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Abstract 

Background: There is an urgent need for the detection of aggressive prostate cancer. Glycoproteins play 
essential roles in cancer development, while urine is a noninvasive and easily obtainable biological fluid that 
contains secretory glycoproteins from the urogenital system. Therefore, here we aimed to identify urinary 
glycoproteins that are capable of differentiating aggressive from non-aggressive prostate cancer. 
Methods: Quantitative mass spectrometry data of glycopeptides from a discovery cohort comprised of 74 
aggressive (Gleason score ≥8) and 68 non-aggressive (Gleason score = 6) prostate cancer urine specimens 
were acquired via a data independent acquisition approach. The glycopeptides showing distinct expression 
profiles in aggressive relative to non-aggressive prostate cancer were further evaluated for their performance 
in distinguishing the two groups either individually or in combination with others using repeated 5-fold cross 
validation with logistic regression to build predictive models. Predictive models showing good performance 
from the discovery cohort were further evaluated using a validation cohort. 
Results: Among the 20 candidate glycoproteins, urinary ACPP outperformed the other candidates. Urinary 
ACPP can also serve as an adjunct to serum PSA to further improve the discrimination power for aggressive 
prostate cancer (AUC= 0.82, 95% confidence interval 0.75 to 0.89). A three-signature panel including urinary 
ACPP, urinary CLU, and serum PSA displayed the ability to distinguish aggressive prostate cancer from 
non-aggressive prostate cancer with an AUC of 0.86 (95% confidence interval 0.8 to 0.92). Another 
three-signature panel containing urinary ACPP, urinary LOX, and serum PSA also demonstrated its ability in 
recognizing aggressive prostate cancer (AUC=0.82, 95% confidence interval 0.75 to 0.9). Moreover, consistent 
performance was observed from each panel when evaluated using a validation cohort. 
Conclusion: We have identified glycopeptides of urinary glycoproteins associated with aggressive prostate 
cancer using a quantitative mass spectrometry-based glycoproteomic approach and demonstrated their 
potential to serve as noninvasive urinary glycoprotein biomarkers worthy of further validation by a 
multi-center study. 

Key words: aggressive prostate cancer; urinary biomarkers; noninvasive prostate cancer; glycoproteomics; mass 
spectrometry 

Introduction 
Prostate cancer (PCa) is the most frequently 

diagnosed cancer and the second leading cause of 
cancer-related death for men [1]. However, most 
patients presenting with PCa actually have a low-risk 
form (Gleason score = 6) that does not require 

interventions including unnecessary biopsies and 
treatments [2]. Currently, there are no Food and Drug 
Administration (FDA)-approved noninvasive bio-
markers that can be used to differentiate aggressive 
(AG) from non-aggressive (NAG) PCa. Therefore, 
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discovering noninvasive biomarkers for AG PCa is 
crucial. 

Urine is a promising specimen for the discovery 
of noninvasive biomarkers associated with PCa. 
Urine-derived genetic biomarkers from RNA and 
DNA or metabolites have been investigated for their 
diagnostic and prognostic value for PCa [3-13]. 
Urine-derived long non-coding RNA prostate cancer 
antigen-3 (PCA3) is the first US FDA approved 
urinary biomarker for PCa to aid decision making for 
repeated biopsies [14], while its ability in detecting the 
aggressiveness of PCa is limited [15]. A recent 
multi-center study assessed the diagnostic and 
prognostic values of PCA3 and TMPRSS2:ERG gene 
fusions for PCa., in which TMPRSS2:ERG gene 
fusions, other than PCA3, has demonstrated 
prognostic value for PCa [7]. Urinary miRNAs have 
been proposed as potential prognostic biomarkers for 
PCa and different panels of urinary miRNAs have 
been used to predict the aggressiveness of the cancer 
with comparable performance to most tissue-based 
prognostic assays (AUC around 0.7) [11]. Besides 
miRNAs, urine proteins have also been investigated, 
for which moderate performance is observed in 
distinguishing the extracapsular stage pT3 PCa from 
the organ-confined stage pT2 PCa (AUC=0.74) [9]. 
Nonetheless, due to the heterogeneous nature of PCa 
[6], there is still no ideal marker for the detection of 
aggressive PCa. Thus, it is essential to discover novel 
biomarkers that can work independently or in 
combination with currently available biomarkers to 
improve the discrimination power towards aggressive 
PCa. 

Glycoproteins play essential roles in cancer 
development or progression [16-22]. Most of the 
FDA-approved biomarkers for cancer diagnosis and 
monitoring are glycoproteins [16]. They are often 
present on the cell surface or secreted from cells; 
therefore, they can be found in body fluids (e.g., 
serum or urine) and serve as noninvasive biomarkers. 
For the study of PCa, urinary glycoproteins are 
appealing targets for several reasons. First, the urine 
collected immediately after the digital rectal 
examination (DRE) of PCa patients may contain 
glycoproteins secreted or shed from tumor tissues that 
may be associated with the aggressiveness of the 
cancer. Second, our previous research has 
demonstrated that the majority of cancer-associated 
glycoproteins identified from prostate tissue samples 
are more readily detected in patients’ urine in higher 
abundances than in their serum [23, 24]. These studies 
have laid the foundation for the increased use of urine 
specimens to identify glycoprotein biomarkers for 
PCa. While high-throughput analysis of clinical 
specimens is essential for biomarker discovery, the 

low protein concentration and interfering compounds 
in urine make it quite challenging for high- 
throughput proteomic analysis. Recently, our lab has 
reported an automated sample preparation procedure 
to process urine samples for proteomics and glyco-
proteomics analysis with high reproducibility and 
high throughput [25, 26], which paves the way for 
analyzing large cohorts of clinical urine samples. 

Furthermore, the rapid development of mass 
spectrometry (MS) technology has also advanced 
biomarker discovery. Data independent acquisition 
(DIA) MS works as a powerful tool offering high 
throughput and reproducibility for quantitative 
proteomics [27], which is suitable for analyzing large- 
scale clinical cohorts. Another advantage of DIA MS is 
that the acquired data set can be reprocessed to obtain 
previously unidentified features and make parallel 
comparisons of data acquired at different times. The 
acquired DIA data can serve as a digital bank of 
clinical samples, which would benefit long term 
biomarker screening and aid in the search for novel 
biomarkers based on the same samples without 
having to recollect the data. Therefore, DIA MS was 
used for quantitative analysis in this study because of 
its high-throughput, cost-effective and flexible nature. 

