false negative; FoV: field of 
view. 
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