In this study, a high-throughput and integrated 
workflow for urinary glycoproteomics analysis was 
employed. We used an automated approach for urine 
sample preparation and glycopeptide isolation [25, 
26], coupled with DIA MS, to systematically and 
effectively conduct the quantitative analysis of 
glycopeptides derived from urine in order to discover 
unique urinary glycoproteins distinguishing 
aggressive PCa from non-aggressive PCa. We also 
compared and evaluated a combinatorial approach 
with candidate urinary glycopeptides and serum PSA, 
which may improve performance for aggressive PCa 
diagnosis. 

Methods 
Chemicals and reagents 

C4 resin beads (35 μm, 300 Å) were purchased 
from Separation Methods Technologies (Newark, 
DE). Oasis MAX resins and Sep-Pak C18 resins were 
obtained from Waters (Milford, MA). Sequencing- 
grade trypsin and Lys-C were acquired from Promega 
(Madison, WI). Other chemicals including urea, 
ammonia bicarbonate (AB), acetonitrile (ACN), 
trifluoroacetic acid (TFA), triethyl ammonium 
bicarbonate (TEAB), tris (2-carboxyethyl) phosphine 
(TCEP), iodoacetamide, and triethylammonium 
acetate were purchased from Sigma Aldrich (St. 
Louis, MO). Indexed retention time (iRT) standards (a 
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mixture of eleven peptides) were purchased from 
Biognosys Inc (Zurich, Switzerland). 

Automated tryptic digestion of human urine 
samples 

A discovery cohort containing post-digital rectal 
examination (DRE) urine samples from 74 AG PCa 
patients (Gleason score ≥8) and 68 NAG PCa patients 
(Gleason score = 6) as well as a validation cohort 
consisting of 77 post-DRE urine samples (40 AG PCa 
and 37 NAG PCa) were collected by the Department 
of Urology at Johns Hopkins University School of 
Medicine with approval from the Institutional Review 
Board of Johns Hopkins University under informed 
consent. Detailed information on the clinical urine 
specimens is listed in Table S1. 

The urine samples (500 µL) were desalted and 
protease digested on Versette (Thermo Scientific, 
Waltham, MA) according to the automated 
procedures that we published previously [25]. In 
brief, each aspiration/dispense cycle was performed 
in approximately two minutes at room temperature. 
C4-tips were fabricated with 30 mg of C4 resin beads 
packed into each tip and conditioned with 50% ACN 
containing 0.1% TFA followed by 0.1% TFA (10 cycles 
each). Next, urine samples (500 μL) were acidified 
(pH < 3) and then loaded onto the C4-tips (90 
aspiration/dispense cycles). The tips were rinsed with 
0.1% TFA followed by 100 mM triethyl ammonium 
bicarbonate (TEAB) to remove unbound and 
contaminant material (10 cycles each). Proteins 
binding onto the C4-tips were reduced with 10 mM 
Tris 2-carboxyethyl phosphine (TCEP) in 50mM TEAB 
buffer (pH 8.2) at room temperature and alkylated 
with 15 mM iodoacetamide in the dark (20 cycles 
each). Proteins were digested (1:40 enzyme/protein) 
by Lys-C for one hour (30 cycles) followed by trypsin 
digestion for another six hours (120 cycles) in 50 mM 
TEAB buffer containing 30% ACN to directly recover 
digested peptides from C4-tips to solution. The 
C4-tips were subsequently rinsed twice with 50% 
ACN containing 0.1% TFA to elute the remaining 
digested peptides into the solution. Peptide mixtures 
were dried down and stored at -20 °C until analyzed. 

Isolation of N-linked glycosite-containing 
peptide from human urine samples 

Intact glycopeptides were isolated from the 
peptide mixture for each urine sample according to 
our recently established automated method [26]. 
Briefly, 6 mg Oasis MAX resins and 20 mg C18 resins 
were stacked into tips to generate the mix-mode 
enrichment tip. The tips were sequentially 
conditioned by 100% ACN, 100 mM Triethyl-
ammonium Acetate (TAAB), 95% ACN containing 1% 

TFA, and 0.1% TFA (20 cycles each). Peptide mixtures 
from urine samples were dissolved in 0.1% TFA and 
put in 96-well plate, then loaded onto MAX/C18 tips 
with 15 cycles of aspirating/dispensing followed by a 
rinse with 0.1% TFA (10 cycles). Peptides were 
desalted via binding onto C18. Desalted intact 
glycopeptides were eluted from C18 to MAX using 
95% ACN / 1% TFA. Finally, the bound intact 
glycopeptides were eluted from MAX by 50% ACN / 
0.1% TFA and dried down. For the removal of 
N-glycans, intact glycopeptides were dissolved in 100 
mM Tris-HCl at pH 8.0 with 2 μL of PNGase F. The 
mixture was incubated in 37 °C overnight and 
subjected to C18-cleanup via StageTip method [28]. 
After removing N-glycans, N-linked glycosite- 
containing peptides (one tenth of the total glyco-
peptides enriched from 500 µL urine) were subjected 
to DIA MS analysis together with index retention time 
(iRT) peptides in a Q-Exactive HF-X mass 
spectrometer. 

Basic reversed-phase liquid chromatography 
(bRPLC) fractionation 

To build a PCa urine specific spectral library for 
direct database searching of the DIA data, glyco-
peptides from 142 human urine samples (discovery 
cohort) were pooled and fractionated by bRPLC for a 
deeper coverage of low abundance peptides. The 
pooled glycopeptides were load onto reversed-phase 
Zorbax Extend-C18 analytical column (1.8 μm resin, 
4.6×100 mm, Agilent Technology, CA), which was 
installed on an Agilent 1220 Infinity HPLC system. 
With buffer A (10 mM ammonium formate, pH 10) 
and buffer B (10 mM ammonium formate in 90% 
ACN, pH 10), the HPLC gradient was set as follows: 
0–2% B for 10 min followed by 2–8% B for 5 min, 8–
35% B for 85 min, 35–95% B for 5 min, and 95–95% B 
for 15 min. Total of 96 fractions were collected in a 
time-based mode from 16 to 112 min and were 
concatenated into 24 fractions. The 24 fractions were 
further consolidated into eight final fractions. The 
final pooled fractions were dried down and then 
dissolved in 0.1% FA together with iRT peptides for 
data-dependent acquisition (DDA) analysis. 

LC-MS/MS analysis of glycopeptides 
For the DDA MS analysis, all samples were 

analyzed by a Q-Exactive HF-X mass spectrometer 
connected to an EASY-nLC 1200 system (Thermo 
Fisher Scientific). Glycopeptides were directly injected 
into a 28 cm long self-packed C18 column (1.9 μm/120 
Å ReproSil-Pur C18 resin, Dr. Maisch GmbH, 
Germany) with an integrated PicoFrit emitter (New 
Objective). Peptides were separated using 88 min 
gradient from 5% to 40% buffer B (80% ACN and 0.1% 
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formic acid) at a flow rate of 300 nL/min. MS1 was 
acquired at a resolution of 60,000 from m/z 400 to 
1000 with automatic gain control (AGC) set at 1×106 
and a max injection time of 60 ms. MS2 scans were 
performed by higher-energy collisional dissociation 
(HCD) on the top 20 abundant precursor ions at a 
resolution of 15,000 with an isolation width of 1.4 m/z 
and a normalized collision energy (NCE) of 30. The 
dynamic exclusion was set as 20 s. 

DIA MS analysis was performed on the same MS 
instrument and LC separation gradient was kept 
consistent with the DDA analysis. The setting of full 
MS scan was similar as the MS1 scan of DDA, except 
the resolution was 120,000 under DIA mode. For the 
DIA MS2 scan, a set of 50 overlapping windows was 
constructed covering the precursor mass range of 
400–1000 Da with a fixed isolation width of 12 m/z. 
The resolution and AGC was the same as that of a full 
MS scan with a maximum injection time of 25 ms and 
NCE of 30. 

Construction of a PCa urine specific spectral 
library using DDA data 

For generation of the PCa urine-specific spectral 
library, glycopeptides enriched from the 142 urine 
samples (discovery cohort) were pooled together and 
measured in two ways. The unfractionated samples 
were analyzed with DDA in three technical replicates. 
The eight fractions generated by the bRPLC 
fractionation method were also measured by DDA 
MS. In addition, glycopeptides enriched from one 
urine specimen (sample name: P2) were also subjected 
to DDA analysis. The 12 DDA raw files were searched 
against a combined database consisting of an iRT 
fusion protein and human proteins (Swiss-Prot, 
downloaded on 02/20/2019) via Pulsar algorithm 
embedded in Spectronaut Pulsar X (Biognosys, 
Zurich, Switzerland). The parameters for the database 
search are as follows: an allowance for tryptic 
peptides of up to two missed cleavages within the 
length range of 2 to 52 amino acids. Mass tolerance of 
MS1 and MS2 were set as dynamic with a correction 
factor of one. Carbamidomethylation of cysteine (C) 
was set as a fixed modification whereas oxidation of 
methionine (M) and acetylation of protein N-terminal 
were selected as variable modifications. Since 
N-glycosylated asparagine (N) is converted to 
aspartic acid (D) upon PNGase F treatment, 
conversion of N to D was set as a variable 
modification as well. A false discovery rate (FDR) of < 
1% was required to generate the final peptide spectral 
library, in which there were 1289 unique glyco-
peptides of 594 glycoproteins. 

Database search and statistical analysis of 
glycopeptide DIA data 

For quantitative analysis of glycopeptides across 
the urine samples, DIA raw data files were first 
searched against the aforementioned spectral library 
for identification of glycopeptides followed by the 
quantification via Spectronaut Pulsar X. Mass 
tolerance of MS and MS/MS was set as dynamic with 
a correction factor of one. Source-specific iRT 
calibration was enabled with a local (non-linear) RT 
regression. Cross run normalization was not selected. 
All quantified glycopeptides were filtered by a Q 
value cutoff of 0.01 (which corresponds to an FDR of 
1%) and decoy peptide sequences were removed. 

We performed normalization on glycopeptides 
to the total protein amount in individual urine sample 
then multiplied by the median of the total amount of 
proteins across samples. We used WebGestalt for 
Gene Ontology (GO) cellular component annotation 
[29]. Enriched pathways were analyzed using 
STRING [30]. At the initial discovery phase, 
glycopeptides identified and quantified in at least 
one-third of AG or NAG samples were selected. The 
p-value for each glycopeptide in the discovery cohort 
was computed between AG and NAG groups using 
the Mann-Whitney U test and multiple testing by 
label permutation was used to estimate the false 
discovery rate (FDR) of candidate marker selection. 
For each glycopeptide, its discrimination power as an 
individual marker or in combination with serum PSA 
through logistic regression was evaluated using 
receiver operating characteristic (ROC) analysis in 
three repeated 5-fold cross validations. The mean 
ROC curves from repeated 5-fold cross validation 
were depicted and area under the curve (AUC) was 
computed for the mean ROC curves. The predictive 
models with cross validation were built using caret 
(version 6.0-85) [31] in R. ROC curves were generated 
using pROC (version 1.13). AUC along with 95% 
confidence interval (95% CI) as well as sensitivity and 
specificity at the best cutoff point along with 95% CI 
were obtained via MLeval [32] in R, for which the best 
cutoff point on the ROC curve has the maximal 
summed sensitivity and specificity. The generated 
predictive models were further investigated using 
another validation cohort. 

Results and Discussion 
Workflow of an integrated urine glyco-
proteomic analysis 

It is essential to establish an experimental 
workflow that can analyze a large number of 
specimens with high throughput, high sensitivity, and 
high reproducibility for biomarker discovery using 
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urine. A previous study demonstrated the feasibility 
of detecting a glycoprotein difference between 
aggressive PCa and non-aggressive PCa using pooled 
urine samples from PCa patients [24]. However, the 
performance of each glycoprotein for differentiating 
aggressive and non-aggressive PCa was difficult to 
evaluate using pooled urine samples. Therefore, in 
this study, we established an integrated workflow by 
coupling automated urine sample preparation with 
DIA MS for the quantitative analysis of N-linked 

glycosite-containing peptides (referred to as De-N- 
glycopeptides or glycopeptides for simplicity) 
derived from the urine samples of 74 AG (Gleason 
score ≥8) and 68 NAG (Gleason score = 6) PCa 
patients (discovery cohort, Table S1). An overview of 
the experimental workflow is illustrated in Figure 1A. 
Table S2 shows the major differences between the 
previous study [24] and the current study in terms of 
samples, the glycopeptide enrichment method, data 
acquisition, and quantification approach. 

 

 
Figure 1. A. Experimental workflow for the quantitative analysis of urine glycoproteomic to discover candidate biomarkers associated with aggressive prostate cancer. 
Reproducibility of DIA MS analysis was shown. B. The relative standard deviation (RSD) of the identification number of peptide precursors, peptides and proteins over three 
replicate DIA runs of glycopeptides are less than 3%. C. The correlation coefficients between any two replicates was at least 0.944. 
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To perform the quantitative proteomic analysis 
of the enriched glycopeptides using DIA, a PCa urine 
specific spectral library was generated using the 
glycopeptides from the discovery cohort via DDA MS 
(Table S3). The constructed spectral library contained 
1,289 unique de-N-glycopeptides corresponding to 
594 glycoproteins, thereby allowing for a broad 
coverage of the PCa-related urine glycoproteome for 
reliable DIA data analysis. Quantification accuracy 
and data reproducibility are extremely important for 
biomarker discovery. Thus, the reproducibility of DIA 
MS was evaluated by using three replicate injections. 
The relative standard deviation (RSD) of the 
identification number of peptide precursors (i.e., the 
same peptide sequences with different charge states 
or modifications), peptides, or proteins across the 
three replicates was 3% or less, which indicates 
consistency in DIA MS data acquisition (Figure 1B). 
To determine reproducibility among replicates, 
pair-wise correlation was calculated based on the 
intensity of quantified peptide precursors (Figure 1C). 
The correlation between any two replicates was 
≥0.944 indicating the precision in quantification of our 
DIA MS method. 

To investigate the levels of non-enzymatic 
deamidation generated during sample preparation 
and assess the false discovery rate of N-linked 
glycopeptides caused by non-enzymatic deamidation, 
a control experiment was performed in 20 randomly 
selected urine specimens from the discovery cohort. 
The urine proteins were subjected to trypsin digestion 
followed by enrichment of intact glycopeptides. The 
enriched intact glycopeptides from each sample were 
divided into two equal aliquots. One aliquot was 
directly analyzed by LC-MS/MS without PNGase F 
treatment. For the other aliquot, peptides were first 
treated with PNGase F to remove glycans before 
LC-MS/MS analysis. The identified peptides from the 
20 urine specimens are presented in Table S4. For the 
20 samples without PNGase F treatment, 2132 
peptides were identified in total, of which 109 
peptides (5.1%) were modified by deamidation and 
only 5 out of 109 deamidated peptides (4.6%) 
contained the NXS/T sequence. The result indicates 
that the identification rate of false N-linked glyco-
peptides (generated by nonenzymatic deamidation in 
NXS/T motif) is low (0.2%)). For the PNGase F treated 
peptides from the same 20 urine samples, 2692 
peptides were identified, in which 1652 peptides 
(61.4%) were modified by deamidation (Table S4). 
Among the 1652 peptides modified by deamidation, 
1458 (88%) of them contained an NXS/T motif in their 
peptide sequences. Therefore, we can conclude that 
most of the deamidated peptides, particularly the 
deamidated peptides with NXS/T motif, were 

generated due to removal of glycans using PNGase F. 

Overview of the quantified glycopeptides in 
the discovery cohort 

For the DIA MS analysis of each clinical urine 
sample, glycopeptides enriched from the 142 samples 
(discovery cohort) were analyzed. In total, 889 glyco-
peptides originating from 549 glycoproteins were 
identified and quantified in this study at an FDR of 
<1% for both proteins and peptides (Table S5). We 
further investigated the cellular component of the 
identified proteins based on the GO annotation [33]. 
Consistent with previous reports [9, 34], a majority of 
glycopeptides identified from urine were proteins 
derived from membrane (373 glycopeptides, 67.9%), 
extracellular space (312 glycopeptides, 56.8%), or 
otherwise secreted (304 glycopeptides, 55.4%), 
indicating that most of the glycopeptides were 
originated from glycoproteins secreted or shed from 
tissues. For the biological pathway analysis, the most 
significantly enriched pathways were neutrophil 
degranulation, innate immune system, immune 
system, and extracellular matrix organization. 

Quantitative analysis of the urinary 
glycoproteins 

To discover urinary glycoproteins associated 
with aggressive PCa, a two-tier screening approach of 
candidate selection was used to narrow down our 
initial targets. The first-tier retained glycopeptides 
quantified in at least one-third of the AG or NAG 
samples. The second-tier was to filter further and keep 
only those significantly changed between AG and 
NAG samples with p < 0.05. In total, 79 glycopeptides 
were identified (Table S6), where 38 increased and 41 
decreased in AG group relative to NAG group (Figure 
2), were selected for further evaluation. Among the 79 
glycopeptides with significant changes, 54 glyco-
peptides had at least a 1.5-fold change between AG 
and NAG groups (Table S7 and the right panel of 
Figure 2) with an estimated FDR of 0.25 based on label 
permutation. 

Determining the utilities of urinary 
glycoproteins for the detection of aggressive 
PCa 

To evaluate the discrimination power of the 
differentially expressed glycoproteins in 
distinguishing AG PCa from NAG PCa, the ROC 
curves were generated and AUC were calculated 
based on predictive models of logistic regression with 
three repeated 5-fold cross validation for the 54 
glycopeptides, where 29 showed decreased levels 
(Table S7) and 25 showed increased levels (Table S7) 
in AG PCa relative to NAG PCa. From the ROC 
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results, a total of 20 candidates were selected of which 
9 were decreased and 11 were increased in AG PCa 
samples compared to NAG PCa samples (Table S8 
with blue highlights). In this study, serum PSA 
concentration obtained from clinical testing served as 
a reference to determine if candidates were 
comparable to serum PSA result or could be used in 
combination with the serum PSA to further improve 
the discrimination power towards AG PCa. Detailed 
information on the selected 20 candidates is in Table 
S9. 

Among the 29 glycopeptides showing lower 
expression in AG PCa, we found glycopeptide 
FLN*ESYK from ACPP (Prostatic acid phosphatase, * 

indicates the glycosylation site) showed the best 
performance. ACPP is a prostate specific protein with 
at least fifty-fold higher mRNA expression levels in 
prostate tissue compared to other tissues [35]. 
Moreover, decreased expression level of ACPP has 
been found in the tumor tissues of aggressive PCa 
patients compared to non-aggressive PCa patients 
based on quantitative glycoproteomic study [23] and 
immunohistochemistry analysis of ACPP on the 
cancer slides of PCa patients [36]. ACPP acts as a 
tumor suppressor of PCa through dephosphorylation 
of ERBB2 (receptor tyrosine-protein kinase erbB-2) 
and deactivation of MAPK-mediated (mitogen- 
activated protein kinase) signaling [37, 38]. Decreased 

 

 
Figure 2. Identifications of 79 glycopeptides with significant fold change between AG and NAG samples (p<0.05). Glycopeptides with elevated levels in AG samples and NAG 
samples are in red and blue, respectively. The right panel shows the fold change of the glycopeptides between AG and NAG samples. 
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ACPP expression correlates with the activation of 
downstream MAPK signaling resulting in PCa 
progression as well as androgen independent growth 
of PCa cells [37, 38]. 

ACPP was initially discovered as a serum 
biomarker for PCa instead of a urinary biomarker. 
Serum ACPP was measured by its elevated activity in 
the patient with PCa rather than by protein 
abundance [38, 39]. However, the assays to measure 
the activity of the serum ACPP were unstable in room 
temperature causing technical variations [40, 41]. 
Consequently, when serum PSA emerged and 
demonstrated better accuracy in detecting PCa [42], 
serum ACPP soon fell to disfavor. In the current 
study, we discovered the prognostic value of 
glycopeptide from urinary ACPP. Glycopeptide 
FLN*ESYK of ACPP was identified in 70 of AG and 64 
of NAG urine samples, with intensity significantly 
decreased in AG PCa group (fold change=2.56 with p 
< 0.01, Table S9 and Figure 3A). As shown in Figure 
3B, urinary ACPP had a better predictive power with 
AUC of 0.73 (95% CI, 0.65 to 0.81) compared to serum 
PSA with AUC of 0.69 (95% CI, 0.6 to 0.78) (Table S8 
and Figure 3B). Since ACPP (low in AG PCa samples, 
where median of AG=40547.17 and median of 
NAG=113063.9) and serum PSA (high in AG PCa 
samples, where median of AG=7.8 and median of 
NAG=4.5) had opposite expression profiles with a 
negative Spearman's correlation of -0.023 suggesting 
that they may provide complementary information 
for AG PCa diagnosis. Therefore, a two-signature 
panel consisting of ACPP and serum PSA was 
examined. We found the panel provided better 
diagnostic accuracy by improving the AUC to 0.82 
(95% CI, 0.75 to 0.89) (Figure 3B and Table S8). To 
ensure the performance of the panel (urinary ACPP + 
serum PSA), we generated 1000 random combined 
signature sets using label permutation and computed 
the AUC for each built random model (Figure 3C). 
The random models generated a median AUC of 0.55, 
which was lower and clearly separated from our real 
model (AUC=0.82). 

To investigate the effect of serum PSA 
concentration on the performance of urinary ACPP in 
detecting AG PCa, ROC analysis was conducted for 
urinary ACPP and serum PSA at different serum PSA 
cutoffs. As shown in Figure 3D, the performance of 
urinary ACPP is quite consistent across different 
cutoff points with the AUC ranged from 0.73 to 0.74. 
On the contrary, the performance of serum PSA 
varied at different cutoff values with the AUC ranged 
from 0.45 to 0.69. It has demonstrated limited 
discrimination power of serum PSA towards AG PCa 
detection with serum PSA values < 20 ng/mL (Figure 
3D). Although further investigation is required, the 

aforementioned result indicates that the performance 
of urinary ACPP is independent of serum PSA 
concentrations. Thus, urinary ACPP may be useful in 
supplementing serum PSA test for the detection of 
AG PCa at serum PSA ranges less than 20 ng/mL. 

Another down-regulated candidate glyco-
peptide of interest is CD63 (CD63 antigen). CD63 is 
one of the widely accepted exosomal markers that 
belongs to the transmembrane 4 superfamily (TM4SF) 
[43]. Protein complexes formed by TM4SF members 
are associated with beta-1 integrin and contribute to 
cell motility, which plays an important role in tumor 
progression [43, 44]. In our study, glycopeptide 
(CCGAAN*YTDWEK) from CD63 was identified and 
its intensity was 2.2 times lower in AG PCa urine 
specimens comparing to NAG PCa urine specimens (p 
< 0.05, Figure 3E). Figure 3F shows that the 
glycopeptide has the ability to differentiate AG PCa 
from NAG PCa with an AUC of 0.69 (95% CI, 0.55 to 
0.83). When combined with serum PSA, the AUC was 
further improved (0.81, 95% CI of 0.69 to 0.93, Table 
S8). 

Besides ACPP and CD63, glycopeptides from 
other proteins such as ATRN (Attractin), GP2 
(Pancreatic secretory granule membrane major 
glycoprotein GP2), KLK11 (Kallikrein-11), PTPRN2 
(Receptor-type tyrosine-protein phosphatase N2), 
NPTN (Neuroplastin), CPE (Carboxypeptidase E), 
and RNASE2 (Non-secretory ribonuclease), also 
showed good performance in detecting AG PCa when 
combined with serum PSA (Table S8). In addition, 
TMPRSS2 (Transmembrane Serine Protease 2) is 
another important PCa-specific protein identified in 
this study. TMPRSS2 is an androgen-responsive gene. 
Its fusion to ERG contributes to the development of 
androgen-independence in PCa, resulting in cancer 
progression including invasion and metastasis [45]. 
Genetic detection of this type of fusion in urine 
specimens has entered clinical practice [46-48]. In this 
study, we found the expression levels of 
LN*TSAGNVDIYK from TMPRSS2 was 1.7-fold 
decreased in AG PCa urine samples (n=25) relative to 
NAG PCa urine samples (n=22) with a p-value of 0.13. 
Usually, the exon 1 or 2 of TMPRSS2 is fused to exon 2 
or 4 of ERG during TMPRSS2:ERG fusion [45]. 
However, the glycosite, N213, on LN*TSAGNVDIYK 
is located after the fusion position. We speculate that 
the TMPRSS2:ERG fusion may lead to the decrease of 
LN*TSAGNVDIYK expression. Therefore, a decrease 
in the level of LN*TSAGNVDIYK in AG PCa urine 
samples may be explained by TMPRSS2:ERG fusion 
more frequently occurred in AG PCa samples. Further 
studies are needed to investigate this hypothesis. 
Nonetheless, our finding may provide a new angle for 
studying the TMPRSS2:ERG fusion. 
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Figure 3. Two down-regulated glycopeptides in AG PCa. A. Expression profiles of urinary ACPP (FLN*ESYK) in AG PCa and NAG PCa samples. B. ROC analysis results of 
urinary ACPP and serum PSA. C. A panel comprising urinary glycopeptide from ACPP and serum PSA was evaluated by label permutation for 1000 times. The AUC distribution 
of the 1000 random models (median AUC=0.55, red dotted line) was compared to the real model (AUC=0.82, black dotted line). D. Effect of serum PSA concentrations on the 
performance of urinary ACPP for detecting AG PCa. The AUC of urinary ACPP and serum PSA for detecting AG PCa was calculated and compared at different serum PSA 
cutoffs. E. Expression profiles of CD63 (CCGAAN*YTDWEK) in AG PCa and NAG PCa urine samples. F. ROC analysis results of CD63 (CCGAAN*YTDWEK) and serum PSA. 
The boxplots display a summary of minimum, first quartile, median, third quartile, and maximum of the expression profiles for AG and NAG PCa samples. AUC and 95% 
confidence interval are depicted for each candidate marker. 

 
Apart from the aforementioned down-regulated 

glycopeptides, we also explored the up-regulated 
candidate glycopeptides including NGIYN*ITVLASD 

QGGR from DSC2 (Desmocollin-2), AEN*QTAPGEV 
PALSNLRPPSR from LOX (Protein-lysine 6-oxidase), 
and LPPGLLAN*FTLLR from LRG1 (Leucine-rich 
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alpha-2-glycoprotein), as shown in Figure 4. DSC2 
belongs to the demecolcine protein subfamily and is 
the major component of desmosomes. Desmosomes 
are involved in establishing and maintaining cell-cell 
adhesion and are critical for the development, 
differentiation, and maintenance of normal human 
tissues [49]. The loss of cell-cell adhesion is frequently 
associated with the progression of PCa to a metastatic 
state. Previous research has found aberrant 
expression of DCS2 in several types of cancers by 
possible involvement in tumor progression [50]. In 
our study, we observed an elevated expression profile 
of the glycopeptide, NGIYN*ITVLASDQGGR of 
DSC2, in AG PCa urine samples (Figure 4A). 
NGIYN*ITVLASDQGGR of DSC2 generated an AUC 
of 0.69 (95% CI, 0.56 to 0.82) as an individual 
signature. However, an improvement was noticed 
when combined with serum PSA with an AUC of 0.79 
(95% CI, 0.68 to 0.9) (Figure 4B and Table S8). LOX is 
another glycopeptide of interest since it is reported to 
be associated with PCa [51]. We observed the level of 
AEN*QTAPGEVPALSNLRPPSR from LOX was 
higher in AG PCa compared to NAG PCa (Figure 4C). 
The ROC analysis included AEN*QTAPGEVPALSNL 
RPPSR of LOX and serum PSA indicating that the 
combination of the two enhanced the separation of 
AG PCa from NAG PCa (AUC of 0.73, 95% CI of 0.64 
to 0.82) in comparison with using LOX (AUC of 0.64, 
95% CI of 0.55 to 0.73) and serum PSA (AUC of 0.68, 
95% CI of 0.59 to 0.77) individually (Figure 4D and 
Table S8). Furthermore, LRG1 (Leucine-rich-alpha-2- 
glycoprotein-1), an inflammatory protein in human 
serum participates in the immune response [52], was 
identified as an up-regulated glycopeptide in this 
study. LRG1 was previously recognized as a new 
oncogene-associated protein promoting dysfunctional 
vessel growth [53]. The up-regulation of LRG1 has 
been reported to be associated with progression and 
angiogenesis of multiple cancers [54-56]. Here, 
LPPGLLAN*FTLLR from LRG1 was expressed twice 
more in AG PCa than NAG PCa urine samples (Figure 
4E). A combined use of LRG1 and serum PSA 
generated an AUC of 0.8 (95% CI, 0.7 to 0.9) (Figure 4F 
and Table S8) suggesting the potential of LRG1 as a 
urinary glycoprotein for aggressive PCa. In addition 
to DSC2, LOX and LRG1, glycopeptides from other 
glycoproteins including CLU (Clusterin), SERPINA1 
(Alpha-1-antitrypsin), ORM1 (Alpha-1-acid glyco-
protein 1), PTGDS (Prostaglandin-H2 D-isomerase), 
GRN (Progranulin), UMOD (Uromodulin), AFM 
(Afamin) and CD97 (CD97 antigen), were also found 
to be significantly (p < 0.05) elevated in AG PCa urine 
specimens and the capacity in group separation was 
evaluated by ROC analysis (Table S8). 

The combined performance of two urinary 
glycoproteins and serum PSA for the 
detection of AG PCa 

After evaluating the glycopeptide signatures 
individually and in combination with serum PSA, we 
further investigated the potential of combining a 
down-regulated glycopeptide and an up-regulated 
glycopeptide since this may improve the clinical 
utility of these candidate glycopeptides. We selected 
urinary ACPP as the primary down-regulated 
candidate glycopeptide because it had the best 
performance among the candidate glycopeptides. To 
directly compare the performance of urinary ACPP 
with different up-regulated candidate glycopeptides, 
we fixed the sensitivity at 95% and then compared the 
specificity. By setting a very high sensitivity, even at 
the cost of reduced specificity, would also fulfill the 
need in clinical practice for lowering misdiagnosis of 
patients with aggressive PCa. The ROC results of 
different panels are shown in Table S10, where the 
four panels demonstrated relatively better 
performance in distinguishing AG PCa from NAG 
PCa (higher AUC and higher specificity at 95% 
sensitivity) are presented in Figure 5. 

Among all the two-signature panels (i.e., the 
combination of urinary ACPP and an up-regulated 
glycopeptide), urinary ACPP combined with urinary 
CLU had the best performance (AUC=0.8) achieving a 
specificity of 41% at 95% sensitivity (Figure 5A and 
Table S10). By adding serum PSA into the panel, the 
AUC was improved to 0.86 and specificity was 
increased to 50% at 95% sensitivity (Figure 5A and 
Table S10). While serum PSA itself generated an AUC 
of 0.69, and the specificity was only 8% at 95% 
sensitivity. Since ACPP and CLU were detected in 
more than 91% of the samples, further clinical use of 
the combined signature panel is possible. The 
combination of urinary ACPP, urinary LOX, and 
serum PSA as a three-signature panel also displayed a 
good capacity in differentiating AG from NAG PCa 
(AUC=0.82, Figure 5B and Table S10). Furthermore, 
urinary ACPP combined with urinary SERPINA1 
(Figure 5C and Table S10) and urinary ACPP 
combined with urinary ORM1 (Figure 5D and Table 
S10) both achieved an AUC of 0.76. Additional 
improvement in discrimination power was observed 
when serum PSA was included; the AUC increased to 
0.83 with specificity reached to 50% at 95% sensitivity 
(Figures 5C-D). These results demonstrate that a 
combined signature panel composed of one up, one 
down-regulated glycopeptides from urinary 
glycoproteins, and serum PSA has the ability to 
distinguish AG and NAG PCs patients, where the two 
glycopeptide signatures serve as adjuncts to serum 
PSA test to gain improved discrimination power. In 
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conclusion, three-signature panels discovered using 
quantitative glycoproteomic strategy showed better 

performance than individual signatures for the 
detection of AG PCa. 

 

 
Figure 4. Three up-regulated glycopeptides in AG PCa. A. Expression profiles of DSC2 (NGIYN*ITVLASDQGGR) in AG and NAG PCa urine samples. B. ROC analysis results 
of DSC2 (NGIYN*ITVLASDQGGR) and serum PSA. C. Expression profiles of LOX (AEN*QTAPGEVPALSNLRPPSR) in AG PCa and NAG PCa urine samples. D. ROC analysis 
results of LOX (AEN*QTAPGEVPALSNLRPPSR) and serum PSA. E. Expression profiles of LRG1 (LPPGLLAN*FTLLR) in AG PCa and NAG PCa urine samples. F. ROC analysis 
results of LRG1 (LPPGLLAN*FTLLR) and serum PSA. The boxplots display a summary of minimum, first quartile, median, third quartile, and maximum of the expression profiles 
for AG and NAG PCa samples. AUC and 95% confidence interval are depicted for each candidate marker. 
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Figure 5. ROC analysis of combined panels including urinary ACPP (FLN*ESYK), one up-regulated glycopeptide, and serum PSA. A. The combinatory performance of ACPP 
(FLN*ESYK), CLU (EDALN*ETR) and serum PSA. B. The combinatory performance of ACPP (FLN*ESYK), LOX (AEN*QTAPGEVPALSNLRPPSR) and serum PSA. C. The 
combinatory performance of ACPP (FLN*ESYK), SERPINA1 (YLGN*ATAIFFLPDEGK) and serum PSA. D. The combinatory performance of ACPP (FLN*ESYK), ORM1 
(QDQCIYN*TTYLNVQR) and serum PSA. 

 

Validation of the glycopeptide signatures using 
a validation cohort 

A validation cohort composed of 40 AG and 37 
NAG PCa patients was analyzed to further assess the 
performance of the identified glycopeptides and the 
predictive models from the discovery cohort (Figure 
6). Among the 20 candidate glycopeptides selected 
based on ROC analysis in discovery set (Table S9), 13 

of them showed the same trend in their expression 
profiles as they did in discovery cohort (Table S11). 

Next, we evaluated the performance of the 
candidate glycopeptides that can distinguish AG from 
NAG PCa during the discovery phase, including 
glycopeptides from ACPP, CD63, DSC2, LOX and 
LRG1 (Figures 3 and 4), using the validation cohort. 
Among them, the predictive power of glycopeptides 
from DSC2 and LRG1 decreased in the validation 
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cohort (Table S12), suggesting that further rigorous 
validation is needed to evaluate their potential 
diagnosis utility for aggressive PCa. Nevertheless, 
ACPP, CD63 and LOX performed consistently 
between the discovery and validation cohorts, either 
as individual biomarkers or in combination with 
serum PSA (Table S12). For example, ACPP remained 
as a reliable candidate biomarker for distinguishing 
AG from NAG PCa, especially when combined with 
serum PSA to achieve an AUC of 0.83 (95% CI of 0.74 
to 0.83) in the validation cohort (Table 1 and Table 
S12), which was comparable to that of the discovery 
cohort (AUC=0.82, 95% CI of 0.75 to 0.89). 

We further evaluated the performances of the 
predictive models composed of three candidate 
biomarkers. Combining ACPP and serum PSA with 
one of the elevated urinary signatures (CLU, LOX, 
ORM1, or SERPINA1) showed good performances 
relative to the other panels for detecting AG PCa in 
the discovery set (Table S10 and Figure 5). The four 
panels were successfully validated and consistent 
performances were observed between the discovery 
and validation cohorts (Table S13 and Table 1). Taking 
the three-signature panel consisting of urinary ACPP, 
urinary LOX, and serum PSA as an example, the 
AUCs were 0.82 and 0.85 in the discovery cohort and 
the validation cohort, respectively, indicating the 
stable performance of the predictive model of this 
panel. 

However, we later found that 24 NAG urine 
samples in the validation sample cohort were 
collected from a subset of patients in the discovery 
cohort. Since the entire sample preparation and 
DIA-MS analysis processes were carried out 
independently for the discovery and validation 
cohorts, we still present the evaluation results using 

the entire validation cohort (referred to as validation 
set 1). By removing the overlapped patient samples, a 
subset of the validation set consisting of 40 AG and 13 
NAG urine samples was used (referred to as 
validation set 2) to conduct another evaluation (Table 
1 and Table S11-13). As shown in Table 1, the 
discrimination power of ACPP combined with serum 
PSA was slightly lower using validation set 2 (AUC= 
0.8), which was possibly related to the smaller sample 
size of the second validation set. An AUC of 0.81 was 
found for the three-signature panel consisting of 
urinary ACPP, urinary LOX, and serum PSA in 
validation set 2 (Table 1 and Table S13). A similar 
outcome was observed for the five individual 
candidate biomarkers comparing validation set 1 to 
validation set 2 (Table S12). Collectively, novel panels 
of candidate biomarkers for aggressive PCa were 
discovered, and they performed consistently in an 
independent validation cohort. For clinical 
applications of the biomarker panels, the next phase 
of our study would be to validate the panels using 
larger urine sample cohorts from multi-centers to 
further assess their reliability. 

 

Table 1. Performance of different panel of candidate biomarkers 
in discovery cohort (74 AG and 68 NAG), validation cohort (set 1: 
40 AG and 37 NAG; set 2: 40 AG and 13 NAG) 

Panel of candidate biomarkers Area under the ROC curves (95% confidence 
interval) 
Discovery 
cohort 

Validation cohort 
40 AG and 37 
NAG (set 1) 

40 AG and 13 
NAG (set 2) 

ACPP & Serum PSA 0.82 (0.75,0.89) 0.83 (0.74,0.92) 0.8 (0.67,0.93) 
ACPP & CLU & Serum PSA 0.86 (0.8,0.92) 0.85 (0.76,0.94) 0.76 (0.6,0.92) 
ACPP & LOX & Serum PSA 0.82 (0.75,0.89) 0.85 (0.76,0.93) 0.81 (0.69,0.93) 
ACPP & SERPINA1 & Serum 
PSA 

0.83 (0.76,0.9) 0.84 (0.75,0.93) 0.82 (0.7,0.94) 

ACPP & ORM1 & Serum PSA 0.83 (0.76,0.9) 0.82 (0.72,0.91) 0.82 (0.71,0.94) 

 

 
Figure 6. Schematic overview of candidate glycopeptide discovery and validation. 
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Conclusion 
Despite the prevalence of PCa, there is still a lack 

of biomarkers for identifying aggressive PCa. 
Therefore, developing a noninvasive test for the early 
detection of aggressive PCa is necessary. The aim of 
this study is to detect glycopeptides of urinary 
glycoproteins associated with aggressive PCa. By 
applying a high throughput and integrated workflow 
involving automation in the urine sample 
preparation, DIA MS, and quantitative analysis of the 
urine glycoproteome, we were able to evaluate the 
performance of glycopeptides from the 142 urine 
samples (discovery cohort) for the aim of detecting 
aggressive PCa. 

Based on our analysis, 79 glycopeptides were 
significantly altered between AG and NAG samples (p 
< 0.05), 54 of which having at least a 1.5-fold change. 
Moreover, 20 glycopeptides were identified as 
candidates associated with aggressiveness in PCa. 
Glycopeptide FLN*ESYK from ACPP showed the best 
performance as an individual candidate biomarker 
compared to other candidates; further improvement 
was observed when combined with the traditional 
serum PSA. In addition, the performance of urinary 
ACPP is independent of serum PSA concentrations; 
thus, it can serve as an adjunct to serum PSA for the 
detection of aggressive PCa particularly for patients 
with lower level of serum PSA. Glycopeptides from 
CD63 and LOX also showed potential as noninvasive 
urinary glycoproteomic biomarker for aggressive PCa 
with consistent performances across the discovery 
and validation cohorts. Notably, the four 
three-signature panels comprising of urinary ACPP; 
urinary CLU, LOX, ORM1, or SERPINA1; and serum 
PSA outperformed individual signatures when it 
came to detecting AG PCa. The three-signature panel 
composed of ACPP, CLU and serum PSA can 
discriminate aggressive PCa at an AUC of 0.86. The 
predictive models with good performance were 
further investigated using a validation cohort. 
Consistent results were found between the discovery 
and validation cohorts, indicating the reliability of the 
candidates. 

Our study highlights the application of a 
high-throughput and highly reproducible automated 
urine glycopeptide preparation platform coupled 
with DIA MS for the discovery of glycoproteins 
associated with aggressive PCa. While the novel 
panels of multiple signatures discovered in this study 
demonstrate the potential of characterizing and 
detecting the aggressiveness of PCa, substantial work 
is still needed before they can be used for clinical 
applications. The next phase of our research will 
include the following: (1) Validate the urinary 

candidate biomarkers using a large-scale cohort. (2) 
Perform multi-center validation. (3) Make systematic 
comparisons of the glycoproteomic candidate 
biomarkers found in this study with other urinary 
biomarkers for PCa (e.g. urinary RNA biomarker 
PCA3) to investigate whether they can supplement 
each other to generate a new panel of noninvasive 
urinary biomarkers with improved discrimination 
power. Furthermore, aberrant glycosylation has been 
recognized as a hallmark in oncogenic transformation 
and plays an important role in cancer development 
and progression. Thus, studying glycosylation 
patterns will help in biomarker discovery. For 
instance, fucosylated PSA displays a better predictive 
power to differentiate aggressive from non-aggressive 
PCa [57, 58]. Therefore, we will also dedicate our 
efforts to investigate the glycosylation forms of our 
glycoproteins in order to further improve the 
diagnostic accuracy of aggressive PCa. 
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